EUROGRAPHICS 2007

Extended Game Platform for Novice Programmers

Yolanda RankinT, Tom Lechnert and Bruce Gooch®

Abstract

In an attempt to recruit and retain computer science majors, game design courses have become increasingly pop-
ular in academia. Game design encompasses multiple stages of product development, takes an average of two
or more years and includes a team of individuals who possess strong programming abilities. Additionally, game
development platforms consists of complex architectures that are difficult for novice programmers to comprehend
let alone navigate. Due to this complexity, game design courses are typically taught as capstone courses intended
for students who have intermediate or advanced programming skills. Consequently, introductory computer science
courses do not include game development as typical programming assignments. We introduce a learning model
that employs team-based pedagogy as the basis for students acquiring object-oriented programming skills, equip-
ping programmers with the ability to design 3D games. Furthermore, we modify an existing game platform to
include built-in scaffolds that assist students with the comprehension and application of object-oriented concepts.
In response to the criticism that sustained hours of game-play contribute to physical inactivity and the growing
obesity epidemic affecting America, novice programmers are given the creative task of designing a physically
interactive game module that aids the player in meeting fitness goals and provides a source of entertainment.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics Applications]:
K.3.1Computer Uses in Education, collaborative learning,

Education Papers

1. Introduction

Statistics show that number of students pursuing computer
science as a major in American colleges and universities
has dropped by as much as 60%[Sny06, Ves05]. These
statistics indicate decreasing interest of college freshmen
in computer science at a time when industry advertises
employment opportunities in computer related fields.
Several misconceptions deter college students from pursing
computer science as a major, one being that computer
scientists are males who lack social skills and whose lives
revolve around sitting in front of the computer all day
long[GF05, GS02, MF02]. Industry has voiced its concern
about the decreasing supply of qualified employees in
computer related fields, deciding to partner with academia
to find solutions to address the issue of recruitment and
retention of computer science majors[Car05]. One solution

T Northwestern University, Evanston, IL USA
1 Northwestern University, Evanston, IL USA
§ University of Victoria, Vancouver, British Columbia

(© The Eurographics Association 2007.

41

involves invigorating traditional core computer science
curriculum with pedagogical strategies that leverage the use
of digital media as a means to generate interest in courses
perceived to be designed exclusively for techies, geeks
and programming gurus[Car05, GS02]. In an attempt to
address recruitment and retention issues, computer science
departments across the country have begun to adopt the
digital medium of computer games as a context for software
development[AV02, BS00, Jon00, PKR06, PRK0S5, RGGO7].

Game design involves multiple stages of development;
the process is largely a team effort and takes an average
of two years[FSHO4]. Individuals comprising the develop-
ment team understand object oriented design and possess
strong programming skills. Unsurprisingly, game develop-
ment platforms consists of complex software and archi-
tecture that is difficult for novice programmers to com-
prehend or use effectively. Though game design has be-
come an increasingly popular course offering in academia,
students new to programming lack the necessary skill
set to develop games. Due to this complexity, game de-
sign courses are typically taught as capstone courses in-

delivered by
- = EUROGRAPHICS

: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Y. Rankin, T. Lechner & B. Gooch / Extended Game Platform for Novice Programmers

tended for advanced programmers or computer science
majors[BS00, Jon00, PKR06, PRKO5, RGG07]. For these
reasons, introductory computer science courses either do not
include game development as typical programming assign-
ments or offer simple game programming assignments (e.g.
hangman) that lack sophisticated graphics and animation as-
sociated with 3D games[LWS06]. We suggest that design-
ing interactive media such as games is one creative way to
challenge students’ negative perceptions of computer sci-
ence and possibly recruit computer science majors.

In contrast, introductory computer science courses typi-
cally do not include game design. These courses expose stu-
dents to various programming paradigms and serve as build-
ing blocks to assist students with the transition from novice
to intermediate programmers. However, teachers often strug-
gle with creating meaningful programming assignments that
cohesively represent the underlying principles of a specific
programming paradigm and assist students in developing
their programming abilities[LWS06, Try99, Try05].

