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Abstract
For distance education utilizing shared Virtual or Augmented Reality (VR/AR) applications, reliable network dis-
tribution of educational content is of prime importance. In this paper we summarize the development of software
components enabling stable and reliable distribution of an existing educational AR application for geometry ed-
ucation. Our efforts focus on three main areas: (1) For long distance distribution of Open Inventor scene graphs,
throughout a wide area IP network, a TCP based network protocol was implemented in Distributed Open Inventor.
(2) A tracking middleware was extended to support sending tracking data unicast instead or in addition to sending
multicast messages. (3) Multiple adaptations in our geometry application were required to improve scalability, ro-
bustness and reliability. We present an early evaluation with high school students in a distant learning, distributed
HMD setup and highlight final results.

Categories and Subject Descriptors(according to ACM CCS): K.3.1 [Computer Uses in Education]: Distance learn-
ing, I.3.2 [Graphics Systems]: Distributed/network graphics, K.3.1 [Computer Uses in Education]: Collaborative
learning, H.5.1 [Multimedia Information Systems]: Artificial, augmented, and virtual realities.

1. Introduction

In order to use Virtual or Augmented Reality applications in
realistic, educational settings, a large group of students must
be able to participate either actively or passively in the ac-
tivities taught in VR/AR. In distance learning with VR/AR,
reliable network distribution and replication of educational
content is of prime importance.

Our work is based on the educational Augmented Re-
ality application Construct3D [KS06, KS03]. This system
deploys Augmented Reality (AR) to provide a natural set-
ting for face-to-face collaboration of teachers and students.
The main advantage of using AR is that students actually
see three dimensional objects which they until now had to
calculate and construct with traditional (mostly pen and pa-
per) methods (Figure1). By working directly in 3D space,
complex spatial problems and spatial relationships may be
comprehended better and faster than with traditional meth-
ods. Our system utilizes collaborative augmented reality as
a medium for teaching, and uses 3D dynamic geometry to
facilitate mathematics and geometry education. Pedagogical
aspects influenced the design of collaborative AR hardware

setups, user interface design and content design as reported
in [Kau04]. This paper focuses on the technical development

Figure 1: Collaborative co-located work in Construct3D.

and recent advancements enabling distribution in order to
serve groups of students and pedagogical findings when us-
ing Construct3D in a distributed setup for distance educa-
tion.
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When sharing a virtual workspace for collaboration with
people at distant locations, distribution and replication of
data has to be taken into account.
Ideally, data transmission should be fast to achieve fast re-
sponse times. Especially in long distance distribution this as-
pect is crucial, as the travelling time depends on the distance
to cover. In addition data transmission has to be (in most
cases) reliable. The amount of transmitted data should be
low to achieve fast response times, to prevent network con-
gestion, and to increase efficiency. We distinguish between
different types of distributed data:

• Input data distribution:
Tracked input device data to visualize the actions and
movements of other participants, especially those work-
ing in distant locations. This type of data is typically sent
by a tracker server in VR/AR environments.

• High level application state distribution:
Shared application state, in the form of compacted meta-
data to reduce the amount of transmitted data. Ideally
these metadata suffice to regenerate the correct applica-
tion state without actually transmitting the whole applica-
tion.

• Output data and application content distribution:
(Educational) application content or additional applica-
tion data that needs to be shared.

To allow collaboration between distant users immersed in a
common shared space, a consistent application state is re-
quired throughout all participating sites. This implies that
each participant perceives a similar virtual world, although
slight differences might be possible. In a teaching scenario,
for example, user roles (teacher - student) could be defined
which result in displaying additional information - such
as the solution of a given 3D construction - to a teacher,
whereas the student does not see the solution.

1.1. Contribution

Hesina [Hes01] introduced Distributed Open Inventor (DIV)
and distribution features in Studierstube [SFH∗02], our Aug-
mented Reality software framework, but a series of remain-
ing shortcomings had to be resolved. Existing functionality
was restricted to local networks, because the network im-
plementation makes use of multicast UDP. This networking
mode, though theoretically ideal for the task at hand, lacks
of support for long distance distribution: As a major draw-
back multicast UDP packets are in general not sent through
arbitrary routers on the internet (unless part of the MBONE
network [Eri94]). Therefore immediate distribution between
school networks, without setting up multicast tunnels in co-
operation with local administrators is not possible. In our ex-
perience gathered in past e-learning projects, these obstacles
(which require time and effort of school personnel) usually
prevent usage of the technology in an educational setting.

