EUROGRAPHICS 2009/ G. Domik and R. Scateni

Education Paper

Using processing.org in an introductory computer graphics
cour se

Jordi Linares Pellicer®, Jordi Santonja Blanes?, Pau Micé Tormos? and David Cuesta Frau?

1Dept. of Information Systems and Computation, Polytechnical University of Valencia, Spain
2Dept. of Systems Data Processing and Computers, Polytechnical University of Valencia, Spain

Abstract

Created in 2001 in the Aesthetics and Computation Group at MIT, processing.org environment and language has
become the tool of choice for hundreds of artists, designers and computer graphics developers. The efforts in
the development of any kind of computer graphics application is extremely reduced with processing, thanks to its
simple environment, language (a Java dialect) and libraries. In the present work we will describe its benefits in
any introductory computer graphics course, describing an actual experience and comparing its results with the

use of other traditional approaches (OpenGL + GLUT).

Categories and Subject Descriptors (according to ACM CCS): Computers and Education [K.3.3]: Computer Science

Education—Computer Graphics [1.3.3]: General—

1. Introduction

Several approaches to an introductory computer graphics
course have been discussed so far and this is going to be
common in the future due to the constant evolution of hard-
ware and software possibilities. Regardless of the particular
approach used, we expose in this paper the convenience of
using a new environment, processing.org, as a very interest-
ing alternative to a traditional approach, generally OpenGL
+ GLUT with C or C++.

Processing [prob] was created in 2001 in the Aesthetics
and Computation Group at MIT by the designers Casey Reas
and Ben Fry. Highly influenced by the Drawing by Num-
bers project, it was explicitly designed as a bridge towards
computer graphics programming for those who traditionally
were excluded due to its complexity [RF06]. After several
years of development, processing is now an open source
project considered as a better alternative to some proprietary
solutions such as ActionScript (Flash) or Lingo (Macrome-
dia Director). Processing is being used in hundreds of vi-
sual arts courses, a large list of them can be found at [proa].
Some of the awesome works created with processing can be
enjoyed at [exh].

In this paper we will describe why its characteristics also
make it ideal in any introductory computer graphics course,
specifically in the laboratory sessions. Our experience con-

(© The Eurographics Association 2009.

sisted of its adoption into the laboratory sessions of a one
semester computer graphics subject, which takes up fifteen
hours, and where our objective is to provide a general vi-
sion of computer graphics techniques and possibilities. This
subject is part of our degree in computer science.

2. The processing framework

It is not an objective of this paper to provide a complete de-
scription of the processing language and framework, since
there are good information sources and books. We are only
going to describe the basic concepts of the framework with
special attention paid to those related to our educational pur-
poses.

Processing simplifies computer graphics programming by
providing a solution in four areas:

e Its own programming language. Actually, it is just a Java
dialect, specifically designed to allow different program-
ming modes (progressively more complex).

e Its own development environment. This environment is
designed for the development of the so-called sketches,
i.e., little applications and prototypes.

e A comprehensive and powerful graphic library. This 2D
and 3D library was based following the influence of

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org

24 J. Linares, J. Santonja, P. Mic6 & D. Cuesta / Processing in an introductory computer graphics course

PostScript and OpenGL. Processing libraries can directly
be used in a pure Java application.

e A huge collection of additional libraries, able to facilitate
video acquisition and manipulation, PDF and SVG sup-
port, computer vision, video generation, sound capabili-
ties and much more.

2.1. Theprocessing language

Processing language is a Java dialect. Its source code is al-
ways transformed to Java pure code using a preprocessor
and, in the end, executed over the Java Virtual Machine. This
process is completely automatic from inside the processing
IDE.

The aim of this Java dialect is basically to also make
possible the use of the procedural programming paradigm.
With processing, besides the power provided by the object-
oriented nature of Java, it is also possible to code C-like pro-
gramming. This traditional procedural approach can initially
help beginners and, what is more, can concentrate student’s
efforts towards computer graphics essentials and not learn-
ing new paradigms they are not used to working with.

