
EUROGRAPHICS 2007 Education Papers

Creating Interest in Computer Graphics by Teaching Game
Development

Ashish Amresh†1 and Pushpak Karnick‡1

1Arizona State University, Tempe AZ

Abstract
This paper describes our experiences in designing and implementing a junior/senior level undergraduate course
in Game Programming at Arizona State University. We highlight the pedagogical methods employed during each
of the three semesters that the class was offered. We compare our approach with established teaching methods
and highlight the advantages of implementing our novel approach for teaching game development. We establish
a strong connection between teaching game programming and computer graphics and show how an introductory
game programming class can be an excellent way for getting junior and senior level undergraduate students
excited about computer graphics.

Categories and Subject Descriptors (according to ACM CCS): K.3.1 [Computer Uses in Education]: Computer-
assisted instruction (CAI) K.3.2 [Computer and Information Science Education]: Computer science education

1. Introduction

A recent study shows a sharp downturn in young people
selecting a computing field for their careers [Pat05]. This
is true for computer science, computer engineering, infor-
mation technology, information systems, and software en-
gineering. In computer science, the numbers of incoming
freshmen fell by 60 percent between 2000 and 2004. The
percentage of all college freshmen planning a major in com-
puter science dropped to 1.4 percent in 2004, down from its
peak of 3.4 percent in 1998 and below a trough of 1.6 per-
cent in 1992–93 [Fos05]. To compound the problem, internal
drop rates of 35 to 50 percent are common. Computer graph-
ics (CG) faces graver problems as the number of computer
science undergraduates enrolling in CG courses has tradi-
tionally been low.

This paper describes our experience in teaching a ju-
nior/senior undergraduate level course in the field of game
programming. The objective of the course was to introduce
basic concepts employed in the creation of modern computer
games. Students had to create their own interactive applica-
tion by integrating a variety of open source software, as well

† email:amresh@asu.edu
‡ email:pushpak@asu.edu

as implementing the concepts taught in class. The course
was designed in a way that did not enforce prior knowledge
of computer graphics, only a strong grasp of data structures
was assumed. With an eye on the rapidly growing game in-
dustry, emphasis was placed not only on implementing orig-
inal code, but also on looking “under the hood” of open
source libraries to acclimatize students in working with a
large codebase. We found that this approach was a novel
way of getting our students motivated to learn more about
various aspects of computer graphics in general, and game
development in particular.

We state the contributions of our approach below:

1. Our hands-on method of teaching is a novel approach that
overcomes some drawbacks of traditional teaching meth-
ods.

2. We show a strong correlation between our method
and observed enrollment figures for computer graphics
courses before and after our course was introduced.

The paper begins by discussing the motivating factors that
led to the introduction of this course in the Computer Sci-
ence and Engineering Department (CSE) at Arizona State
University, Tempe (ASU). In section 2 we discuss current
and past work done in the area of teaching game develop-
ment and using it as a tool for teaching computer graphics.

c© The Eurographics Association 2007.

9

http://www.eg.org
http://diglib.eg.org

A. Amresh & P. Karnick / Creating Interest in Computer Graphics by Teaching Game Development

We explain our approach in detail in section 3. We compare
our approach with existing teaching strategies in this section,
and conclude in section 4, discussing future directions and a
portability plan for our course.

Immersive
Visualization

Human Computer
Interface

Computer Graphics Real-time
Simulation

Game Programming
Curriculum

Figure 1: Game Programming in the context of allied disci-
plines.

1.1. Motivation

The course "CSE494/598: Introduction to Game Program-
ming" was offered at ASU for the three semesters of Fall
2005, Spring and Fall 2006, as a junior/senior undergraduate
level course in the CSE catalog. This course was introduced
with the following goals:

1. Addressing an impending need in the undergraduate
CSE student community: The CSE department wanted
to make inroads into teaching game programming for ad-
dressing the needs of its undergraduates and also to keep
a competitive academic edge over other universities.

2. Generating Interest in Computer Graphics: The CSE
department, keen on increasing the undergraduate student
intake for computer graphics, utilized this opportunity to
increase general awareness about computer graphics re-
search options at ASU via this course.

3. Enhancing Student Enrollment: Another goal of this
endeavor was to study the student enrollment statistics
before and after the inception of the course. This turned
out to be a deciding factor in the expansion of the course
into a comprehensive curriculum.

4. Teaching Experience: The authors, who were both doc-
toral students in 2005, wanted to leverage their past work
experience in the game industry for designing and teach-
ing an undergraduate course in the area of computer
games.