Our work is supposed to fill this gap, enhancing distri-
bution features, overcoming the rigid restriction in terms

of networking and offering the possibility to truly distrib-
ute Studierstube applications such as Construct3D to remote
places. Due to the practical usage of DIV by Hesina for the
past 5 years, the shortcomings (as mentioned above) became
obvious. Increased interest in Construct3D and collaborative
projects with partners in other countries required a flexible
network implementation, breaking free from standard lab se-
tups in a LAN. Efficient mechanisms for distributing AR/VR
applications over long distances had to be implemented. This
was done on 3 levels:
(1) Tracking middleware (OpenTracker [RS01]) was ex-
tended to send data of tracked input devices in unicast UDP
mode in addition or instead of multicast UDP.
(2) Distributed Open Inventor [Hes01] was extended to send
data using (reliable) TCP instead of reliable multicast UDP.
It enables long distance distribution but also leads to a con-
siderable performance increases in small networks com-
pared to the multicast UDP implementation.
(3) Construct3D [KS03] (section4) was selected to make
in-depth long distance distribution tests. In addition to ex-
tending distribution functionality, we enhanced the replica-
tion behavior of the application. Initially the whole appli-
cation state - as a scene graph containing all geometric ob-
jects - was transmitted which resulted in a high amount of
transmitted data. To minimize the network load only state
data is being transmitted which enables clients to rebuild the
whole application state themselves. Therefore distribution is
basically restricted to meta information in the form of com-
mand lists containing essential application states. Executing
a command list generates the whole geometric construction
and application state.

Another huge amount of work was spent on massively
increasing robustness of present features by bug-fixing and
reimplementation as well as extending them and introducing
new functionality to push the application further. They are
of major importance for a stable educational application but
are mainly omitted in this context.
Finally an early evaluation of a distributed educational setup
is presented which shows the usefulness of utilizing AR/VR
applications, in example Construct3D, in distance education.

2. Related work

For the development of any educational, distributed VR/AR
application, technological, domain specific, pedagogical and
psychological aspects are of importance. Accordingly, liter-
ature from different and diverse research areas relates to our
work: Tracking frameworks, distributed scene graphs, col-
laborative AR/VR, distributed virtual environments, desk-
top and immersive 3D modeling, educational 2D/3D appli-
cations, dynamic geometry and pedagogic theories such as
constructivism or activity theory. We will briefly mention
work related to the core parts of our work. For a compre-
hensive overview of related work regarding Construct3D we
refer to [Kau04].
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2.1. Tracking frameworks

With the wealth of different tracking systems and input de-
vices available, it is impossible for application developers
to deal with the details necessary to support each and every
technology natively in their applications. Instead, it is desir-
able to add another level of abstraction, and try to encapsu-
late the details of the necessary software support for various
tracking technologies in a tracking middleware. The goal of
tracking middleware is to serve tracking (and other input)
data to the application, independent of the underlying hard-
and software. Several middleware systems for tracking de-
vices have been developed.
VRPN (Virtual-Reality Private Network) [THS∗01] is a
wide spread device-independent and network-transparent
framework for peripheral devices used in Virtual and Aug-
mented Reality applications written in C++. Networking is
built upon UDP and TCP. Depending on the reliable deliv-
ery property of the tracking data type, the protocol is chosen
on a per message basis.
With OpenTracker [RS01] it is also possible to support dis-
tinct tracking device types by abstraction, to perform various
preprocessing tasks (such as filtering) and network transmis-
sions within a single framework. An OpenTracker client is
integrated into the Studierstube [SFH∗02] toolkit for track-
ing device support.

2.2. Distributed scene graphs

Current high-level 3D graphics libraries are engineered
around the concept of a scene graph, a hierarchical object
oriented data structure of graphical objects. Such a scene
graph gives the programmer an integrated view of graphical
and application specific data, and allows for rapid develop-
ment of arbitrary 3D applications. Although shared memory
systems are capable of directly sharing data, they have ad-
ditional hardware requirements. Distributing and replicating
scene graphs among heterogeneous computer systems does
not require additional hardware.

The blue-c Distributed Scene Graph (bcDSG) [NLSG03]
is based on OpenGL Performer. Distribution features are
added on top of the blue-c framework and are not integrated
into Performer. The scene graph can be divided into a shared
and local partition. Shared parts have to be created using
custom nodes, as standard Performer nodes do not support
distribution. Scene graph synchronization is performed in a
traversal operation at each rendering. This mechanism in-
cludes consistency, locking and ownership features.
Data transfer is done using UDP, enabling multicast sup-
port for more than two participating sites: While scene graph
synchronization messages are transmitted to any participat-
ing site, locking operations are of unicast nature. Relying
on multicast UDP and its routing deficients, the system will
experience afore mentioned problems when used for large
distance distribution. Its synchronization features are based
on nodes as atomic units: Changing a single field causes the

whole node contents to be transferred. This can be problem-
atic, when having huge amount of data belonging to a single
node.