Actually, processing provides three different models when
developing an application:

e The basic one. Processing allows just to type some lines
of code, without functions or classes, just sentences. An
example of that can be appreciated in Figure 1. This pro-
gramming mode is very useful when the students are in-
troduced to the different graphic primitives of the library.

e The procedural approach. It is very common to have
students without a previous background in the object-
oriented paradigm. This fact makes it difficult to use other
approaches, Java3D for instance, as the framework for an
introductory computer graphics course. Processing does
allow procedural methodology as can be seen in Figure 2.

e The object-oriented approach. We can use the full power
of Java, being even able to directly use pure Java classes,
libraries and code.

The main advantage of these three modes is that they can
be used in a progressive way, allowing the reuse of the code
in each step.

Thus, the basic mode is a fantastic tool in order to show
the students the different graphic primitives of the library,
almost in an interpretive way.

The first real programs can be developed by defining some
functions, the code of which can be a generalization of what
they did in the basic mode.

Finally, a complete object-oriented version could be cre-
ated by defining the appropriate classes. If the final applica-
tion requires such it is even possible to migrate it to a pure
Java application and use Eclipse framework, for instance,
just by importing the processing core library.

e N ala

example | Processing 1.0

File Edit Sketch Tools Help

/¢ Example of just some sentences in processing
stroke(259,8,8);
for {int i=B; i<=1B; i++)

ellipseli*l@, i*l@, 18, 18);

With processing basic mode, students can experiment
without having to code a complete program, with only
some sentences it is enough to see results.

Figure 1: A simple processing application.

2.2. The processing development environment (PDE)

One of the main problems we have found out in the labora-
tory sessions of a computer graphics course is the time re-
quired just to introduce to the students to the programming
framework. If a new language is chosen, the problem is even
worse. In our case, with just fifteen hours available, it was
compulsory to reduce this initial effort.

Processing PDE proved to be an ideal option to our objec-
tives. Processing PDE is developed in Java, multiplatform,
open source and extremely simple to use. It has just the tools
required to generate Mac, Linux or Windows applications
or final applets for any web browser. It is basically a type-
and-run framework. This feature allows the students to use
it from the very first minute.

Nevertheless, processing PDE lacks important features
when developing final and complete applications. It has no
debugger, for instance. However, that is solved by migrat-
ing the application to a Java framework, such as Eclipse or
Netbeans. The migration process is almost direct, since very
few changes are required thanks to the Java nature of the
processing language. This possibility allows the students to
reuse everything they have done from the beginning: from

(© The Eurographics Association 2009.

J. Linares, J. Santonja, P. Micé & D. Cuesta / Processing in an introductory computer graphics course 25

example | Processing 1.0

File Edit Sketch Tools Help

example

A 11 own functions or closses are defined, an
A4 implementation for setupi) must be defined
wvoid setupl)
{

size(108,1088); // Screen size

noStroke();

}
void draw() // Called each frame
{
drawRandomCircle();
}
void drawRandomCireled)
{
int r = Int{random{5@));
/¢ Fillealor
fill{random{255), random{255), random{255));
/¢ Circles with random circles (pasition, radius, color, sizes)
ellipse(random(188), rondom{188), r, ri;

1

Besides using all the object-oriented power of Java,
processing allows a procedural or C-like program-
ming.

Figure 2: A C-like processing application.

preliminary sketches and prototypes to full-featured Java ap-
plications.

2.3. Theprocessing graphic library

In its first version, processing provides four different render-
ing modes. All share basically the same set of primitives,
with some small differences. This characteristic makes it
easy to change the rendering mechanism without changing
the code.

Some of its main characteristics are:

e The 2D modes are JAVA2D, the default one based
on Java2D, and P2D, hardware accelerated. For 3D
rendering, processing offers P3D, software based, and
OPENGL. All share acommon set of primitives. It is even
possible to use third party libraries to provide additional
rendering modes, allowing, for instance, ray-tracing.

e Processing primitives allows strokes of different weights
and colors, points, lines, ellipses, catmull-rom splines,
béziers, rectangles, arcs, quadrilaterals and shapes.
Shapes are similar to those available in OpenGL through
the use of gl Begi n() . Most of their possibilities are
available in 2D and 3D rendering modes.

e A complete collection of image primitives and image pro-
cessing functions are available.

e A transformation matrix can be defined by the program-
mer which allows for it to be used in 2D and 3D render-
ing modes and its definition effects to everything drawn

(© The Eurographics Association 2009.

