
EUROGRAPHICS 2009/ G. Domik and R. Scateni Education Paper

Easel: A Java Based Top-Down Approach to 3D Graphics
Education

Philip J. Rhodes and Baoqiang Yan

Department of Computer and Information Science, University of Mississippi, Oxford, MS USA

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
We describe Easel, a simple 3D graphics pipeline implementation targeted toward undergraduate Computer
Graphics education. Easel is an interactive system written entirely in Java, which presents unique challenges
and opportunities for teaching not only 3D Graphics, but also a well-reasoned approach to software engineer-
ing and development. Achieving a reasonable frame rate in addition to correct results requires students to think
carefully about performance, ease of implementation and maintainability.

Categories and Subject Descriptors (according to ACM CCS): Computers and Education [K.3.2]: Computer Science
Education—

1. Introduction

With the advent of fast graphics cards, many instructors
use OpenGL, Direct3D, or Java3D to teach introductory
3D Computer Graphics. This choice is reasonable, since
most graphics programming is now done using these pop-
ular graphics APIs. However, using an API allows a student
to get impressive results without fully understanding the un-
derlying algorithms, costs, and implementation.

Another approach is to have students implement tradition-
ally static rendering methods such as ray tracing or perhaps
radiosity. In order to correctly implement the algorithm, the
student must have a deep understanding of how the algo-
rithm works. However, the static nature of such algorithms
may fail to engage students who are very used to the an-
imated, highly interactive graphics environments providing
by video games.

A third approach, described in this paper, is to have stu-
dents implement a graphics pipeline themselves, without the
aid of OpenGL or similar APIs. In addition to engaging the
students with an interactive environment, the frame rate met-
ric, familiar to any gamer, allows students to easily see the
impact of design and implementation decisions.

It is presumed that many educators have taken a simi-
lar approach in their own courses, but we believe that us-
ing Java as the implementation language is unusual. Java

presents some advantages over C/C++, in that Java programs
are usually easier to debug, and are compatible across plat-
forms. Java has also become extremely popular as the main
language of instruction in many departments.

The Easel system is written entirely in Java, perform-
ing all graphics operations, including rasterization, without
the help of other packages. Although the relative speed of
Java and C++ is hotly debated, it is certain that writing ef-
ficient Java code requires awareness of Java-specific issues
like garbage collection, in addition to minimizing computa-
tion. In order to maximize the frame rate, interesting deci-
sions must be made with regard to performance, maintain-
ability, and ease of implementation. In short, implementing
a graphics system like Easel is an excellent application of an
undergraduate’s understanding of Computer Science theory
and practice.

Over several iterations of an introductory Computer
Graphics course, students have been asked to implement
most of the Easel pipeline, from constructing basic shapes
all the way through to Gouraud shading. The course is very
implementation intensive, and fits well in a curriculum seek-
ing to provide students with practical experience working
with a larger codebase.

This paper shares knowledge gained from using Java to
implement a simple graphics pipeline in an educational set-
ting. We describe the technical challenges that must be ad-

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org

P. J. Rhodes / The Easel Educational Graphics System

Figure 1: The Stanford Bunny rendered with Gouraud
Shading using the Easel system. A current desktop machine
can render this model at a rate of least 10 frames per second.

dressed in order to achieve reasonable performance in Java
while still producing clear and maintainable code. Using the
techniques described in this paper, it is possible to render
models like the Stanford Bunny, consisting of about 69,451
triangles, at about 10 frames per second on current hardware.

2. Background

The relative merits of the bottom-up and top-down approach
to Computer Graphics instruction has been a subject of some
debate in recent years. The bottom-up approach is more tra-
ditional, and emphasizes fundamental Graphics algorithms
such as shading, clipping, and rasterization. The top-down
approach is a more recent response to the appearance of 3D
Graphics APIs like OpenGL and Direct3D.

A discussion panel at SIGCSE ’06 presented several
points of view on this topic [ACSS06]. In that discussion,
Edward Angel favored a top-down approach using OpenGL.
He argues that it is not strictly necessary to know the lowest
level details in order to use OpenGL effectively. His text-
book [Ang08] follows this philosophy.