Avango [Tra99] is also based on Performer. Similar to the
Inventor toolkit, its own scene graph nodes act as field con-
tainers, storing data in terms of fields. In addition field con-
nection and streaming mechanisms are introduced similar to
existing concepts in Inventor. Distribution features are based
on so-called distribution groups. To build a shared object, a
local object has to be created and migrated to a distribution
group. On the receiving end all group members reverse this
process by creating a local copy of the distributed object.

Distributed Open Inventor is based on Open Inventor
(OIV), a popular scene graph toolkit. Several implementa-
tions of adding distribution features to OIV exist:
Distributed Open Inventor (DIV) by Hesina [Hes01] is a
stand alone open source add-on to OIV, and has also been
integrated into the Studierstube framework [SRH03]. It en-
ables sharing of a scene graph or parts of it in a network,
which is a fundamental prerequisite for (distant) collabora-
tion in AR/VR environments. If encapsulating application
and its graphical object state altogether in a scene graph, dis-
tribution of that scene graph avoids the dual database prob-
lem [MF98]. Since DIV provides the basis of our work, we
will describe some of the concepts implemented in DIV in
detail:
The implementation makes use of the notification mecha-
nism in OIV and observes occurred scene graph changes by
sensors. On an atomic level changes of field values are moni-
tored. For convenience, a special group called DivGroup de-
notes a subtree for distribution, offering the possibility to
share several independent parts of a scene graph.
Usually a single master hosts the original copy of the scene
graph for replication to guarantee total ordering of messages.
The master is responsible for transmission of scene graph
changes to the network. In this transmission the node name
(where the field value change occured) is used as unique
identifier and naming lies in the responsibility of the master.
Scene graph modification messages transmitted by the mas-
ter typically contain the name of the node where the change
occurred with additional information such as (a) appropriate
field data, if a field update occured or (b) structural infor-
mation, if the update is of structural nature (involving group
node operations).
Slaves process received changes and modify the scene graph.
Initially, slaves are also capable of sending polling packets
to the network, requesting the scene graph from the master.
The master reacts on this message appropriately by trans-
mitting the scene graph in its actual state. This is actually
the implementation of a late joining feature. Networking is
based on the ACE toolkit.

A similar approach to distributed Open Inventor was
implemented by Pěciva [Pěc02], also based on a master-
slave architecture. Similar to Hesina, he extended the Open
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Inventor source directly. Therefore scene graphs can be set
up for distribution without replacing standard nodes by a
customized counterpart.

2.3. Educational VR applications

Since the early 1990th researchers have been working on vir-
tual reality applications for purely educational use ( [DSL96,
WB92] and many others).
In the area of mathematics education the most advanced im-
mersive VR project is CyberMath [TN01]. CyberMath is an
avatar-based shared virtual environment aimed at improv-
ing mathematics education. It is suitable for exploring and
teaching mathematics in situations where both teacher and
students are co-present or physically separated. It has been
presented in a CAVE and exists as a desktop VR application.
The recent VRmath system [YN04] is an online application
that utilises desktop VR combined with the power of a Logo-
like programming language, hypermedia and the Internet to
facilitate learning of 3D geometry concepts and processes. A
very good summary of educational VR applications is given
by Mantovani [Man01].

2.4. Pedagogic theory

Constructivist theory provides a valid and reliable basis for
a theory of learning in virtual environments [Osb97,Win93].
As constructivism underlines, learning takes place when stu-
dents build conceptual models that are both consistent with
what they already understand and with the new content.
The core commitment of a constructivist position is that
knowledge is not transmitted directly from one knower to an-
other but is actively built up by the learner. Learning is con-
sidered to be an active process in which learners "construct"
their own knowledge by testing ideas and approaches based
on their prior knowledge and experience, applying these to
a new situation, and integrating the new knowledge gained
with pre-existing intellectual constructs. This is supported
through relevant, engaging learning activities, which involve
problem-solving and critical thinking. We used activity the-
ory [Eng99, TGG04] as a conceptual framework to design
constructivist learning tasks for our evaluation. Details are
given in subsection5.2.

3. Distribution - Technical Design

In this section we provide a brief overview of our design of
the three components that were extended to support long-
distance distribution: OpenTracker, Distributed Open Inven-
tor and Studierstube. In section4 Construct3D is described.