(primitives, images and so on), see Figure 3. OpenGL-
like, processing offers a matrix stack.

3D possibilities are similar to those offered in OpenGL.
When OPENGL mode is defined, processing uses the
jogl [jog] Java wrapper to OpenGL, allowing a direct ac-
cess to its methods and features in order to get the maxi-
mum control of the application.

® 00 example | Processing 1.0

File Edit Sketch Tools Help

/¢ Let's draw an ellipse,
A4 in the middle of the window
/¢ and rotated 452

size(28@, 288); // Window size g Q o) !

/¢ Transformat ion matrix
translote{width/2, height/2);
rotate(Fl/4.8);

A4 He draw the ellipse
A4 8,8 centered
cllipse(@,8,180,208);

The definition of a transformation matrix effects to all
graphic primitives.

Figure 3: A transformation matrix in processing.

The combination of processing basic mode, typing just
some lines of code with no functions, and its intuitive prim-
itives makes the understanding of these possibilities fast and
comfortable. Students can experiment the different possibili-
ties of a chain of bézier curves, for instance, without using an
initial code template, just by typing the functions and vari-
ables involved.

2.4. Animation and interaction

If there is a characteristic that makes processing a very in-
teresting tool it is its facility to animate. Just by defining a
special function, the dr aw() function, processing automat-
ically creates a thread whose mission is to execute this func-
tion at the specified framerate (defined by the used). Double-
buffering is also automatically managed by the dr aw()
function. An example can be seen in Figure 4.

We have discovered through the laboratory sessions that
the role of animation and interaction is essential in our stu-
dent’s motivation. Thanks to processing facilities, not just

26 J. Linares, J. Santonja, P. Mic6 & D. Cuesta / Processing in an introductory computer graphics course

basic examples but complete games were able to be devel-
oped within the scheduled time. Games are proved to be a
good strategy when teaching computer graphics [SWO04].

Interaction can be managed in two different ways: inside
the draw() function by just consulting the value of some
system variables (mouseX, mouseY, nousePr essed and
so on), or by defining a callback function for a specific event.
Both can be learnt by the students with just some examples.
In Figure 5 there is an example of a basic drawing applica-
tion.

©0 BEEHE
cub_rotant § +
i

void setup()

size(208, 288, P30);

fil1(255); © O cub.rotant
" cub_rotan

Processing makes animation easy. The draw() function
is called by a thread at a framerate the developer can
specify. Double-buffering is also activated by default.

woid draw()

{
/f Let's rotate at a
// constant framerate
A by default 68 hz.)
translate{width/2, height/2);
rotatedi frameCount *F | /68.8);
rotatel{ fromeCount*P|/60.8);

background(B);

box{?3, 75, 79);
'

Figure 4: A simple animation in processing.

drawing §

/¢ Fres drowing
void setup()

=ize(208, 288);
background(8);
strake(255);
sirokeleight (2);
smooth(}; // Antialiasing
i
void drow(}
1
i1f [(mousePressed)
line{pmoused, pmouseY, moused, mouset)

'

An example of a basic interaction with processing. The
definition of callback functions to manage events is
also possible.

Figure5: A free drawing application.

2.5. Additional libraries

Nowadays, the attractiveness of a subject becomes essential
in the student’s interest and final marks. Computer graph-
ics subjects are especially interesting subjects from student’s
view in general, in fact, computer graphics techniques are
widely used to teach other subjects [Dav07].

Even though we have favorable conditions in computer
graphics subjects, their mathematical background often dis-
courages an important amount of students. In this context,
video acquisition and generation, computer vision, sound
capabilities, and so on, can rapidly capture student interest.
Processing, through a large set of additional libraries, allows
these and other possibilities, always with just some few lines
of code.

3. Our previous approach: OpenGL + GLUT

As stated above, our objective was to provide a global vi-
sion of the different computer graphics techniques in about
fifteen one-hour sessions. This objective was only partially
achieved following a traditional approach: C, OpenGL and
GLUT.