We propose an alternative to assist students with the tran-
sition from novice to intermediate programmers; we anchor
object-oriented programming to game design. Students are
given the task of designing a video game that promotes phys-
ically interactive game play. To accomplish this goal, we
transform Microsoft’s Flight Simulator X (FSX) platform
into a manageable development environment that supports
novice programmers. The infrastructure includes:

e Modification of Microsofts Flight Simulator X as a man-
ageable game platform

e Library of starter code of game objects

e Laboratory programming assignments that emphasize
object-oriented design concepts

e Built-in software evaluation tool to assess students’
object-oriented programming skills.

Though we have extended the Flight Simulator X (FSX)
platform, our design would not be complete without iden-
tifying team-based pedagogical strategies that reinforce the
learning objectives of a CS102 course. Thus, team-based
learning determines the manner in which students acquire
object oriented programming skills in the context of game
design.

2. Team-based Pedagogy

Traditional computer science curriculum emphasizes indi-
vidual achievement, discouraging students from working to-
gether for fear of unethical practices such as cheating. In
contrast, the game industry values teamwork as a neces-
sary practice for game development[Bla94, FSHO4]. Pre-
vious experience from teaching game design courses has
demonstrated that unrealistic expectations, low productiv-
ity, poor quality work and missed deadlines become the
norm when students choose to work solo on game de-
velopment projects.[RGGO07]. To facilitate students’ abil-

42

ity to work with others and strengthen their interpersonal
skills, we incorporate teamwork as an essential compo-
nent of introductory computer science courses and present
a team-based learning model applicable to programming
assignments[Try05]. The team-based learning model pro-
motes collaborative learning among students, dividing them
into groups for the purpose of designing a game module that
is virtually impossible for one student to do given specific
time constraints and students’ lack of programming expe-
rience. We define the process of team-based programming
according to the following steps:

Students review the rubric for each programming as-
signment. We equate rubric to the course requirements,
providing a framework for assignments, learning objectives
and methods for student assessment. A well-defined rubric
serves as a guide for students’ learning and communicates
the teacher’s expectations for each programming assignment
[MKFO04]. We post the rubric for each laboratory program-
ming module on the course wiki so that the information
is available in a public place. Public display of the crite-
ria for team programming assignments initiates discussions
among team members and invites students to share their
ideas and knowlege with others; thus communication be-
comes a crucial element that facilitates individual and team
learning while students learn to work together to complete
programming assignments [Bru98, FB06, EPG95]. For ex-
ample, the first programming assignment requires each team
to render the game background to be displayed on the screen.
Students complete mock-ups of the visual layout for one
level of the game module. Each team explores the formal
elements of game design (e.g. genre, objectives, rules, and
possible outcomes) prior to developing software to draw the
scene. We expect students to use graphics art tools (e.g.
Adobe PhotoShop) to create original artistic content for the
background. Learning objectives include demonstrating fa-
miliarity of graphics arts packages, applying knowledge of
bitmaps to create textures for a game background, and writ-
ing code that generates images for the background and text
that represents player status during game-play.

Team members negotiate workload. Trytten[Try05] rec-
ommends dividing students into groups based on a psycho-
logical assessment tool that classifies students as either in-
troverts and extroverts[Jun]. Students are divided into teams
based upon the results of the psychological assessment;
teams meet during class time to avoid social loafing and
conflicting schedules which impede team members ability to
work effectively[Try05, Try99]. Teams participate in a top-
down design approach to derive a solution for the program-
ming assignment, breaking down the design of the game
module into manageable pieces. Team members negotiate
the portions of the assignment that each student will com-
plete; member assignments are posted on the wiki for review
to ensure that each team member contributes to team’s goals.
The act of negotiating engages team members in supportive
communicative practices such as sharing information that

(© The Eurographics Association 2007.

Y. Rankin, T. Lechner & B. Gooch / Extended Game Platform for Novice Programmers

builds group knowledge, acknowledging peers’ ideas, me-
diating conflict when group members disagree, and asking
for assistance[Sol01]. Referring to the previous example of
generating a virtual world, team members discuss what type
of game they would like to design. Once the team makes a
decision, each member assumes responsibility for a specific
task. One team member may take on the role as graphics
artist, generating several bitmap images while another stu-
dent may assume the role of user interface designer, deter-
mining the best layout for presenting player status on the
screen. Students work together to create the look and feel of
the game. These social interactions form the basis for build-
ing a high-performance team that works together to accom-
plish the common goal of designing a game module.