Sung and Shirley argue that the top-down approach is
well suited to a single graphics course with mature students
[SS03]. They point out that students that are already in in-
dustry probably don’t need experience with large projects,
and instead require the skills that will be most immediately
useful in their career. They describe a ten week course that
teaches 2D interactive graphics programming. Rather than
restrict themselves to a single API, Sung and Shirley argue
for examining several different APIs throughout the course.
They warn against the risk that students will feel that “if the
API doesn’t support it, it can’t be done”.

However, during the SIGCSE discussion [ACSS06], Peter
Shirley claims that students achieve a deeper understanding

of Graphics fundamentals when they must implement ras-
terization in a bottom-up approach. If a two course sequence
is possible, Shirley argues that the first course should teach
low-level fundamentals, while the second course teaches
more advanced material using OpenGL as the underlying
graphics system. We agree with this assessment, and the
course described here is meant to be the first of a two course
sequence.

Steven Cunningham also argues for a two course se-
quence [Cun98a]. However, he would start with the high
level material, perhaps using [Ang08] as a text, and explore
the fundamental algorithms in the second course. Cunning-
ham has also emphasized the need to teach students Human-
Computer Interaction and related topics in CS curricula,
perhaps at the expense of pixel-level algorithms [Cun98b].
However, Cunningham points out that Computer Graphics
can be a great application area to demonstrate the impor-
tance of efficiency. In fact, several authors specifically men-
tion that Computer Graphics works very well as a motivating
application of basic Computer Science concepts. We agree
strongly, and feel that the bottom-up approach is very good
at reinforcing the knowledge that students have learned in
Analysis, Compilers, and Computer Architecture courses. Of
particular interest to us is the various design issues that arise,
forcing students to think carefully about how to balance per-
formance with factors like clarity, robustness and maintain-
ability.

3. Programming in Java

Java has become a very popular language in Computer Sci-
ence curricula, mainly due to the fact that it is easier to de-
bug Java programs compared to C and C++. Common errors
such as out of bounds array accesses are immediately caught
by the Java Virtual Machine (JVM), generating an exception
message that tells the programmer which line of source code
caused the problem, and the methods on the stack when the
problem occurred. In contrast, a similar bug in a C++ pro-
gram will often go undetected. In the worst case, writing past
the end of an array allocated on the stack will overwrite other
local variables, perhaps causing a truly mystifying and frus-
trating bug elsewhere in the program. Many educators would
argue that learning to debug even these pathological cases is
important for students. Others argue that the frustration re-
sulting from such behavior is an impediment to the learning
process, especially in courses like Graphics, where the focus
is on other material.

Java’s garbage collection is perhaps its most famous dis-
tinguishing feature, freeing programmers from having to
manually deallocate space for objects that are no longer
used. However, the garbage collection operation can be time
consuming, and programmers must pay careful attention
to this cost when implementing performance-sensitive soft-
ware in Java.

The comparative speed of Java versus compiled languages

c© The Eurographics Association 2009.

30

P. J. Rhodes / The Easel Educational Graphics System

WorldSpaceViewSpaceScreenSpaceRenderer
Shape3D

Shape3D

Shape3D

PipeLine
Triangle List

Rasterization
ZBuffer
Phong

Clipping
Perspective Divide Backface Culling

vertex normals
shading (Gouraud)

(Image Space)

PipeLine
Triangle List

PipeLine
Triangle List

matrix

matrix

matrix

matrix

matrix

matrixmatrixmatrixmatrix

Figure 2: The Easel Pipeline.

such as C and C++ has been a topic of intense debate for
years. Programming language partisans appear able to pro-
duce test results in support of their favorite language. The
purpose of this paper is not to weigh in on this debate, but
rather to describe the methods used to implement a Java
based graphics pipeline with reasonable performance.

