

Graphics-Based Learning in First-Year Computer Science

T. A. Davis

Department of Computer Science, Clemson University, Clemson, SC, U.S.A.

 Abstract
This paper proposes a method for teaching a first-year course in computer science using graphics-
based problems as the teaching medium. Specifically, we present a method for instruction in pro-
gramming using a semester-long project of developing a ray tracer. This effort is part of a larger
project, known as �

�
�

�
�, in which a broad range of undergraduate courses are taught using com-

puter graphics as the motivating application. An overview of this project is provided, along with
description and results from the first trial CS2 course instructed using this technique.

 Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Cur-
 riculum.

1. Introduction

Engaging students in the study of computer science is
becoming increasingly important as enrollments in CS
degree programs continue to decline. One method of
meeting this growing need involves the offering of prac-
tical and interesting problems that ignite student atten-
tion and encourage continued study. Selecting the right
type of problem must therefore hold some sort of rele-
vance and intrinsic interest to students. We submit that
computer graphics fulfills these criteria and provides an
ideal problem-based learning platform upon which a
variety of topics can be taught effectively.

 The proliferation of visual media is a worldwide
phenomenon, fueled by the demands of an ever expand-
ing visually-based population. The visual entertainment
industry, which includes film, television, and computer
gaming, can be found in all parts of the world and gen-
erates tens of billions of dollars per year. As a result,
college students typically have experienced broad expo-
sure to computer-generated images and often have a
strong interest in their creation and use. Leveraging this
interest, we have developed a new approach, termed

� � � � � (or TEXNH), to teach general computer science
concepts through computer graphics problem-based in-
struction in the undergraduate curriculum.

Computer graphics provides a natural application
area for teaching concepts in computer science due to
the complexity of the problems, which often require a
wide variety of programming constructs, as well as a
substantial level of mathematic calculations. Further,
through graphics programming projects, students can
evaluate the correctness of solutions and discover prob-
lem areas quickly through visual inspection. Finally,
such projects allow for a certain degree of artistic free-
dom in terms of algorithm design as well as scene con-
tent, which is often not found in other projects.

While the goal of � � � � � is to span all courses in the
undergraduate curriculum, our focus is CS2, a first-year
second semester course. Specifically, we describe how
the course is organized to incorporate graphics projects
for continuing freshmen. We begin by further describ-
ing the � � � � � project and our experiences to this point in
Section 2. We continue in Section 3 by characterizing
related work describing similar approaches. Section 4
details the structure of the course, including class pro-
jects, while Section 5 concludes and presents student
results.

2. ����
�
����

�
���� Project Overview

The name of our approach, � � � � � , is the Greek word for
art, and shares its root with � � � � golo	
 , the Greek word
for technology. The similarity of these two words
reveals the close academic relationship the two fields
have held historically. Unfortunately, this relationship

EUROGRAPHICS ’06 / Judy Brown and Werner Hansmann Education Papers

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

Davis / Graphics-Based Learning in First-Year Computer Science

has been weakened over the years; one of the primary
goals of the � � � � � project is to reunite these two areas to
create a better and more effective environment for
learning.

 Inspiration for the � � � � � project arose from the
creation of a separate, but somewhat related, program at
Clemson: Digital Production Arts (DPA). This master’s
level program, begun in 1999 at Clemson University,
combines elements of computer science, art, and theater,
among other fields, in its curriculum. Graduates who
complete the DPA program pursue careers in the ever-
expanding special effects industry, which focuses on
film, television, and gaming. Our graduates now work
in a variety of studios, including Rhythm & Hues,
Industrial Light & Magic, Electronic Arts, Pixar, Sony
Imageworks, and Blue Sky. While DPA is currently a
graduate-only program, undergraduates at Clemson have
shown interest in the program as early as freshman year.
Some have made adjustments in their undergraduate
majors/minors, as well as courses, to better prepare them
for applying to the program. Overall, the number and
quality of applicants from other universities are also on
an upward trend.