Individual students write code and complete assess-
ment. Although team-based learning emphasizes collabora-
tion among group members to acquire object-oriented design
skills, it is not a substitute for individual students master-
ing these skills. Using Visual Studio Express 2005, students
write and compile code for their portion of the team pro-
gramming assignment. Each student then uploads individual
code segments to the course wiki and completes an online
quiz that measures the student’s comprehension of object
oriented concepts. The quiz lists open-ended questions and
the answers are available only to the teacher. The individ-
ual code segments and on-line assessment supplement indi-
vidual learning and serve as preparatory work for the team
programming assignment. The library of starter code pro-
vides a model of object-oriented concepts, scaffolding each
students’ ability to write code. The first programming as-
signment would require students to modify the Background
Class in the library of starter code in order to write code that
renders a scene of the virtual world.

Team members share individual code segments and
derive a solution. Team-based learning maximizes oppor-
tunities to socialize with students of various levels, result-
ing in more creativity, greater productivity, and increased
individual knowledge [KG04, MKF04]. Because each stu-
dent is accountable for developing a portion of the code that
contributes to the team’s final product, students share code
with team members and conduct peer reviews. By sharing
individual solutions, different approaches to creating a game
module become visible to all team members. Michaelson et
al.[MKFO04] posit that groups function best when each mem-
ber works on the same problem, is given a specific task and
reports status to team members. This aids the design pro-
cess and helps the team experiment with different imple-
mentations (e.g. visual layout of player status). As a con-
sequence of group social interactions, team members func-
tion as the first tier of support for collaborative learning by
provoking members to propose ideas about implementation,
ask and offer assistance when team members experience
difficulty writing software and build knowledge of object-
oriented concepts|SB96]. Teams upload their software and
present the final solution to the entire class for review. Stu-

(© The Eurographics Association 2007.

43

dents critique each team’s code, developing analytical rea-
soning skills applicable to both game design and object-
oriented programming.

3. Existing Game Platforms

Existing game platforms have been used in the academic
setting. For example, the UnReal Game Engine and Steam
Engine platform embody complex development kits that
are ideal for intermediate programmers but unintuitive for
novices [LaiOl, LvL99, RGGO7]. These game development
kits require several hours spent tracing thousands of lines of
code just to comprehend how the software modules fit to-
gether to create a game. Asking students who are new to
programming to review code that includes exception han-
dlers, multi-thread processing and windows programming
overwhelms novices, possibly demotivating them and de-
creasing their interest in computer science.

Manageable development platforms for novice program-
mers do exist. Panda 3D, developed as a joint effort be-
tween Disney Studios and Carnegie Mellon’s Entertainment
Technology Center features a 3D engine complete with a
C++ library of subroutines for 3D rendering, 3D models
and artistic content for game development. The Panda 3D
game platform supports a short learning curve and rapid pro-
totyping. Alice represents a software application developed
at Carnegie Mellon University that gives students with little
or no programming experience the ability to design inter-
active media featuring 3D graphics [CAB*00]. While stu-
dents have used Alice to write programs to construct vir-
tual worlds, Alice lacks a game engine that supplies sophis-
ticated graphics or artificial intelligence. XNA Game Stu-
dio Express developed by Microsoft includes a game engine;
students with limited experience programming in C can use
XNA Game Studio Express to design 2D and 3D games for
the Xbox or Windows XP SP2[CKO07].

Unlike the XNA game kit, Microsoft’s FSX is a flight sim-
ulator designed for users who want to learn how to pilot var-
ious types of aircraft or direct air traffic. Its complex archi-
tecture generates real life scenery that places the player in
the cockpit. The FSX SimConnect API allows developers to
create game add-ons using existing code; We strive to hide
the complexity of the FSX architecture while taking advan-
tage of its graphical capabilities to create a simplified game
development platform for novice programmers.