3.1. Java programming for performance

Garbage collection in Java has been a topic of considerable
research, and recent versions of the JVM provide several op-
tions for how garbage collection should be performed. The
JVM will make an effort to choose an appropriate garbage
collector for the machine it is running on. For example, a
JVM running on a machine with several cores or proces-
sors will likely use concurrent garbage collection, where
a separate thread periodically cleans up unused memory
[Sun]. There are also variations that perform generational
garbage collection, paying special attention to memory that
was recently allocated, since this storage is more likely to be
garbage than memory that has been in use for a long time.
In any case, garbage collectors are sensitive to the number
of objects a program allocates on the heap, since each object
must be properly classified as garbage or non-garbage.

Regardless of the type of collector used, it is always ad-
vantageous to reduce the frequency with which collection
should be performed, and to make the collection process as
quick as possible by minimizing the amount of memory that
must be reclaimed. With this in mind, students are given the
following two suggestions:

S1. Reuse objects whenever possible.

S2. Try to allocate a few large objects instead of many
small objects.

The first suggestion is especially applicable when a tem-
porary object is needed for a calculation that is performed
repeatedly. For example, when transforming a vertex using

a matrix, it is convenient to use an extra array of four ele-
ments as scratch space. Rather than allocating this array ob-
ject at the beginning of each call to the matrix.transform()
method, we suggest using (and re-using) a data member of
the matrix class. Although accessing data members can be
more expensive than accessing local variables, this penalty
is tiny compared to the expense of repeatedly allocating and
garbage collecting scratch space.

The second suggestion is meant to reduce the time spent
by the garbage collector when examining objects on the
heap. Even if no new garbage is being generated, a large
number of heap objects will increase garbage collection
time because each object must still be examined by the
garbage collector. Depending on the variety of garbage col-
lector used, this can cause noticeable pauses in the animation
which not only lower the frame rate but also annoy the user.

Two more suggestions address computational load. One
source of load is associated with method calls. All meth-
ods are effectively virtual in Java, meaning that in many in-
stances the code to be executed cannot be determined until
runtime. Associated chores such as writing the return ad-
dress to the stack and passing arguments adds additional
overhead. In some cases, these costs can be avoided by la-
belling a method with Java’s final keyword. This key-
word tells the compiler that no child class will override the
method, so it is known at compile time what code will be
executed. Methods that are declared final are candidates for
inlining, meaning that a call to the method will be automat-
ically replaced with equivalent bytecode, avoiding the costs
of a method call entirely. Not all code is suitable for inlining,
but this technique works especially well for short accessor
methods. Our third suggestion is:

S3. Avoid an excessive number of method calls, and use
the final keyword when appropriate.

Another source of computational load is argument check-
ing. It is widely considered good practice to perform a safety
check on method arguments, especially when invalid argu-

c© The Eurographics Association 2009.

31

P. J. Rhodes / The Easel Educational Graphics System

ments would make the state of an object invalid as well.
However, there are many instances where an invalid argu-
ment does not make an object inconsistent, and where any
safety check would be either redundant or needlessly re-
peated. An example of redundancy is a check for array in-
dices that might be out of bounds. In C and C++, such a
check is an essential part of writing secure code. However,
the Java runtime environment already checks array indices
and generates an exception when they are out of bounds,
so an additional explicit comparison is wasteful. A more ef-
ficient approach is to catch the exception generated by the
JVM and perform the appropriate action.

For an example of a safety check that
is needlessly repeated, consider a method
getTriangleCoords(int ti, float [] coords)

that fills a nine element array with the coordinates of the
triangle specified by first argument. During rasterization,
this method is called for every triangle in the scene, and is
passed the same array every time. Verifying that the array
has a length of at least nine imposes a computational burden
that is not useful. In the spirit of these observations, we offer
a fourth suggestion:

S4. Avoid excessive checks for argument correctness.

These last two suggestions can be seen as "dangerous",
in that they could be misunderstood by the student. Sugges-
tion three could be taken as license to write very long meth-
ods, spanning several screenfuls of text. In fact, the sugges-
tion is meant to encourage the writing of methods that work
on large collections of data, so that the number of method
invocations is reduced. For example, rather than writing a
method that transforms a single vertex with a matrix, we pre-
fer to wrap that code in a loop so that it operates on an entire
array of vertices. If suggestion two has also been followed,
storing data together in large objects, this programming style
will come naturally.