The fifteen hours were divided into three different prac-
tices or objectives:

e An initial overview of 2D-oriented primitives.

e A first introduction to OpenGL and GLUT. The main ob-
jective was to develop a 2D vectorial drawing tool, pro-
viding the students with a basic training in interaction and
event-based application development.

e A general vision to 3D possibilities, where the students
had to develop a 3D object browser and a little 3D modeler
based on circular extrusion. No lighting or texturing were
covered.

Our experience showed us that we spent too much time
introducing the programming framework, the GLUT library
and the different initial templates required to provide to our
students a starting point to work with. Consequently, there
was no time to cover other aspects we consider essential:
animation, image processing, more advanced interaction and
additional 3D topics.

As a result of such a situation, we decided to try a differ-
ent approach: the use of processing language and environ-
ment as the framework for our computer graphics laboratory
sessions.

3.1. Theprocessing alternative

Using the excellent sources available on processing, we pre-
pared our own material. A series of seven laboratory sessions
were created, originally planned as two hours for each, plus
an extra hour for problem solving at the end. Next, we sum-
marize these practices:

(© The Eurographics Association 2009.

J. Linares, J. Santonja, P. Mic6 & D. Cuesta / Processing in an introductory computer graphics course 27

e An initial introduction to processing and its development
environment.

e 2D primitives. The students have to solve basic visualiza-
tion problems (pie and bar charts, for instance).

e Images and basic image processing techniques.

e 2D transformations. A complete vision of affine geomet-
ric transformations is covered.

e Animation. Basic animations and some gravitational ex-
amples. The students have to complete the practice by
modifying a 2D planetary system.

e Interaction. A complete ’lunar landing’ game has to be
developed by the students.

e 3D. Basic concepts, modeling techniques, lighting and
texturing are covered.

This material is freely available at [PROc].

From the very first moment the differences in the rhythm
and evolution in the laboratory sessions were obvious. That
which makes processing an easy platform for beginners,
makes it perfect as an introductory platform.

In the first session, students are able to interact with the
development framework and use a C-like syntax. The most
advanced students can also, from the first session, put their
Java knowledge into practice. Consequently, students are
centered in computer graphics topics and not solving prob-
lems with initial code templates and frameworks. All the
time is invested in covering computer graphics topics.

In short, these are some of the advantages we have appre-
ciated as a result of the use of processing:

e The student is able to type code and explore graphic prim-
itives from the word go.

e More topics are covered since little time is invested
in learning development frameworks, more complex li-
braries or initial code templates.

e All of the student’s work is reusable. Everything they
have done can be part of a final and complete application,
thanks to processing scalability and complete integration
into a pure Java application.

e Processing library is inspired in PostScript and OpenGL,
providing good bases for the migration towards other en-
vironments. The principles learnt using processing are
solid and valid if students have to change to another
framework, language and graphic library.

e 2D and 3D are covered within an homogeneous set of
primitives and functions. This allows a smooth transition
from 2D to 3D.

e Interaction and animation are easy to learn and explore.
With processing it is feasible to develop a little game in
just a few laboratory sessions. The motivation of the stu-
dents is increased thanks to this fact.

e 3D advanced topics can be covered in an introductory
course. This is something very difficult in a short intro-
ductory course otherwise.

e No object-oriented background is required but it is avail-
able. No matter what the student’s background, only a ba-

(© The Eurographics Association 2009.

sic knowledge of C is required. However, the complete
object-oriented features of Java are available.

e Direct integration of the application in a web browser.
Every application developed with processing, can be de-
ployed as Mac, Linux or Windows local applications or
as an applet for any web browser, with a few input/output
restrictions. This feature is very useful when we want to
include visuals and interactivities in an educational com-
puter graphics repository [HS05].

e Multiplatform and open source. Processing code is avail-
able to everybody.

e Processing has some brother projects that allows its use in
mobile platforms [mob] and physical computing [har].

e Video generation, video acquisition, sound libraries and
others complement the attractiveness of this approach.