4. Design and Implementation

The Kaiser Family Report 2005[RFRO05] indicates that 84%
of children ages 8 - 14 years old live in homes with at least
one video game and 30% of this same population own three
or more video games. Additionally, children ages 8 to 18,
spend an average of 44.5 hours per week in front of a com-
puter or television screen. This accounts for the maximum

Y. Rankin, T. Lechner & B. Gooch / Extended Game Platform for Novice Programmers

Figure 1: FSX cockpit view of panel instrumentation.

amount of time spent on any other activity except sleep-
ing [RFROS5]. The lack of physical activity that accompanies
these stationary hours of game-play contributes to a growing
obesity epidemic affecting America[VSCO04]. In response to
this growing epidemic, we take a different approach to solv-
ing the problem of physical inactivity due to sustained hours
of sedentary entertainment. Rather than limiting the amount
of time spent playing video games, we offer a solution that
maximizes the appeal of video games as a fitness alternative
in an attempt to prevent obesity and increase cardiovascu-
lar health. Our research strives to transform exercise into a
mode of media entertainment that attracts an audience com-
parable in size to popular video games with similar time us-
age. Thus, we transform Microsoft’s FSX SimConnect API
into a manageable software development environment that
scaffolds novice programmers as they design a fitness inter-
vention game. The modified game platform embodies four
components:

o G-Force recumbent bike,

e Ci# Library for creating game objects,

o C# Interface for testing students’ code,

o and Student Tracker for evaluating students’ code.

System requirements include Microsoft Visual Studio
2005 Express to maintain the C# library and team lab
projects, Microsoft Flight Simulator X installed on a ma-
chine that has a minimum of 10 GB of memory, a graphics
card and access to the internet.

4.1. G-force Recumbent Bike

The G-force recumbent bike represents the game interface
and has been engineered to provide input (e.g. resistance
and heart rate)during game play. See figure 2. The recum-
bent bike features a 19-inch screen that displays the video
game. Students are tasked with designing and implementing
software that integrates the activity of riding the bike with
monitoring the user’s physiological factors such as heart rate
to assist players with attaining their fitness goals.

44

Figure 2: FSX Prototype of Flying bike interface.

4.2. C Library for Flight Components

The C# library serves as the foundation for assisting novice
programmers in developing their object-oriented program-
ming skills as individuals and as a team. We define a super-
set of classes that represent game objects that students will
need to implement to sucessfully construct a game module.
The C# library provides starter code that defines the proper-
ties and behaviors of the game objects. Additionally, the C#
library represents good and bad examples of object-oriented
design concepts and serves as a starting point for students
to analyze, evaluate and generate C# code. For example, the
game module should possess the capability to accept user in-
put such as the player’s name, age, and fitness goal and dis-
play this information on the screen. We stub a GamePlayer
class that includes the physiological factors of each player
and methods that keep track of the player’s training heart
rate zone (THR). See psuedo code below.

Public GamePlayer Class
name
age
maximum heart rate
trainingzone
lower thzone
upper thzone
fitnessgoal

GamePlayer Constructor
ID = "Stranger"
age=0
maxheartrate = 220
trainingzone = false
lower thzone = 0
upper thzone = 0
fitnessgoal = 1

Method defined for calculating training heart rate zone
GamePlayer’s maxheartrate = 220 - player’s age

GamePlayer’s lower thzone = maxheartrate * .65

(© The Eurographics Association 2007.

Y. Rankin, T. Lechner & B. Gooch / Extended Game Platform for Novice Programmers

GamePlayer’s upper thzone = maxheartrate * .85

Method for displaying info on screen

(Student needs to add code that displays info on screen.)

end of GamePlayerClass

4.3. C# Interface for Team Programming Assignments

The Microsoft FSX the API is highly advanced and in its
original state would be overwhelming for a set of novice
computer programmers. For this reason, we have simplified
the interface, hiding key components of game play (e.g. take
off or landing of an aircraft) from the user. The interface
conceals the technical inner workings of the game engine,
allowing students to focus their attention on the learning ob-
jectives associated with each programming assignment.