3.1. Tracking data distribution in OpenTracker

OpenTracker [RS01] contains components providing track-
ing data transmission between several OpenTracker in-

stances on different hosts. Just like Distributed Open Inven-
tor these capabilities are built upon multicast UDP, which
causes the earlier mentioned multicast-related problems.

Following the data flow principle of OpenTracker, track-
ing data is inserted into the data flow graph by means of
a so called NetworkSource, while a NetworkSink transmits
data to the network. This implies that network traffic con-
cerning tracking data is unidirectional and of multicast na-
ture: Payload data is always transmitted by a single Net-
workSink and received simultaneously by one or more Net-
workSources. It was rather straightforward to add unicast
UDP as an additional networking protocol. A NetworkSink
generating tracking data packets has to deliver them simul-
taneously to associated receivers. To know all receivers, the
NetworkSink has to maintain a list of counterparts (each of
them usually a NetworkSource of an OpenTracker instance
on the receiver side).

The network topology on the logical level is a star. This
topology implies that tracking data of several devices can be
distributed by a single network, as long as data occurs on the
same central location. Of course building several indepen-
dent networks (consuming more network resources) is the
alternative and more general way, as this allows distribution
of tracking data occurring at different places. Establishing
a tracking data network is initiated by NetworkSinks, simi-
lar to the traditional server-client scenario: Each client must
have knowledge in advance about the server providing de-
sired tracking data in terms of socket information (host and
port).

3.2. Distributed Open Inventor

In general Distributed Open Inventor is utilized to distribute
parts of a scene graph. Since scene graph data usually con-
tains important application information, network communi-
cation must be reliable. To overcome the borders of private
local networks, TCP as a very widespread and reliable net-
work protocol was chosen. This implies a lot of changes to
Hesina’s implementation.

In contrast to multicast UDP, TCP allows only point-to-
point communication. On the other hand no reliability treat-
ment is necessary in TCP as this is implicitly taken care of
in the protocol. To allow data delivery to all network nodes,
the TCP implementation, considering its unicast nature, has
to emulate multicast data delivery to comply to the require-
ments of Distributed Open Inventor. As any node might act
as a server, a many-to-many property has to be taken into
account.

Multicast data delivery with multiple senders is done by
building up a logical network of so called true mesh topol-
ogy. This is a network, where each peer is logically con-
nected to each other peer. The main challenge of the TCP im-
plementation is to establish and ensure true mesh topology
at any time. Sending and receiving is, as mentioned before,
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fairly simple: Data is automatically transmitted to each con-
nection simultaneously. On the receiving end nothing spe-
cial has to be taken into account. Processing order of data
received from different connections is uncritical as the next
higher network layer implies that critical data in terms of
processing order is sent from exactly one peer at any time.
Whenever a peer joins the distribution network it must know
at least one peer of the existing network. Otherwise it will be
the only participant of a new network.
A new peer initially contacts the network by sending a spe-
cial message identifying itself just after connection estab-
lishment. This identification contains the server port of the
peer as each peer contains server and client functionality.
The arrival of a new peer must be forwarded to all other
participating sites of the network. All other peers establish
connections to the new peer identifying themselves.
On receiving any identification message, the peer has to
check, if another connection to the counterpart currently ex-
ists. If this is the case, the connection is closed immedi-
ately. Since network redundancy involving more than a sin-
gle peer is effectively prevented in advance, connection clos-
ing should only be done in case of cycles. Livetime informa-
tion (time to live (TTL)) is embedded in the message of a
joining peer. It allows only a certain low number of hops
between peers. This increases efficiency and helps to avoid
infinite cycles.

3.3. Studierstube

The enhancements of Distributed Open Inventor have to be
reflected in Studierstube. Studierstube applications are dis-
tributed automatically by a DivGroup, implicitly created as
a parent of each application. Configuration of the distribu-
tion is handled by the core library with the help of a tool
called session manager. Implicit distribution is implemented
in favor of ensuring distribution capabilities without further
intervention by the application programmer.

The session manager assigns master property to the par-
ticipant who originally hosts a certain application. All other
participating sites (slaves) receive the application scene
graph via network due to the node transfer feature. Termi-
nating the master results in reassigning master property to
another participant. This master-slave property assignment
is conducted autonomously and cannot be influenced by
Studierstube instances. Another task of the session manager
is to create network resources according to the requested
networking mode. To do this, a generator produces network
configuration data. In multicast UDP mode, a single multi-
cast group address and associated port number is generated
per application. In TCP mode, each peer is given a unique
port number to allow running several applications on a sin-
gle machine.
As the assignment of network resources lies in the respon-
sibility of the session manager, it simply creates a list con-
taining proper contact information of all other participants

for each peer and includes this in reconfiguration messages
sent to each participating site. This strategy guarantees high-
est chances to contact any of the other peers to successfully
build up a network.