2. Related Work in Gaming Curriculum Development

Game development is no longer considered an esoteric
‘black art’ of its early days. Ludology, the scientific study
and analysis of games, has emerged at the forefront of ef-
forts in laying out “...an aesthetic approach to interactive
systems [SZ04].” There exists a substantial volume of work
that explores the relevance of video games in the context of
current pedagogical processes [Squ03, BS06, HS05]. Com-
puter game programming, on the other hand, is steadily gain-
ing acceptance as a mainstream academic track [PKR06]. In-
stitutions like DigiPen (Redmond) [DIG], Guildhall (SMU)
[GUI], UAT (Phoenix) [UAT] now offer specialized de-
grees/diplomas in game design and development. Similar
efforts [PRK05, PKR06, BS06] have proven to be success-
ful in enhancing enrollment for the Computer Science De-
partments. Tori et.al. [TJaLBN06] discuss teaching intro-
ductory computer graphics using Java3DTM . Coleman et.
al. [CKLW05] describe their successful initiative to intro-
duce a “Game Concentration” within the traditional com-
puter science curriculum.

While the above approaches have demonstrated that
games can serve as a vehicle for teaching computer science,
they are often ad-hoc in their implementation and involve
an additional overhead in training/hiring faculty members in
the process. Additionally, game programming, though an in-
dependent applied field in itself, overlaps strongly with the
more established branches of Computer Graphics, Real-time
Simulation, Human-Computer Interface, and Immersive Vi-
sualization (see figure 1). A curriculum design for gaming
would certainly have to consider this overlap. Thus, a course
that aims to teach game programming should consist of el-
ements from each of the overlapping domains. This formed
the basic principle of our course design that we describe in
section 3.

2.1. Computer Graphics Instructional Models

Traditionally, introductory courses in computer graphics
have been taught in a “bottom-up” fashion: starting from 2D
scan-line algorithms and building slowly to graphical prim-
itives and transformations , modeling, texturing and anima-
tion. This approach follows a classical textbook approach
[FvDFH90] in computer graphics and places emphasis on
explaining the basic building blocks of computer graphics.
It covers fundamental algorithms in detail and expects the
students to have a solid mathematical foundation. This ap-
proach is best suited for undergraduate students who are
serious about learning the intricacies of modern graphics
pipeline, but at the same time is limiting for the casual graph-
ics enthusiast.

The essence of the above approach is that it teaches the
basic mathematics and methodology of graphics engine de-
sign with lots of low-level details. Though best suited for a
research oriented environment, it does not keep pace with the

c© The Eurographics Association 2007.

10

A. Amresh & P. Karnick / Creating Interest in Computer Graphics by Teaching Game Development

developments in the game industry, which often happen at a
more abstract level and where the prime emphasis is on rapid
prototyping of demo applications. For the casual enthusiast,
instant gratification can only be made available with the help
of an encapsulated graphics API that enables rapid creation
of interactive applications as a proof-of-concept implemen-
tation. A bottom-up approach is helpful in recognizing the
intricacies of off-the-shelf graphics tools, but when the focus
of the student is learning to use these tools, this approach is
often an overkill. In such cases, the top-down approach of
abstracting lower-level details works best to fulfil the stu-
dents’s requirements, see [Ang05]. Such abstractions can be
implemented via high-level API libraries in Java/C++ that
encapsulate the lower level functionality (game engines).
Recent methods have also introduced CG curriculum that re-
quire little, or no, programming effort [Ove04].

2.2. Game Programming Instructional Models

Game programming has mostly adopted the “top-down” ap-
proach and applied a few variations to it in courses offered
in various universities across the world [Ste, Ale]. Most of
these courses use an established game engine as the under-
lying API, whether it be a commercial engine like Quake
[QUA] or Unreal [UNR], or an educational version like
Torque [TOR]. These courses require the respective univer-
sities to have a serious commitment towards advancing the
gaming curriculum and invest in hardware/software required
to maintain, run and teach these API’s. The other approach
is geared towards serious gaming and teaching game pro-
gramming for use in places other than the game industry, for
e.g. the military [aNPS], or casual gaming [Par07]. In this
approach, custom API’s are designed by the universities for
teaching the required content. Bottom-up approach exists in
the gaming realm as well in the form of courses that are in-
volved in the design and development of gaming engines,
tools and advanced API’s [Pro, Eng].