The fourth suggestion could also be misconstrued to mean
that argument checking need never be done. Rather, it should
be done only once, at the appropriate place in the code.
The java package mechanism provides a natural place for
such checking. A Java package is a collection of classes that
together provide a particular functionality. Class methods
that are not explicitly labeled private, protected, or
public are assumed to have package access, meaning that
only classes in the same package can call them. In the in-
terest of performance, we can perform safety checks only
for public methods that can be called directly by the user.
Since package access methods are only called from inside
the Easel package, we assume they are being passed reason-
able argument values.

Implicit in this assumption is the hope that the Easel pack-
age contains no bugs, which is unlikely to be true. Clearly,
we are trading some reliability for performance. Students are
encouraged to reason carefully about this tradeoff through-
out the course, practicing real engineering by deciding on the

while(true){
s1.setYRotation(theta);
renderer.render();
theta += 0.01;

}

Figure 3: A very simple main loop for an Easel program. A
shape s1 is made to spin around the Y axis in object space.
The loop will continue until the application is quit by the
user.

right balance between performance, reliability and maintain-
ability.

4. The Easel Design

The Easel system is designed as a straightforward graph-
ics pipeline, as shown in figure 2. The various stages of
the pipeline are explicitly represented as objects contain-
ing methods that operate on collections of triangles main-
tained in the TriangleList and associated child classes. For
each frame, the Renderer class requests a TriangleList con-
taining all the triangles of the scene. This request ripples
down the pipeline, eventually causing a single PipeLineTri-
angleList to be assembled from the various shapes in the
scene. The PipeLineTriangleList is then passed back through
the pipeline, transformed by matrices, and operated upon at
each stage. When it returns to the Renderer stage, the trian-
gles are rasterized to the imagebuffer.

4.1. The Easel Renderer

The process described above is driven by successive calls to
the render() method of the Renderer object that termi-
nates the pipeline, where each call to this method results in
the drawing of a single frame. The render() method is
typically called inside a loop in main(), which terminates
only when the main thread is killed by closing the rendering
window. Inside this loop, the programmer is free to modify
object position, rotation and scaling in either object or world
space, and to modify camera parameters as desired. Figure 3
shows a simple example.

If the renderer simply drew directly to the screen, the qual-
ity of the resulting animation would be poor, due to flicker-
ing caused by simultaneous reading and writing to the dis-
play memory. Double buffering solves this problem by us-
ing two separate blocks of display memory. Although Java’s
Swing environment supports double buffering, we had trou-
ble getting satisfactory results with the supplied functional-
ity, though we haven’t tried with the most recent JVM ver-
sion. However, in the later weeks of the course, we require
direct access to the memory representing our framebuffer,
allowing us to perform our own rasterization. For this rea-
son, we opted to implement our own double buffering using
Java’s Image class. That is, we draw to a Java Image object,

c© The Eurographics Association 2009.

32

P. J. Rhodes / The Easel Educational Graphics System

int []

null

null

null

null

int []

int []

int []

Figure 4: The IntList Implementation. Data is stored in sev-
eral arrays called banks, each of the same length. Banks can
be created as needed.

and when the scene is completely rendered, we draw the Im-
age to the window. Image objects can be constructed using
a previously allocated array of bytes, allowing us the direct
access to memory we require.

This scheme is implemented using two threads. The ren-
der thread runs the renderer and pipeline code, while the
drawing thread does the drawing to application window.
Although not best practice, we find that the user interface
thread that is already present in Swing applications can be
used without trouble as the drawing thread. The main appli-
cation thread is used as the render thread. Activity between
the two threads is coordinated using Java’s built in locking
mechanism, preventing simultaneous access to the Image.
Using a boolean, we also ensure that each frame is drawn
only once. The result is a smooth and flicker free animation
of the scene.

4.2. TriangleList

The representation of triangles and vertices is probably the
design decision that affects performance most, since most
stages of the pipeline must repeatedly access triangles, ver-
tices, and associated data like normals and vertex colors.