3.2. Additional advantages of processing

Although we initially thought of processing as a supporting
tool in our laboratory sessions, we found out some additional
advantages in different contexts.

In the theoretical part of the subject (one semester, 2 hours
per week) we cover the following computer graphics topics:

. Introduction and history of computer graphics.
. Basic principles of interactivity.

A global vision of the graphics pipeline.

. 2D geometric transformations.

. 3D basic principles.

. 3D geometric transformations.

. Projection.

. Visibility.

. Lighting and Shading.

©O~NDUAWN R

Slides and white board are the basic teaching elements
used during the lectures. However, processing proved to be
very useful when trying to explain some complex topics. For
instance, geometric transformations and problems such as
coordinate system transformation. This is exactly what we
did in Figure 3.

Although this interaction can be carried out using other
approaches, such as an interpretive OpenGL [CCO05], pro-
cessing achieves the same result within an environment
which allows from some simple sketches to final applica-
tions. The use of other interesting alternatives [GMGMO06]
[HLO2] are limited in application and generality.

Eventually, processing is proving to be a powerful proto-
typing tool. Any idea can be coded and evaluated in process-
ing in a very fast way. Researching in some computer graph-
ics areas can be facilitated thanks to its graphic library. The
transition from a prototype to a final product means just port-
ing the code to a more powerful development framework,
directly reusing any previous code.

28 J. Linares, J. Santonja, P. Mic6 & D. Cuesta / Processing in an introductory computer graphics course

3.3. Conclusions

We have described in this paper a new approach we have
decided for the laboratory sessions of our introductory com-
puter graphics subject. The subject lectures are taught in one
semester (2 hours per week) and with fifteen laboratory ses-
sions of one hour. This new approach is based on the selec-
tion of the processing.org language and development frame-
work.

The experience has demonstrated the many advantages of
processing in this field. Students are able to work from the
very beginning and the introduction to the different topics
is seamless. Students do not spend too much time in learn-
ing development environments, initial code templates, lan-
guages or tools that are only interesting for educational pur-
poses.

Everything that students develop can be reused, improved
and is able to be part of a final application. The level of com-
plexity is gradual, from just writing some sentences of code
to C-like programs (a collection of functions) to complete
object-oriented applications.

Based on Java, with a comprehensive library, inspired in
PostScript and OpenGL, and thousands of users, processing
is a serious alternative to other approaches. With its use, we
have managed to cover more topics in our laboratory ses-
sions, to help our lectures at the classroom and to capture
student interest in a more effective way.

References

[CC05] CHEN B., CHENG H. H.: Interpretive OpenGL for com-
puter graphics. Computers and Graphics 29, 3 (June 2005), 331—
339.

[Dav07] Davis T. A.: Graphics-based learning in first-year com-
puter science. Comput. Graph. Forum 26, 4 (2007), 737-742.

[exh] http://processing.org/exhibition/.

[GMGMO06] GOMEZ-MARTIN P. P., GOMEZ-MARTIN M. A.:
Fast application development to demonstrate computer graphics
concepts. In ITICSE "06: Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science ed-
ucation (New York, NY, USA, 2006), ACM, pp. 250-254.

[har] http://hardware.processing.org.

[HLO2] HuNKINs D., LEVINE D. B.: Additional rich resources
for computer graphics educators. Computers and Graphics 26, 4
(2002), 609 — 614.

[HS05] HANISCH F., STRAFLER W.: How to include visuals
and interactivities in an educational computer graphics reposi-
tory. Computers and Graphics 29, 2 (2005), 237 — 243.

[jog] http://jogl.dev.java.net/.

[mob] http://mobile.processing.org.

[proa] http://procesing.org/courses.

[prob] http://processing.org.

[PROc] http://www.dsic.upv.es/~jlinares/processing.htm.

[RF06] REAS C., FRY B.: Processing: programming for the me-
dia arts. Al Soc. 20, 4 (2006), 526-538.

[SW04] ScHAEFER S., WARREN J.: Teaching computer game
design and construction. Computer-Aided Design 36, 14 (2004),
1501 - 1510. CAD Education.

(© The Eurographics Association 2009.