3. Our Approach

Our goal was to develop a game development course based
on a student centric design that aimed towards maximizing
the student learning experience. It was a combination of the
top-down and bottom-up strategies for maximizing student
education both in terms of the theoretical background, and
industry-aware curriculum with a “hands-on” model. We had
the following goals in mind when we designed the course:

1. Comprehensive: The course should cover a typical game
production pipeline – from game concept, to game design
and eventual implementation.

2. Modular: The course should be modular, facilitating a
rearrangement of subject topics based on student feed-
back and interest.

3. Extensible: The course syllabus should be designed
such that it can serve as a one-semester introductory

Semester Students enrolled No CSE470 Percentage
Fall 2005 23 15 65.21%
Spring 2006 18 12 66.67%
Fall 2006 21 16 76.1%

Table 1: Student enrollment statistics showing number of
people registered and the number of students who had taken
a computer graphics course

course, complemented with another one-semester ad-
vanced course in game development.

4. Self Sufficient: The course material should be self suffi-
cient, alleviating the need, on the student’s part, of satis-
fying often conflicting pre-requisite classes to enroll for
the course.

5. Industry Aware: The course should provide some expo-
sure to the practices in the game industry especially wrt.
team dynamics and project planning.

This approach along with our instruction emphasis strat-
egy allowed students without any computer graphics back-
ground to enroll in the course. As table 1 shows, more than
60% of our students had not taken the a course on introduc-
tion to CG (CSE470 at ASU).

3.1. Course Structure and Outline

We used the book “Introduction to Game Development” by
Steve Rabin [Rab05] as our textbook for the three semesters
that the course was taught at ASU. In addition, the following
books were recommended as references:

1. 3D Game Engine Design, by David Eberly [Ebe00].
2. OpenGL Programming Guide [SWND05], the “Red

book.”
3. OpenGL Shading Language, by Randi Rost [Ros06], the

“Orange book.”

3.1.1. Choice of the Textbook

“Introduction to Game Development [Rab05]”, is a compre-
hensive introductory text by experts in the game industry.
This text covers every major aspect of game development,
from design to programming to visual arts and the business
of gaming, and presents the material with a structure and
outline that’s appropriate for an introductory course on game
development.

The book is modeled after the International Game De-
velopers Association’s (IGDA’s) guidelines for a first-year
game development curriculum [IGD], and covers four broad
areas of study: general game studies, game programming,
art/asset creation, and business/management. We used the
programming areas covered in this book as our main course
material.

c© The Eurographics Association 2007.

11

A. Amresh & P. Karnick / Creating Interest in Computer Graphics by Teaching Game Development

3.2. Open Source Software and Tools

Our course was structured to be a hands-on interactive ex-
perience for the students. Each module was designed to be
application oriented. To mimic the actual game production
pipeline as closely as possible, students worked towards cre-
ating their own games in teams, defining the game concept,
drawing up their game design and lastly, implementing that
design with existing open source software tools and tech-
nologies. The primary goal of learning game development
concepts was complemented with auxiliary exercises that
consisted of documenting the conceptual framework for the
games, creating tangible process documents (design docu-
ment, test-cases, project schedule) and working with already
existing codebase, first to gain sufficient understand of its
workings, and then, modify it (if needed) to suit the require-
ments of their project. Our choice of the tools was influenced
by the feature set provided by each tool, as well as the learn-
ing curve required to grasp a working knowledge of the same
(limited to one semester). A brief description of the various
software tools and technologies that were used follows:

• OSG (http:www.openscenegraph.org) is a popular
open source graphics toolkit with a robust scene graph im-
plementation and large user base. The OSG design model
is very extensible and serves as an excellent starting point
for developing games without the need for core com-
puter graphics expertise. OSG is now a part of the official
OpenGL SDK.

• ODE (http:www.ode.org) is a high-performance library
implemented in C++, for simulating rigid body dynamics.
ODE integrates easily with other C++ libraries and helps
modularize the game design.

• Blender (http:www.blender.org) is a popular modeling
tool for authoring game assets. Blender supports a wide
range of file formats for input/output, as well as a gentle
learning curve as compared to similar software available
commercially.

• OpenGL Shader Designer (http:www.typhoonlabs.
com) is a freely available IDE for developing and test-
ing shaders in the OpenGL Shading Language (GLSL).
Shader Designer helps test and debug most GLSL shaders
without the time consuming effort needed in setting up a
debugging environment. The web site provides short tuto-
rials on using the tool and example shaders that demon-
strate common real-time rendering techniques used in to-
day’s games. The IDE is now a part of the official OpenGL
SDK.