The C# interface also grants students access to a set of
generic data collection interfaces with the intention that stu-
dents understand the distinction between the data structures
(e.g. arrays, linked lists, stacks, vectors, etc.)and their re-
spective implementations. Given that the number of permu-
tations for each data structure is quite large, each student can
choose a particular data structure for implementation and
share code segments with other team members. For example,
students may choose to use a tree data structure to render a
scene of the game world. In this example, the C# interface
offers a plug and play test environment of for students’code
and foster’s students understanding of 3D graphics (e.g. ma-
trix transformations) to move objects on the screen. There-
fore, the C# interfaces support students’ implementation of
algorithms for various data structures.

4.4. Student Tracker Evaluation Tool

One of the criticisms of using Visual Studio is the cryptic
error code messages students encounter during the course of
writing code. To procure further insight about students’ pro-
gramming abilities, we develop and integrate a Microsoft
Visual Studio 2005 plug-in known as the Student Tracker.
The Student Tracker serves as a scaffolding tool that collects
debugging information, accumulating a list of code errors
each time the student compiles code. Students must down-
load and install the Microsoft Visual Studio 2005 SDK prior
to the initial use of the Student Tracker add-in. After the
Visual Studio 2005 SDK has been installed, students open
Visual Studio 2005 and build the Student Tracker project so-
lution. Students access the Student Tracker under the Tools
options on the menu bar whenever they begin or resume soft-
ware development on a program. Student Tracker exports de-
bugging information such as compiler errors, warnings and
the session timestamp as an XML file that can be viewed
by the teacher. This data helps the instructor to identify the
strengths and weakness of each student as it relates to the
learning objectives for each programming assignment. Thus,

(© The Eurographics Association 2007.

45

the instructor makes an informed decision about which ped-
agogical strategies to use to assist students with adopting
object-oriented design concepts.

5. Game Design Laboratory Modules

Students accomplish the goal of designing a video game
that promotes a healthy lifestyle by completing four labora-
tory modules as part of the CS102 course requirements. We
specifically design the four modules to correspond to two
stages of game design: concept phase (project plan, team-
work, idea) and pre-production phase (playable prototype
and playtesting) [FSHO4]. Modules 1 and 2 are completed
as individual assignments; modules 3 and 4 are team assign-
ments. Module 1 requires students to playtest video games
to generate ideas for the team game module and develop an
appreciation for the formal and dramatic elements of game-
play. Module 2 gives students the opportunity to become fa-
miliar with the game development platform and Microsoft
Visual Studio. Students complete the first design iteration of
their physically interactive game module in Module 3. Mod-
ule 4 enables students receive critical feedback regarding
ways to improve the game-play experience for users. Each
module specifies a learning objective and includes a game
development exercise which requires students to demon-
strate a fundamental concept of object-oriented program-
ming.

To assess students’ knowledge of object oriented design
principles, students complete quizzes on the course wiki to
assess individual and group learning and submit code for
peer review. Students are required to spend 3 hours per week
in the computer lab in fulfillment of course requirements,
eliminating the issue of social loafing and scheduling outside
class meetings with team members[Try05, Try99]. Teach-
ers can access the course wiki (http:/cs102.pbwiki.com) for
CS102 and update the website using a group password. Ul-
timately, all four laboratory modules will comprise each
team’s game module that requires physically active game-
play in an effort to promote a healthy alternative to video
games. FSX’s SimConnect API will provide an intuitive test
harness for students to test their newly developed game mod-
ule.

5.1. Laboratory Module 1: Playtesting Video Games

e Learning Objective: Students will establish criteria that
evaluate the game-play experience.

e Game Development Exercise: Students will playtest FSX
and one games their choice and compare the formal and
dramatic of elements each.

The primary objective of the first module is for
students to become proficient playtesters. Fullerton et
al.[FSHO4]describe playtesting as a crucial component of
game design that ensures delivery of a quality product.

Y. Rankin, T. Lechner & B. Gooch / Extended Game Platform for Novice Programmers

Playtesting occurs throughout the various stages of game de-
sign and drives game revisions that enhance the dramatic and
formal elements of game design. Students evaluate FSX and
one game of their choice according to the following playtest
criteria:

1. What was your first impression?

2. How did your impression change as you played the
game?

. Describe the objective of the game.