Further details about design and implementation of our
approach are described in [Csi06].

4. Construct3D

Construct3D is based on the Studierstube AR system
[SFH∗02] and uses augmented reality to provide a nat-
ural setting for face-to-face collaboration of teachers and
students. Based on an underlying distribution mechanism,
Studierstube extends its support to multiple users work-
ing with multiple different display techniques in a shared
workspace that features multiple applications and manage-
ment techniques similar to a common 2D desktop [SRH03].
Studierstube applications are custom nodes which are part of
the scene graph. As Construct3D is just another Studierstube
application, it inherits automatically its distribution features.

4.1. Software design

Construct3D offers functions for the construction of
points, two-dimensional geometric primitives and three-
dimensional geometric objects. It provides functionality for
planar and spatial geometric operations on these objects,
allows measurements, features structuring of elements into
layers and offers basic system functions.
Construct3D promotes and supports exploratory behavior
through dynamic geometry. A fundamental property of dy-
namic geometry software is that dynamic behavior of a con-
struction can be explored by interactively moving individ-
ual defining elements such as corner points of a rigid body.
For example, moving a point lying on a sphere results in
the change of the sphere’s radius. It can be seen what parts
of a construction change and which remain the same. The
histories of constructions as well as dependencies between
geometric objects are maintained. Experiencing what hap-
pens under movement allows better insight into a particular
construction and geometry in general.
At its start Construct3D initializes a 3D window and the user
interface. The menu system is mapped to a hand-held tracked
panel called the personal interaction panel (PIP) [SG97]. The
PIP allows the straightforward integration of conventional
2D interface elements like buttons, sliders, dials etc. as well
as novel 3D interaction widgets (Figure2). Passive haptic
feedback from the physical props guides the user when in-
teracting with the PIP, while the overlaid graphics allows the
props to be used as multi-functional tools. Students can posi-
tion written notes onto the tablet for instance that might help
them during their work in the virtual environment.
All construction steps are carried out via direct manipulation
in 3D using a stylus tracked with six degrees of freedom. In
order to generate a new point the user clicks with his pen
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Figure 2: Two users collaborate on a construction in Con-
struct3D. To distinguish users’ contribution each user is
working within an own color scheme (note the differently
colored menus).

exactly at the location in 3D space where the point should
appear. Users can easily switch between point mode (for set-
ting new points) and selection mode (for selecting 3D ob-
jects). All 3D operations consistently support dynamic mod-
ifications of their input elements and re-evaluate the result-
ing elements accordingly. Necessary system operations such
as selection and deselection of primitives, save, load, delete,
undo, redo, export and import of VRML files are provided
too. Details on the implementation, specifically the imple-
mentation of undo, redo and other features for multi-user
environments are explained in detail in [Kau04].

The internal structure of the application’s scene graph is
rather simple. Avoiding the dual database problem [MF98],
it encapsulates all of the application’s data. Basically the
scene graph hierarchy is composed by command lists stor-
ing all Construct3D operations. Geometric objects are the
visible results of these operations. A command list and its
interpretation (= the geometric elements) are represented by
node kits. The command list represents the meta-state of the
application, the node kits containing the geometric elements
are rendered and represent the visual state.
These two distinct parts forming the application’s scene
graph are interrelated: Manipulation of geometry causes the
generation of new commands in the command history list.
On the other hand, the execution of commands generates de-
terministic results on visible geometry. Therefore the com-
mand history list is used for file operations (load/save) and
for the undo/redo functionality.

An important property of the command history list is that
it allows the complete regeneration of the application state at
any specific time during the construction process. Therefore
distributing the command history list alone is sufficient to
rebuild the correct application state on any client computer.

Other parts of the scene graph are excluded from distribu-
tion. As each action causes a modification of the command
list position pointer, the latter is a key element in assisting
the detection of changes caused by distribution. Whenever
the shared pointer changes, actions have to be taken.

5. Evaluation

Being one of the longest actively developed educational AR
applications, Construct3D has been used with teachers and
students in more than 500 teaching lessons yet. Usability as-
pects of Construct3D and pedagogical content design have
been evaluated in two previous evaluations as summarized
in [Kau04] providing very good results and useful feedback.
The current evaluation focuses on distributed, distant learn-
ing.