• Cal3D (http:gna.org/projects/cal3d/) is a skeletal
based 3d character animation library written in C++ that
is independent of the underlying implementation of the
graphics API. Cal3D files can be easily imported/exported
from Blender via use of plugins written as Python scripts.

• Delta3D (http:www.delta3d.org) is a full-function
game engine that is currently used for development of
training and simulation applications. Delta3D integrates

OSG, ODE, CAL3D and OpenAL seamlessly and enables
rapid prototyping and development of games.

Figure 2 shows the software hierarchy among these tools.

OpenGL

OpenSceneGraph

Delta3D

Open Dynamics
Engine

User Application

Cal3D

Blender

Figure 2: Hierarchy diagram of the open-source software
used during the course.

3.3. Teaching Strategies

Game programming encompasses different disciplines in
computer science and therefore poses a reasonable pre-
requisite challenge to the undergraduate student. The sub-
ject matter (game development) generates considerable in-
terest itself, but students are often wary of their current skill
sets and their ability to successfully complete such a course.
For us, this was an important factor in determining which
areas in computer science needed more teaching emphasis
than others. We reviewed the undergraduate course curricu-
lum and decided that the major requirement for taking this
course would be an introductory course in data structures.
We would have liked to have an introductory course in com-
puter graphics as a requirement, but that would have not
served well with our target audience as the graphics courses
offered at ASU are not a part of the mandatory core course
list for undergraduates. Consequently, a reasonable amount
of instruction time was spent in teaching the basic graphics
pipeline to bring such students up to speed with their peers.
In contrast, areas like software design and architecture, artifi-
cial intelligence, software optimization and testing, systems
and low-level programming, that constitute major building
blocks for modern game development, were not discussed
in as much detail as would be covered in a dedicated three-
credit course for each area. We discussed the topics within
each of these areas that were relevant in their connection to
the game development pipeline.

Table 2 shows our course outline for the period of
16 weeks during the semester that was developed with
the above observations in mind. The student programming
projects were designed to be culminate into a simple game
engine with incremental additions for every assignment (see
figures 3 and 4). In addition, we hosted speakers from
the industry (Microsoft Game Studios, General Dynamics,

c© The Eurographics Association 2007.

12

A. Amresh & P. Karnick / Creating Interest in Computer Graphics by Teaching Game Development

Rainbow Studios), that provided the state-of-art information
about development practices to the students. The feedback
to these talks has been overwhelmingly positive.

3.4. Comparing Our Approach with Other Methods

The student experience by taking our class is compared with
the other models of teaching graphics and games described
in the previous section. Table 3 shows different action items
that the students in our class are exposed to and how these
action items are addressed by the other teaching models. Fig-
ure 5 shows the student enrollment statistics for the period
that CSE 494/598 was offered at ASU. As can be clearly
seen, the trend shows an increase over the three semesters
that it was offered.

Figure 3: Project1: Simple Interactive Application to load
and manipulate models.

Figure 4: Project2: Improves the previous project by adding
character animation and collision detection.

3.5. Issues and Roadblocks

Game programming creates lot of interest in the undergrad-
uates, though this may not always prove to be a positive as-
pect. Most of our classes got filled up within a week of the

Enrollment Statistics for CSE 470

0

10

20

30

40

50

60

70

2004 2005 2006

Year

N
um

be
r o

f s
tu

de
nt

s

Fall
Spring

Figure 5: Enrollment statistics for CSE 470 after our course
was introduced. The data shows an overall increase in the
number of students who enrolled for CSE 470.

announcement and as such, many students were not able to
register for this class, in spite of their enthusiasm. However,
we also faced 20% drop out rate within the first three weeks
as some students had enrolled into the class without antici-
pating the workload and commitment needed to successfully
complete the class. This did not do justice to deserving and
motivated students who were left out due to limited capacity.
On the other hand, open source software had a few perils of
its own that we had to overcome, especially with issues re-
lated to software set up, integration with other tools, lack of
adequate software support and proper documentation, and
constant debugging to find errors. We observe that though
the software setup pipeline was streamlined over the dura-
tion of three semesters, novice students kept repeating the
same mistakes during each semester (in spite of FAQs and
TA support).