Perhaps eager to apply the software engineering knowl-
edge learned in other classes, students are sometimes
tempted to wrap each individual vertex and triangle in its
own object. Because Java implements arrays of objects as
arrays of object references, this strategy results in very poor
performance, for the reasons outlined in section 3.1. In-
stead, we represent the vertices and triangles as large one-
dimensional arrays of floats and ints, respectively.

In the initial offering of the course, TriangleList was im-
plemented as a set of fixed length arrays. Package classes
were able to directly access these arrays, which produced
good performance but also code which was difficult to debug
and maintain. Figure 5 shows an example. Worse, the fixed
length of the arrays presented problems during the clipping

stage, which increases the number of triangles. For some un-
usual scenes, the reduction in triangle count produced by
backface culling does not provide enough room for the ex-
tra triangles produced by clipping. Although this can be ad-
dressed by increasing the initial size of the arrays by some
percentage, the solution is not elegant.

A later offering of the course introduced new Java classes
to solve the problems associated with fixed length arrays.
The ByteList, FloatList, and IntList classes can represent
lists of basic types of practically unlimited length. These
classes exploit the fact that Java implements two dimen-
sional arrays as an array of pointers to one dimensional ar-
rays. Figure 4 illustrates that we can dynamically allocate the
one dimensional arrays (called banks) as needed, making it
unnecessary to know in advance the maximum space needed.
Assuming a bank size of 1024 bytes, and 1024 pointers, an
IntList can store up to 1GB of data, which is more than suf-
ficient for our purposes. Lastly, we do not de-allocate banks
between frames, but overwrite existing data instead, so allo-
cation costs are paid mainly during the rendering of the first
frame.

The first implementation using the List classes described
above provided methods for setting and getting single bank
elements. However, performance was unacceptable, due to
the large number of method calls, and repeated calculations
associated with choosing the correct bank for retrieval. This
situation was partially addressed by augmenting the List
classes to allow access to three elements at one time, greatly
reducing the number of method calls, and simplifying the
code. Comparing figure 6 to figure 5 demonstrates the sim-
plicity and clarity of the new implementation. Unfortunately,
this clarity comes at the expense of performance. The frame
rate drops by approximately 30% for larger models like the
Stanford Bunny, though the drop is a more modest 2% for a
Utah Teapot model with only 2256 triangles. This is a good
example of the engineering tradeoffs discussed in the course.
Should we choose the clearer, more robust implementation
that produces safer, easier code, or deliver increased perfor-
mance to the user at the expense of development and debug-
ging time? Because many students are very familiar with the
frame rate metric through gaming experience, the question
has some relevance to them. Many want to write code that is
as fast as possible, putting themselves in the position of the
gaming user. When more safety-critical scenarios are con-
sidered, such as a medical application, students agree that a
cleaner design is essential.

5. Performance and Profiling

Ideally, we’d prefer not to have to make the sort of tradeoffs
described in the previous section, and would like to code
that is both clean and fast. Profiling is an important tool in
the pursuit of performance, and is available via a command
line argument to the JVM. After execution has completed, a
report is printed to the console detailing the amount of time

c© The Eurographics Association 2009.

33

P. J. Rhodes / The Easel Educational Graphics System

/** Copies the coordinates of the three vertices of the specified triangle

* into the coords array. The array must have length of at least nine elements.

* A reference to the array is returned as a convenience.

*/
public float [] getTriangleCoords(int ti, float [] coords){

coords[0] = this.vertices[3 * this.triangles[ti * 3]];
coords[1] = this.vertices[3 * this.triangles[ti * 3] + 1];
coords[2] = this.vertices[3 * this.triangles[ti * 3] + 2];

coords[3] = this.vertices[3 * this.triangles[ti * 3 + 1]];
coords[4] = this.vertices[3 * this.triangles[ti * 3 + 1] + 1];
coords[5] = this.vertices[3 * this.triangles[ti * 3 + 1] + 2];

coords[6] = this.vertices[3 * this.triangles[ti * 3 + 2]];
coords[7] = this.vertices[3 * this.triangles[ti * 3 + 2] + 1];
coords[8] = this.vertices[3 * this.triangles[ti * 3 + 2] + 2];

return coords;
}

Figure 5: The plain array implementation of a method to retrieve the coordinates of a triangle. Though this implementation is
fastest, students found it confusing and difficult to debug.