. Were the procedures and rules easy to understand?

. Could you find the information you needed on the inter-
face?

. Was there anything that you found frustrating?

. Were there particular aspects that you found satisfying?

. What was the most exciting thing about the game?

. What was missing from the game?

. In what way did you interact with other players?

See the website (http://cs102.pbwiki.com/LabModulel)
for additional details for laboratory module 1.

WA W

S O 09N

5.2. Laboratory Module 2: Microsoft Visual Studio
Development Environment

o Learning Objective: Using Visual Studio, students will
learn how to profile code.

o Game Development Exercise: Each student must step
through code in the C# library, identifying the algorithm,
run-time performance of algorithm, and logical flow.

The second laboratory assignment introduces students to
Microsoft Visual Studio Software Development Environ-
ment (SDE). The primary objective of this module is for
students to become proficient users of Visual Studio. As
students understand the menu options available in Visual
Studio, they will be able to step through code and use
built-in debugging tools to assist them with programming
assignments. Each student is responsible for submitting a
portion of code and a code analysis report. Visit website
http://cs102.pbwiki.com/LabModule2 for specific instruc-
tions for module 2.

5.3. Laboratory Module 3: Game Module

o Learning Objective: Students will attain knowledge of
constructors, destructors, copy-constructors, public and
private members and methods for classes. Students will
be able to differentiate between public vs. private mem-
bers and demonstrate knowledge of data abstraction.

o Team Programming Exercise: The primary goal of this ex-
ercise is for students to work together to design a game
module.

Each team determines the design of physically interactive
video game. Students design original artistic game content
including bitmap images for the game background, moving
objects on the screen, instructions for game-play, and game

46

mechanics (e.g. player’s score). To complete this task, stu-
dents work in teams as each individual writes software for
specific game artifacts and shares code segments that culmi-
nate in the team’s final game module. To assist with this ef-
fort, students modify and extend a previously defined library
of class objects (i.e. data members and member functions)
to create instantiations of their own. Thus, students develop
software modules that demonstrate the concept of data ab-
straction and encapsulation.

5.4. Laboratory Module 4: Playtesting Team Game
Modules

e Learning Objective: The learning goal is for students
to evaluate each game module’s design and identify
strengths and areas for improvement.

o Game Development Exercise: The learning method en-
courages students to evaluate C# code that demonstrates
the culmination of the four laboratory exercises.

FSX SimConnect functions as a test harness for each
team’s human-powered aircraft implemented in module 3.
Students are responsible for modifying existing interface
files which define the data structures representing data ob-
jects in the scene, implementing files defining the meth-
ods for manipulating the data objects in the scene, and the
client program which provides a higher level of abstraction
and uses methods defined in the implementation file. Stu-
dents evaluate the game using previously defined playtest
criteria in module 1 and consider aesthetic appeal, integra-
tion of physical activity into game-play and object-oriented
design techniques. Feedback serves as input into the revi-
sion process of game development. This module allows stu-
dents to playtest two team’s game modules. Students evalu-
ate the game-play experience and provide feedback to the au-
thors. Based upon the feedback, the game designers modify
the game to enhance the game-play experience. Each team
demonstrates their game module during lab time.

6. Proposed Evaluation & Future Work

To determine the effectiveness of our game development
platform, we will evaluate the laboratory modules as part of
an introdutory programming course and compare students’
performance in our course to students who enroll in a tra-
ditional object-oriented programming class. Both groups of
students will complete a mock registration that compares
students’ interest in enrolling in a traditional introductory
computer science course to an introductory course that fea-
tures game design. To further assess students’ motivation
and interest in game design, students enrolled in an intro-
ductory programming course will complete an online survey
during the first week of class. The survey measures students’
interest in the discipline of computer science/computer re-
lated majors, previous programming background, and in-
terst in game design. Students will complete the same online

(© The Eurographics Association 2007.