5.1. Collaborative, distributed hardware setup

The standard setup used for Construct3D supports two
collaborating users wearing stereoscopic see-through head
mounted displays (HMDs) (see Figure1) providing a shared
virtual space. The users interact with the system using pen
and pad props. Both users see the same virtual objects as
well as each others’ pens and menu systems which allows
a student or teacher to help the other user with the menu
system for instance if necessary. The same is valid in a dis-
tance learning scenario since input device data is shared
amongst remotely located users. Because of see-through
head mounted displays they perceive their real bodies, ges-
tures and actions and those of people outside the virtual
space, i.e. a teacher, as well which is especially important
for co-located work. Head and hands are tracked using an
ARTTrack optical tracking system. In a co-located setup
one dedicated host with 2 graphic ports renders stereoscopic
views for both users. In distributed setups rendering as well
as computation of the geometric objects is done locally on
each participant’s PC.
Our immersive setup that uses head mounted displays is
most favored by teachers and students. The big advantage
of this setup is that it allows users to actively "walk around"
geometric objects which are fixed in space. Excited students
sometimes lie down on the floor to view objects from be-
low or step on a chair to look down from above. This is a
unique feature of an HMD setup which cannot be provided
by monitor or projection screen based hardware configura-
tions. It actively involves students and therefore complies
with constructivist learning theories. Geometric objects are
not abstract anymore but in spatial relation to the learner’s
own body, they can be manipulated directly and are nearly
tangible. We think these are key features to learning and to
improving spatial abilities with Construct3D.

Other AR setups for educational use have been tested with
Construct3D such as a basic desktop setup, semi-immersive,
mobile and hybrid setups which are described in detail in
[KS03].
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5.2. The link to pedagogical theory

In the course of this study the technical requirements of Con-
struct3D, the learning tasks as well as the evaluation method-
ology were aligned in accordance with pedagogical con-
cepts and learning practices based on constructivism, com-
bined with action-oriented learning such as real-problem
solving, collaborative learning, exploratory learning and in-
terdisciplinary learning, stemming from activity theory and
the theory of expansive learning [Eng87,Eng99]. In particu-
lar, learning tasks had to

• be part of the actual curriculum in schools.
• represent a holistic real life problem. The description (in-

struction) of the task should be embedded in authentic
(real life) context and not at the level of an abstract in-
struction.

• offer the possibility to be viewed from several perspec-
tives. The focus on different perspectives should support
the transfer of knowledge to other similar, but not identi-
cal problems.

• be available in multiple representations (different kind of
visualisations of the task).

• meet the experience and interests of the studentsŰ which
kinds of tasks they are already familiar with, what kind of
problems might they be confronted with in the near future,
etc.

The pedagogical theories also influenced the context in
which the learning takes place. During the learning process,
the following aspects were considered: Learning was an ac-
tive process, and students collaboratively performed practi-
cal tasks to improve their procedural knowledge. Students
structured and controlled the learning process. They chose
the approach, and the methods for solving the task. The
learning process should enable knowledge construction; stu-
dents should develop their own ideas and approaches. They
should be able to identify a contradiction or a conflict in the
task. Students should investigate their learning with respect
to methods used to organize their information and interpreta-
tion. Finally, they should analyze and evaluate their solution
with respect to strengths and weaknesses.
The teacher acted as a coach, analysing students’ strategies
during the collaborative learning process, diagnosing mis-
takes and misunderstandings and supporting students.

5.3. Evaluation design

Early at the development phase we conducted a first eval-
uation with distributed Construct3D to investigate its use-
fulness for distributed collaborative learning and teaching.
The evaluation was based on the methodological frame-
work CIELT (Concept and Instruments for evaluating learn-
ing technologies [TGG04]). Within the evaluation design
we discriminated three phases for the evaluation. The
preparation-phase was the period before the actual evalua-
tion sessions start. During the experiments, learning was ob-
served and the assessment-phase concluded the experiments.

The evaluation design for the experiments is shown in Figure
3. To be able to derive information about the effectiveness

Figure 3: Students working in a distributed HMD setup in
two different labs.

of distributed collaborative learning, we followed a quasi-
experimental design for the geometry experiment, which in-
volved splitting learner groups. Seven learner groups per-
formed three geometry tasks in a face-to-face setting, work-
ing next to each other, whereas two learner groups performed
these three tasks in a distributed setting (Figure4). For the
distributed setting each group member was located in a dif-
ferent room. A learner group consisted of two students and
one teacher. In both settings both users were wearing HMDs,
were tracked by an optical tracking system or a magnetic
tracking system in the second lab, and a teacher was watch-
ing (in a different room) on a monitor.