 Form our experiences with the DPA program, we
sought opportunities for duplicating our successes in the
undergraduate computer science curriculum. The result
was the � � � � � project, in which the overriding goal is to
incorporate projects and research in the undergraduate
computer science curriculum to teach basic computer
science topics. Semester-long graphics projects in
required courses form the basis of a problem-based
learning curriculum that promotes the development of
programming skills as well as creativity. We believe
this approach could be quite effective since it
encompasses several important education-theoretical
techniques, including: visual feedback, problem-based
learning [DGA01] [Cun02], intentional learning
[Mar97], and constructivism [Mor98]. By incorporating
these key components, we seek to create a focused,
problem-based learning environment that educates,
motivates, and broadens students at all levels.

 Our first trial course under the � � � � � approach was a
sophomore-level course in C/C++/Unix (CPSC 215 –
Tools and Techniques for Software Development).
Students entering this course had taken CS1, CS2, and
data structures with Java. The projects for the course
included image processing and the implementation of a
ray tracer. The course has been offered several times
with excellent results. Students evaluate the course
highly, with visual feedback and the ability to show off
impressive results to family and friends as strong
positives. Additional details may be found in
[DGMW04].

 After the success of � � � � � in this sophomore-level
course, we began to broaden the application of the � � � � �

approach to additional courses, beginning with CS1. In
this course, students programmed solutions for various
image processing problems, including blurring and
sharpening images, converting color images to grayscale
images, and applying the color scheme of one image to
the color palette of another. This final project was based
on a paper by Reinhard, et al [RAG01] wherein first-
semester(!) students were required to implement a non-
trivial research result. Further explanation can be found
in [MD06-1] and [MD06-2]. We are now applying this
approach to the second-semester course, with plans to
extend its usage to all freshman and sophomore courses
beginning Fall 2006.

3. Related Work

Freshmen entering college typically have been exposed
to computer-generated imaging in a variety of formats.
Most work thus far, however, has focused on teaching
students using image processing. Allowing students to
explore image processing topics is becoming popular,
due primarily to the interest generated by such projects
and the principles reinforced. Working with such pro-
jects is interesting to a wide range of students, from
elementary school [MV05] to college [WN05] [AR98]
[Bur03] [FP97] [Hun03] since students react positively
to visual results and working on real-world problems.

 In teaching students about programming, image proc-
essing and rendering projects naturally require students
to deal with dynamic memory allocation and two-
dimensional arrays [Bur03]. Additionally, due to the
sheer volume of pixel data (a standard image contains
hundreds of thousands of pixels), students are required
to produce generalized algorithms for pixel calculations;
“hard coding” solutions is not tractable [MV05]. In ad-
dition to these important concepts, using a problem-
based learning model further highlights the necessity of
complex programming techniques. And computer
graphics has been shown to be an effective tool in teach-
ing computer science in a problem-based approach
[Cun02].

 Previous work involving rendering techniques or im-
age processing in CS1 has been performed on a limited
scale. Some approaches have provided ready-made GUI
environments [AR98], code for function prototypes
[WN05], and pre-written functions [AR98] [Bur03]
[FP97] [Hun03] to handle various types of image ma-
nipulation. Also, image processing is but just one of
several projects used in courses under these approaches.
Our approach for CS2 under � � � � � is unique in at least
two ways. First, instead of using image processing, we
require students to build a rendering system (ray tracer)
as a semester-long project. Second, students are re-
quired to develop all rendering, parsing, manipulation,
and output code without any specialized help, such as a
GUI environment or starter code.

c© The Eurographics Association 2006.

 Davis / Graphics-Based Learning in First-Year Computer Science

4. Course Structure

As mentioned previously, students entering this course
had programmed various image manipulation projects in
CS1 the previous semester. As a result, they had been
introduced to the C language and had experience with
introductory programming concepts. Specifically, they
understood how to output image data in a simple graph-
ics file format, ppm, using redirected I/O from stdout.
Since some of the later projects required image process-
ing, students also learned how to store two-dimensional
image data in one-dimensional arrays using index arith-
metic. Students therefore were not faced with a steep
learning curve to implement the semester-long project in
CS2, a ray tracer.

 The implementation of a ray tracer system is an ideal
pedagogical mechanism for problem-based learning in
our course for several reasons. First, the implementation
of a ray tracer covers a broad range of topics, all of
which must be mastered in order to develop a full-
featured system. Second, the organization of the under-
lying design of the code naturally leads to the object-
oriented paradigm. Finally, and perhaps most impor-
tantly, the system provides visual feedback in the form
of images throughout its development, allowing students
to determine quickly the proper functioning of their pro-
grams, and to express their creativity through scene con-
tent.