4. Conclusion and Future Work

Conclusion: We have presented a novel and effective ap-
proach to introduce game programming to senior undergrad-
uate, and graduate students. Our experience for the past three
semesters has proven the efficacy of our methods in popular-
izing computer graphics among the target audience. We are
confident that efforts that involve teaching game program-
ming with an interactive application development as the core
focus propels a strong interest in learning more about com-
puter graphics for the students. It also lays a good foundation
for undergraduates who may be otherwise hesitant to enroll
in a math oriented and technically challenging class in com-
puter graphics.

Future Directions: The popularity of our course within
the undergraduate student population has been the most en-

c© The Eurographics Association 2007.

13

A. Amresh & P. Karnick / Creating Interest in Computer Graphics by Teaching Game Development

couraging feedback for our efforts. The overwhelming re-
sponse to this course led CSE to develop a certificate pro-
gram in game programming and design. This program will
be launched in Fall 2008.

Acknowledgments

The authors thank the anonymous reviewers for their con-
structive comments on improving this paper. We are grateful
to Dr. Gerald Farin, and Dr. Dianne Hansford (both ASU)
for their constant encouragement and support.

References

[Ale] ALEXA M.: Game programming course 0433 l 370
, accessed april 10, 2007.

[Ang05] ANGEL E.: Interactive Computer Graphics: A
Top-Down Approach Using OpenGL., 4 ed. Addison-
Wesley, March 2005.

[aNPS] AT NAVAL POSTGRADUATE SCHOOL M. I.:
http://www.movesinstitute.org/, accessed april 04, 2007.

[BS06] BAYLISS J. D., STROUT S.: Games as a "flavor"
of cs1. In Proc. of the 37th SIGCSE technical sympo-
sium on Computer science education (2006), ACM Press,
pp. 500–504.

[CKLW05] COLEMAN R., KREMBS M., LABOUSEUR

A., WEIR J.: Game design & programming concentration
within the computer science curriculum. SIGCSE Bull.
37, 1 (2005), 545–550.

[DIG] DIGIPEN: http://www.digipen.edu/ , accessed
april 04, 2007.

[Ebe00] EBERLY D.: 3D Game Engine Design: A
Practical Approach to Real-Time Computer Graphics,
1 ed. Morgan Kaufmann, San Francisco, USA, September
2000.

[Eng] ENGINE S. S. A. G.: http://larc.csci.unt.edu/sage/,
accessed april 04, 2007.

[Fos05] FOSTER A.: Student interest in computer science
plummets. Chronicle of Higher Education 51, 31 (May.
2005).

[FvDFH90] FOLEY J. D., VAN DAM A., FEINER S. K.,
HUGHES J. F.: Computer graphics: principles and prac-
tice (2nd ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1990.

[GUI] GUIDHALL: http://guildhall.smu.edu/ , accessed
april 04, 2007.

[HS05] HOETZLEIN R. C., SCHWARTZ D. I.: Gamex: a
platform for incremental instruction in computer graphics
and game design. In ACM SIGGRAPH 2005 Educators
program (2005), ACM Press, p. 36.

[IGD] IGDA: Igda game curriculum framework, accessed
january 06, 2007.

[Ove04] OVERMARS M.: Teaching computer science
through game design. Computer 37, 4 (2004), 81–83.

[Par07] PARTRIDGE A.: Creating Casual Games for Profit
and Fun., 1 ed. Game Development Series. Charles River
Media, February 2007.

[Pat05] PATTERSON D.: Restoring the popularity of com-
puter science. Commun. ACM 9 (Sept. 2005), 25–28.

[PKR06] PARBERRY I., KAZEMZADEH M. B., RODEN

T.: The art and science of game programming. In Proc.
of the 37th SIGCSE technical symposium on Computer
science education (2006), ACM Press, pp. 510–514.

[PRK05] PARBERRY I., RODEN T., KAZEMZADEH

M. B.: Experience with an industry-driven capstone
course on game programming. In Proc. of the 36th
SIGCSE technical symposium on Computer science ed-
ucation (2005), ACM Press, pp. 91–95.

[Pro] PROGRAMMING C. . G.: http://larc. csci. unt.
edu/class. html , accessed april 04, 2007.

[QUA] QUAKE: id software, (http://www. idsoftware
.com), accessed april 04, 2007.

[Rab05] RABIN S. (Ed.): Introduction to Game Develop-
ment. Game Development Series. Charles River Media,
Hingham, Massachusetts, 2005.

[Ros06] ROST R.: OpenGL(R) Shading Language, 2 ed.
Addison-Wesley Professional, January 2006.