For this early evaluation all students were located in
rooms in the same building, therefore issues of latency in
long distance collaboration were not faced at that stage.
Long distance collaboration was tested throughout the devel-
opment process and with the final implementation at an in-
formal level. Application specific adaptations for improved
robustness had to be implemented in case of delayed mes-
sages arriving from different sources (e.g. tracking data com-
ing from a different source than application data). Large
scale testing is part of our future work (see6.1).

Figure 4: Students working in a distributed HMD setup in
two different labs.
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5.4. Learning tasks

Based on the above mentioned characteristics, three learning
tasks were developed. Each group had to accomplish these
tasks during the evaluation.

• The first learning task dealt with the wheels of an airplane,
which were rotated into a shell in the hull of an airplane
after its take off. The wheel in its start and end position
were given. Students had to construct the axis of rotation
and the angle of rotation for the wheel from its original
position into the position in the hull. A screenshot of the
given elements that they will face later in the virtual world
was given as well.

• In the second task, a satellite dish had to be adjusted to
point to the TV-SAT2 satellite. Students had to translate
this real life problem into a geometric problem to be able
to identify two angles, which are needed to adjust the
satellite dish. Web links were presented with additional
information about geostationary satellites; images were
also given to help understand and translate the problem.
The virtual scene in Construct3D showed a small model
of the earth where all continents and seas could be seen, to
help pupils find the correct places on earth and to immerse
them further into the problem.

• In task 3 a rope was redirected from one given position
to a final given position. Two deflection sheaves, which
were drawn as circles, redirected the rope. These had to
be constructed by the students. Deflection sheaves can be
found in skiing lifts, elevators and many other machines.
A draft was given to lead the students to a correct solution.

5.5. Evaluation results

Overall 18 students and 2 teachers participated in the evalua-
tion of the C3D system. Students were between 17-18 years
old and attended grade 11 or 12 of Austrian senior high
school. They all head average to good computer experience.

The usability of the C3D system was measured with the
ISONORM 9241/10 questionnaire [Prü97]. The overall us-
ability of C3D was rated good, with M=2.37 (SD=0.42; with
values ranging from "1=Completely adequate" to "5=Com-
pletely inadequate"). When analysed with respect to the two
settings, distributed and face-to-face learning, there was no
significant difference between the two groups, except for
the principle of suitability for learning. There, groups in the
distributed setting rated the suitability for learning statisti-
cally significant better than groups in the face-to-face setting
(p=.01). We want to point out that due to the small sample,
results have to be interpreted carefully. In an additional inter-
view, students of the distributed setting mentioned that due
to the distributed setting they concentrated better on what the
other person said or did.

Open ended questions from the participants were analysed
in a qualitative way to summarize the difficulties experi-
enced while working with Construct3D. Most frequently

students complained about an instable distributed system
that crashed during the experiments. These difficulties were
related to the very early trial of our implementation. We got
very useful feedback which helped to make distribution very
robust and develop the final system as described in this pa-
per.

Participants also rated the perceived usefulness of Con-
struct3D for meeting (1) learning, (2) communication and
(3) collaboration needs (1=very good, 5=not at all). The
mean values for those 3 categories were between 1 and 2.14.
There was no statistically difference between the distributed
and the face-to-face group.

Furthermore participants rated the perceived collaborative
awareness (ranging from "always = 1" to "never = 5") based
on findings from Caroll et al. [CNI∗03]. The authors stated
that three aspects of awareness have to be taken into account
measuring the effectiveness of the collaboration. Students
rated their awareness (while working with Construct3D) of
otherworkingstudents with 1.17 (std.dev.σ = 0.707). Their
awareness ofinteractingcolleagues was rated with 1.50 (σ
= 0.632) and their awareness that other users arethinking
and planningwas rated with 2.06 (σ = 0.873). The good
ratings could be explained by our very specific application
design with respect to supporting multiple users. A different
color scheme is used for every user which allows teachers
and students to clearly distinguish between each user’s con-
tribution [KS06]. In co-located setups collaboration is sup-
ported by Augmented Reality, specifically see-through head
mounted displays which enable users to see the movements
of others.

To investigate the learning outcome we differentiated be-
tween successful and non-successful groups. The learning
outcome was measured in two ways. Firstly, for each task
a specific time frame was defined. After that, groups had
to stop working on the task, but the teacher explained the
solution. The time frame for the three geometry tasks was
set for 45 minutes each to complete the task. Learning ses-
sions either stopped when students solved the task or after
the set period of time was reached. Second, a fixed, quasi-
experimental design was used, following the traditional pre-
knowledge test - intervention - post-knowledge test design.
Before the actual experiment started, students had to fill in
a multiple choice test, trying to find the correct answers for
8 geometry content related questions. The correct answers
of this pre-test constituted the individual base-line for each
student, providing information concerning knowledge about
the geometry topics that each student had before the actual
topics were taught. After performing the three tasks students
had to fill in another multiple choice test, again trying to
find the correct answers for 8 content related questions. The
results of the knowledge pre- and post test could then be
compared providing information about how much knowl-
edge had been increased during the experiment.