Y. Rankin, T. Lechner & B. Gooch / Extended Game Platform for Novice Programmers

survey once they have complete course requirements. The
pre-assessment will enable us to correlate students’ interest
in game design to pursuing a major in a computer related
field. The post assessment will determine the success of the
game design course, evaluating our pedagogical approach to
anchoring game design to object-oriented programming in
comparison to students who complete the traditional object-
oriented class.

Understanding that this is the first design iteration of
the simplified FSX game platform, we will ask students’
for feedback that will inform future revisions of both the
game development platform and computer science curricu-
lum. Based upon each team’s game module, we will iden-
tify additional game artifacts and enhance and refine the C#
library. We will continue to improve the Student Tracker to
collect additional metrics such as time spent completing pro-
gramming assignments to identify potential student miscon-
ceptions of object oriented concepts that need clarification.
This will give the teacher a better picture of what the stu-
dent has learned and more importantly, can be shared with
the student to maximize the time spent on programming as-
signments.

7. Conclusions

We have modified Microsoft’s FSX game platform to sup-
port novice programmers’ ability to design their own game
modules. We have stubbed the C# library for aircraft design
components and player’s physiological factors. The C# in-
terfaces sustains students’ ability to test and share code with
peers as each team builds a fitness training video game. Con-
currently, we have implemented a pedagogical tool known
as the Student Tracker that collects debugging data such as
type and frequency of compiler errors to assess individual
and team acquisition of object-oriented design principles.
Moreover, we outline four laboratory modules that give stu-
dents the opportunity to practice object-oriented program-
ming skills as students incrementally design a game module.
Thus, we extend advanced game technology that enables in-
troductory computer science students’ ability to implement
a video game-play as an incentive for physical fitness. In
summary, we introduce a team-based learning model that as-
sists students with acquisition of intermediate programming
skills in the context of game design. We posit that this model
can be implemented in other introductory computer science
courses, hopefully increasing the number of students who
pursue majors and careers in computer science.

References

[AV02] ALPHONCE C., VENTURA P.: Object orientation
in csl-cs2 by design. In In Proceedings of 7th Annual
Conference on Innovation and Technology in Computer
Science Education (2002), ACM Press, pp. 70-74. 2

[Bla94] BLACK K.: "an industry view of engineering ed-
ucation", 1994. 3

(© The Eurographics Association 2007.

47

[Bru98] BRUCKMAN A.: Community support for con-
structionist learning. In The Journal of Computer Sup-
ported Collaborative Work (1998), vol. 7, pp. 47-86. 3

[BSO0] BAYLISS J., STROUT S.: Games as a Sﬂavor’f of
csl. pp. 500-504. 2,3

[CAB*00] CONWAY M., AuDIA S., BURNETTE T.,
COSGROVE D., CHRISTIANSEN K., DELINE R.,
DURBIN J., GOSSWEILER R., KoGI S., LONG C.,
MALLORY B., MIALE S., MONKAITIS K., PATTEN J.,
PIERCE J., SCHOCHET J., STAAK D., STEARNS B.,
STOAKLEY R., STURGILL C., VIEGA J., WHITE J.,
WILLIAMS G., PAUSCH R.: Alice: Lessons learned from
building a 3d system for novices. 4

[Car05] CARLESS S.: Postcard from sgs 2005: Com-
puter gaming to enhance computer science curricu-
lum, 2005. http://www.gamasutra.com/features/
20051101 /carless_01.shtml. 2

[CKO7] Cox C., KLUCHER M.: Got game? un-
leash your imagination with xna game studio ex-
press, 2007. http://msdn.microsoft.com/msdnmag/
issues/07/05/xna/default.aspx#S1. 4

[EPG95] EDELSON D., PEA R., GOMEZ L.: Construc-
tivism in the collaboratory. Englewood Cliffs, NJ. Educa-
tional Technology Publications. 3

[FBO6] FORTE A., BRUCKMAN A.: From wikipedia to
the classroom: Exploring online publication and learning.
In Proceedings of the 7th International Conference on
Learning Sciences, Bloomington, IN (2006), p. 18207188.
3

[FSHO4] FULLERTON T., SWAIN C., HOFFMAN S.:
Game Design Workshop: Designing, prototyping, and
playtesting games. CMP Books, 2004. 2, 3, 6