/** Copies the coordinates of the three vertices of the specified triangle

* into the coords array. The array must have length of at least nine elements.

* A reference to the array is returned as a convenience.

*/
public float [] getTriangleCoords(int ti, float [] coords){

this.triangles.get(3 * ti, this.triangle);

this.vertices.get3(3 * this.triangle[0], coords, 0);
this.vertices.get3(3 * this.triangle[1], coords, 3);
this.vertices.get3(3 * this.triangle[2], coords, 6);

return coords;
}

Figure 6: The IntList/FloatList implementation of the same method shown in figure 5. The code is much simpler, but at some
cost to performance.

Compiled + native Method
7.7% 406 + 0 edu.olemiss.cs.graphics.PerspectiveFlatShadeViewSpace.getTriangleList
3.4% 182 + 0 edu.olemiss.cs.graphics.ScreenSpaceMatrix.transform_to_homogeneous
2.5% 135 + 0 edu.olemiss.cs.graphics.Matrix.transform
2.5% 135 + 0 edu.olemiss.cs.graphics.PipeLineTriangleList.doPerspectiveDivide
:
: <ellided>
:
22.4% 1186 + 0 Total compiled

Stub + native Method
67.0% 0 + 3554 apple.awt.CRenderer.doPoly
7.9% 0 + 421 java.lang.StrictMath.floor
74.9% 0 + 3975 Total stub

Figure 7: This partial listing of the profile for the Renderer using Java’s 2D graphics shows that the doPoly() method, an
implementation of the Java drawPolygon() method, is taking up 67% of the execution time on the render thread.

c© The Eurographics Association 2009.

34

P. J. Rhodes / The Easel Educational Graphics System

Table 1: Frame rates for various models on a 2.6 GHz 2 x
Dual Core Intel Xeon Macintosh. Gouraud Rendering and
z-buffer were implemented using a hand written rasterizer.

Model Name Number of Triangles Frame Rate
Teapot 2256 42.7
XWing 6124 36.5
Bunny 69451 11.3
Dragon 871414 1.4

spent in each method by each thread. Profiling is used during
lecture to explore design decisions, and students are encour-
aged to use this important tool during development.

Early in the course, we use a Renderer implementation
that uses Java’s 2D graphics. In order to implement features
like z-buffer and Gouraud and Phong shading, we are forced
to move to our own Digital Differential Analyzer (DDA) ras-
terization implementation. In addition to these features, we
can also motivate the need for our own rasterizer using pro-
filer data. The profile in figure 7 shows that a renderer using
Java’s drawPolygon() method spends 67% of its time in
that method. Such a renderer can only achieve 2 or 3 frames
per second with the Stanford Bunny, while performance with
a hand-written rasterizer and z-buffer is at least four times
faster.

Table 1 shows the frame rates for various models achieved
using a renderer that adds Gouraud Shading, in addition to
z-buffer. With low triangle counts, profiling shows that our
framerate is largely determined by the cost of transferring
the image buffer to the graphics card. Of course, as the trian-
gle count increases, the effect of per-triangle costs increases,
and the frame rate drops until we are no longer at interactive
speeds.

6. Assignments

Our first course in 3D Computer Graphics is offered as CSCI
391, targeted at third and fourth year students. In many
cases, this course is the first truly implementation intensive
course that students have taken. The assignments build on
each other, and students are encouraged to use their own
implementation of previous assignments as a starting point
for the next assignment. However, a correct implementation
of the previous assignment is always available, preventing
a “snowballing” effect when a student runs into trouble. In
many cases, a certain amount of “starter code” is provided, to
reduce time students spend on issues ancillary to the graph-
ics assignment. When necessary, class files are distributed
instead of java files in order to hide an implementation.

A1: Transformation Matrices. Students are given code for
a renderer that uses Java’s built in polygon drawing rou-
tines to render tetrahedra in wireframe with a simple parallel
projection. Students are asked to implement rotation, scal-
ing, and translation matrices in object space and apply them

Figure 8: A polygonal model of the Utah teapot rendered
using Phong Shading.

to vertex lists in order to make the tetrahedra grow, shrink,
glide, and rotate.