In the geometry experiment 9 groups (2 students and 1
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teacher) from three schools in Austria participated, perform-
ing 3 tasks. Five out of the nine groups solved all 3 tasks
within the given time frame (45 minutes for each task).
Based on the results of the knowledge pre- and post tests we
investigated changes in the domain specific knowledge. In
the pre-test students were able to answer on average 4 out of
the 8 questions (M=4.67), after the experiments they were
able to answer almost 6 out of the 8 questions (M=5.86).
This difference between the pre- and post-test was statis-
tically significant (p=.003). A positive correlation between
pre- and post-test was found (r=.66, p=.003). These results
provide first hints that learning in a distributed Construct3D
setup has positive effects on the knowledge increase of stu-
dents. In both co-located and distributed learning groups the
knowledge gain was high. No difference was found, there-
fore distance learning did not effect knowledge gain in any
negative way.

We were extremely surprised to see that students collabo-
rated in the distributed, distance learning setup without any
problems. Four participants from a school for highly-gifted
students were extremely skilled collaborating in the distrib-
uted setup. They said that it’s even easier than co-located
collaboration because they can fully move around geomet-
ric objects and can freely interact with them without being
considerate of other people who physically share virtual and
real space with them in a co-located setting.

6. Conclusion

Running DIV on TCP enables long distance distribution
without the effort of tunneling or relying on special in-
frastructure (MBONE [Eri94]). Depending on the amount
and complexity of scene graph data, initial node transfer
takes some time. But after this initialization state, interac-
tion has to be fast and responsive.

Comparing the multicast UDP and TCP implementation,
it is easily observable that TCP performance is over-topping
multicast UDP, especially in small networks: Generating
huge amounts of DIV updates by heavily manipulating the
scene graph contents, network data throughput in the TCP
implementation seems to be much better. On multicast UDP,
the send queue gets comparatively quickly full, causing ren-
dering thread blocking of the master. Consequently, inter-
active manipulation is not possible while having the render
thread waiting for dequeuing to take place. Maintaining the
same conditions (queue size) while running these massive
stress tests, this blocking phenomenon could not be achieved
on TCP. We assume that this is related to a sub-optimal im-
plementation of multicast UDP in the ACE network library
that we use.

Construct3D is fully benefiting from all distribution fea-
tures: Multi-user functionality raises the demand for track-
ing data distribution. Supporting master transfer ability is
desired for more flexible use cases. Generally speaking, a

very high degree of flexibility is ensured by three orthogonal
aspects:

• User configuration and user resources such as output de-
vices, panels and pens can be freely specified.

• The host of the application (DIV master) can be se-
lected without restriction and is completely independent
of associated users and their resources. Startup order is
completely insignificant and the master automatically mi-
grates by session management on termination.

• Finally, by configuring OpenTracker properly, tracking
data distribution (usually done on a separate tracking
server) is independent of all other aspects.

Each Construct3D instance can be configured in multi-
ple ways by defining the number of users, its associated re-
sources, specifying application retrieval method (by distrib-
ution as slave or by file input as master) and tracking data
obtaining strategy.

Further on a central and persistent Construct3D service
can be established as a background process without the need
of directly associated users and rendering output. This al-
lows joining and leaving a persistent Construct3D learning
experiment at any time. In contrast to this, dynamically mi-
grating Construct3D application hosts with directly associ-
ated users and rendering tasks is also easily possible without
difficult configuration effort, as contacting the session man-
ager performs all bootstrapping.

6.1. Future work

Regarding the technical aspects we omitted the fact that our
implementation of DIV supports using multicast UDP and
TCP connections simultaneously in a hybrid network con-
figuration. For example a simple hybrid network setup could
consist of two local networks with multicast support (e.g.
two local school networks or two university networks) which
are connected using a reliable TCP connection. Extensive
tests with hybrid network configurations are planned since
they allow more efficient distribution between multicast en-
abled subnets.

Since the early evaluation in 2005 no further user studies
have been conducted with distributed Construct3D. In order
to simulate real classroom conditions, large scale testing of
our implementation with a large number of client PCs (> 15)
needs to be done. It should ideally be coupled with a large
scale evaluation with high-school students.
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