[Squ03] SQUIRE K.: Video games in education. Interna-
tional Journal of Intelligent Simulations and Gaming 2, 1
(February 2003), 49–62.

[Ste] STEWART K.: 3d game programming courses (
http://www.stewart.cs.sdsu.edu/3dgame-prog), accessed
april 17, 2007.

[SWND05] SHREINER D., WOO M., NEIDER J., DAVIS

T.: OpenGL(R) Programming Guide: The Official Guide
to Learning OpenGL(R), Version 2, 5 ed. Addison-Wesley
Professional, August 2005.

[SZ04] SALEN K., ZIMMERMANN E.: Rules of Play:
Game Design Fundamentals. MIT Press, 2004.

[TJaLBN06] TORI R., JOÃO LUIZ BERNARDES J.,
NAKAMURA R.: Teaching introductory computer graph-
ics using java3d, games and customized software: a
brazilian experience. In ACM SIGGRAPH 2006 Educa-
tors program (2006), ACM Press, p. 12.

[TOR] TORQUE: Torque game engine (http://www.
garagegames. com), accessed april 04, 2007.

[UAT] UAT: University of advancing technology
(http://www.uat.edu/) , accessed april 04, 2007.

[UNR] UNREAL: Unreal engine (
http://www.unrealtechnology.com/html/technology/ue30.shtml
), accessed april 04, 2007.

c© The Eurographics Association 2007.

14

A. Amresh & P. Karnick / Creating Interest in Computer Graphics by Teaching Game Development

Week Module Focus Area Concepts Learnt Software Tools and Source
1 Introduction Video Games History, Textbook and online

Role of Programmer in Game Industry articles
2 Graphics Pipeline Basic OpenGL Rendering pipeline C++, GLUT
3 Interactive Application Writing a simple application to OSG

Development (a) Load 3D model files
(b) Position models by applying transforms
(c) Basic user interface via keyboard and mouse
(d) Selecting and highlighting models.

4 Game Architecture and Engine Game Engine Design, Game Design
Event-based Modeling Vs Polling, Literature
Implementation Issues

5 Game Math Affine Transforms, C++, OSG
Local and Global transforms,
Mathematical Toolkit for
Vector and Matrix Algebra

6 Game Design Design Principles, Game Design Literature
Case studies: “Good” and “Bad” designs

7 Game Animation Animation Basics Blender, Cal3D
Keyframe Animation using Quaternions

8 Game Effects Lighting Models, Texturing, C++, Shader Designer
Bump Mapping, Normal Mapping,
Multitexturing, Particle Systems, Shadows

9 Asset Modeling Mesh Modeling, Level-of-Detail, Blender
Texture Atlas generation

10 Game Physics Rigid Body Dynamics, Collision Detection OSG, ODE
and Resolution, Particle Systems,
Numerical Methods

11 Game AI Pathfinding Algorithms, Search Strategies, C++, OSG, Delta3D
Flocking and Swarming

12 Game Shaders OpenGL Hardware Pipeline, GLSL, Shader Designer, OSG
Implementing Shaders in GLSL

13 Group Game Specifications Create game concept document and design Textbook
document, plan and schedule a team project

14 Game Production Game Production Pipeline Textbook
Team Dynamics, Asset Repository Management

15 Game Optimization Spatial Data Structures (Octrees, Kd trees), Online articles from
Visibility Solution using Portals Gamasutra.com

and Gamedev.net
16 Group Demo Presentation Skills

Table 2: Instruction breakdown on a weekly basis for our course.

Action items for the student Our method Top-down Model Bottom-up Model Commercial Engine
Create a working game � � �
Implement concepts by writing new code � � �
Modify existing code �
Working in teams � maybe �
Mimic a game production pipeline � �

Table 3: Comparison of different teaching methods.

c© The Eurographics Association 2007.

15

A. Amresh & P. Karnick / Creating Interest in Computer Graphics by Teaching Game Development

Figure 6: Paper ACE: A physics based game which puts the user in the pilot’s seat of a paper airplane. The game uses physical
phenomena like wind, gravity etc. to present obstacles to the user.

Figure 7: Dodgeball: A character-animation centric game involving two three-player teams that play dodgeball. The user
controls one player from a team, while the rest of players are driven by the AI engine. Explosion effects are modeled using
sprites and particle systems.

Figure 8: J2Jazzment Day: A FPS game with heavy use of GLSL shaders for rendering the backdrop and the game characters.

c© The Eurographics Association 2007.

16