A2: Shapes. Students write code to generate simple
shapes such as cubes, cylinders, cones, and spheres in ob-
ject space.

A3: World Space. Students are asked to implement the
WorldSpace class, which keeps track of shape placement in
the scene. They must also support rotation and translation
in the world coordinate system by associating a new set of
matrices with each object in the scene.

A4: View Space. The ViewSpace class implements back-
face culling, painter’s algorithm, and flat shading.

A5: Perspective and Cameras Students must implement
perspective projection in the Screen Space class, and also
provide code that allows the camera to move under mouse
control.

A6. Triangle Rasterization. Java’s built in polygon draw-
ing is discarded in favor of a hand written rasterizer, using
the DDA implementation.

A7. Z-Buffer The rasterizer is augmented to include z-
buffer.

A8. Gouraud Shading View Space is augmented to com-
pute vertex normals and colors using the Gouraud Shading
Model [Gou71].

A9. Clipping. Polygon clipping is implemented. The
authors have used Cohen-Sutherland [NS79] clipping in
Screen Space, but other choices may be explored.

If time permits, one or two additional assignments on
Phong shading [Pho75](see Figure 8), texture and bump
mapping are possible. Assignment topics are, of course, sup-
plemented with lecture material on radiosity, ray tracing, and
other classic topics.

7. Final Remarks

We believe that using Java in a bottom-up approach to teach-
ing Computer Graphics can be successful because we use

c© The Eurographics Association 2009.

35

P. J. Rhodes / The Easel Educational Graphics System

can Java Programming to teach Graphics, and Graphics to
teach Java Programming. Using Java as the implementation
language removes some of the pain of implementing large
systems in C/C++, allowing students to concentrate more on
course content. However, we are teaching important issues
in software design, implementation, and analysis of software
performance using Graphics as a motivating application.

Although building an animated graphics system in Java
may seem an odd choice at first glance, students relate well
to frame rates, and appreciate seeing the effect that model
size and algorithmic differences have on performance. The
Easel code base is not only visible to the students, but chang-
ing and evolving as the course progresses. We hope that stu-
dents leave with the sense that they themselves can build
anything they like, and can change their environment at will,
instead of being restricted to the capabilities of a particular
API.

8. Acknowledgements

Part of this work was supported by the National Science
Foundation under grant CCF-0541239.

References
[ACSS06] ANGEL E., CUNNINGHAM S., SHIRLEY P., SUNG

K.: Teaching computer graphics without raster-level algorithms.
In SIGCSE ’06: Proceedings of the 37th SIGCSE technical sym-
posium on Computer science education (New York, NY, USA,
2006), ACM, pp. 266–267.

[Ang08] ANGEL E.: Interactive Computer Graphics: A Top-
Down Approach with OpenGl (5th Edition). Addison-Wesley,
2008.

[Cun98a] CUNNINGHAM S.: An Evolving Approach to Com-
puter Graphics Courses in Computer Science. In Proceedings
of GraphiCon 98 (September 1998).

[Cun98b] CUNNINGHAM S.: Outside the box: the changing shape
of the computing world. ACM SIGCSE Bulletin 30, 4 (1998), 4–
7.

[Gou71] GOURAUD H.: Continuous shading of curved surfaces.
IEEE Transactions on Computers 20, 6 (1971), 623–628.

[NS79] NEWMAN W., SPROULL R.: Principles of interactive
computer graphics. McGraw-Hill New York, 1979.

[Pho75] PHONG B.: Illumination for computer generated pic-
tures. Communications of the ACM 18, 6 (1975), 311–317.

[SS03] SUNG K., SHIRLEY P.: A top-down approach to teaching
introductory computer graphics. In SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Educators Program (New York, NY, USA, 2003),
ACM, pp. 1–4.

[Sun] SUN MICROSYSTEMS: Tuning garbage collection with
the 5.0 java virtual machine. http://java.sun.com/docs/
hotspot/gc5.0/gc_tuning_5.html.

c© The Eurographics Association 2009.

36

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