[GFO5] GuzDIAL M., FORTE A.: Design process for a
non-majors computing course. 2

[GS02] GuzDIAL M., SOLOWAY E.: Teaching the nin-
tendo generation to program: Preparing a new strategy for
teaching introductory programming. In Communications
of the ACM (2002), vol. 45. 2

[Jon00] JONES R.: Design and implementation of com-
puter games: a capstone course for undergraduate com-
puter science education. In In Proceedings of te 31st
SIGCSE Technical Symposium on Computer Science Ed-
ucation (2000), ACM Press, p. 260 U264.2,3

[Jun] JUNG C.: The Collected Works of Carl Jung, vol. 6.
Princeton/Bollinger. 3

[KG04] KwoN S. M., GOMEZ L.: Strengthening learn-
ing communities by promoting social skill development.
In Proceedings of the 6th International Conference on
Learning Sciences, Santa Monica, CA (2004), pp. 286 —
293. 4

[Lai01] LAIRD J.: Using a computer game to develop ad-
vanced ai. Computer 34,7 (July 2001), 70 —75. 4

Y. Rankin, T. Lechner & B. Gooch / Extended Game Platform for Novice Programmers

[LvL99] LAIRD J., VAN LENT M.: Developing an artifi-
cial intelligence engine. 4

[LWS06] LAYMAN L., WILLIAMS L., SLATEN K.: Note
to self: Make assignments meaningful. In Proceedings of
the Thirty-Eigth SIGCSE Technical Symposium on Com-
puter Science Education (2006), ACM Press, pp. 459 —
463. 3

[MF02] MARGOLIS J., FISHER A.: Unlocking the Club-
house: Women in Computing. MIT Press, Cambridge,
MA, 2002. 2

[MKF04] MICHAELSON L., KNIGHT A., FINK L.: Team-
Based Learning: A Transformative Use of Small Groups
in College Teaching. Stylus Publishing, Sterling, VA,
2004. 3,4

[PKRO6] PARBERRY I., KAZEMZADEH M., RODEN T.:
The art and science of game programming. In Proceed-
ings of the 2006 ACM Technical Symposium on Computer
Science Education, Houston, TX (2006), pp. 510 -514. 2,
3

[PRKOS5] PARBERRY I., RODEN T., KAZEMZADEH M.:
Experience with an industry-driven capstone course on
game programming. In Proceedings of the 2005 ACM
Technical Symposium on Computer Science Education,
St. Louis, MO (2005), pp. 91 -95. 2,3

[RFRO5] ROBERTS D., FOEHR U., RIDEOUT V.: Gen-
eration M: Media in the Lives of 8-18 Year-olds Report
Kaiser Family Foundation. 2005. http://www.kff.
org/entmedia/7251.cfm. 4,5

[RGG07] RANKIN Y., GOOCH B., GOOCH A.: Inter-
weaving game design into core cs curriculum. In Pro-
ceedings of the 2007 Microsoft Academic Days Game De-
velopment Conference, Nassau, Bahamas, February 21 U
25,2007 (2007). 2,3, 4

[SB96] SCARDAMALIA M., BEREITER C.: Student com-
munities for the advancement of knowledge. 36-37. 4

[Sny06] SNYDER N.: Universities see a sharp drop in
computer science majors. 2

[Sol01] SOLLER A.: Supporting social interaction in an
intelligent collaborative learning system. 40 — 62. 4

[Try99] TRYTTEN D. A.: Progressing from small group
work to cooperative learning: A case study from computer
science. In Journal of Engineering Education (1999),
vol. 90, pp. 85-92. 3,6

[Try05] TRYTTEN D.: A design for team peer code review.
In Proceedings of SIGCSE 05, February 23 - 27, 2005, St.
Louis,MO (2005), pp. 455 —459. 3,6

[VesO5] VESGO J.: Interest in cs as a major drops among
incoming freshman. 2

[VSC04] VANDEWATER E., SHIM M., CAPLOVITZ A.:
Linking obesity and activity level with children’s televi-
sion and video game use. vol. 27, Elsevier Science, Ox-
ford, pp. 71-85. 5

48

(© The Eurographics Association 2007.