 While we have offered a sophomore-level course us-
ing ray tracing as the semester-long project for students
who knew how to program but were just learning C, this
course represents our first experience in bringing the ray
tracer to the freshman level. Indeed, the literature con-
tains few, if any, teaching experiences that have brought
such advanced-level graphics to a first-year course.
Here, our focus is to teach programming concepts to
students for the first time using a graphics-based ap-
proach.

4.1 Project 1 – Basic Ray Tracer

The basic ray tracer required students to construct a pro-
gram with basic capabilities that provided a basis for
future enhancements. Specifically, the program pro-
duced a single red sphere with ambient, diffuse, and
specular lighting contributions. The target image is
shown in Figure 1.

 This project afforded several opportunities for teach-
ing programming concepts. First, continuing from their
experiences in the preceding semester, students gained
further experience in using non-trivial operators, includ-
ing trigonometric functions, to compute ray/sphere inter-
sections and lighting contributions. Additionally, re-
viewing mathematical concepts involving vectors and
their associated operations (e.g., dot product), plunged
students into mathematics from the start, which was use-

ful not only for this course, but most probably will be for
future computer science courses as well.

 Students also learned more about programming with
functions, as they found vector operations, such as nor-
malize, add, subtract, and dot product, used so widely
that they warranted functions simply to reduce typing.
These kinds of discoveries often produce longer-term
retention since students must invent their own solutions
to self-imposed problems. Classroom discussion of
functions and their parameters allowed additional review
of pointers for variable parameters. As pointers are one
of the most difficult concepts for students to grasp, any
opportunity for additional discussion is welcome.

 Another requirement of this project, and projects fol-
lowing, was the use of header files. These files naturally
led to a discussion of preprocessor directives, such as
#define and #ifndef, to prohibit multiple header
file inclusion. More important, however, was the in-
struction on user-defined types.

 Although CS1 introduced students to the typedef
concept, they had no experience in constructing complex
data types, e.g., structures within structures. Geometric
primitives, such as spheres, within the ray tracer pro-
vided an ideal platform upon which to build complex
data. Figure 2 shows an object type. Note that we have
basic data types, including POINT_T, COLOR_T, and
SPHERE_T, and that SPHERE_T includes fields of the
other types. At this point, students were just beginning
to understand how to construct more complex data,
which was further developed in project 2.

Figure 1: Project 1 result

c© The Eurographics Association 2006.

Davis / Graphics-Based Learning in First-Year Computer Science

4.2 Project 2 – Intermediate Ray Tracer

With the introduction of multiple objects, including a
new plane primitive, project 2 required students to ex-
tend their data types from project 1. First, to handle
multiple primitives and/or multiple lights, the students
were required to become familiar with arrays of struc-
tures. As each object needed only the fields associated
with its own geometry type, unions were introduced,
along with a more in-depth discussion of machine mem-
ory. The new object data structure is shown in Figure 3.

 Further, the concept of function pointers was intro-
duced to ease the coding of primitive-specific imple-
mentation, such as intersection testing. That is, when a
ray is tested for intersection with all objects in the scene,
it must undergo an intersection test with each primitive
type (e.g., sphere or plane). Since each of these intersec-
tion test functions are differently coded according to ge-
ometry, the program would normally be required to
know the primitive type (often implemented with a
switch statement) in order to call the appropriate func-
tion. Function pointers allow the correct function to be
registered at the start of the program, such that individ-
ual intersection tests could be called in the same way for
all primitives.

 The target scene for project 2 is shown in Figure 4.
Note that the plane is procedurally textured with a
checkerboard pattern. While not only adding interest to
the project, the checkerboard texture provided an oppor-
tunity to introduce binary operations. The checkerboard
pattern is a three-dimensional procedural texture that
colors alternating unit cubes with the same color. Ac-
cordingly, the checkerboard color of the point (x, y, z) on
the plane is given by the expression in Figure 5.

 Two additional topics rounded out project 2: two-
dimensional arrays and file output. The former required
that students explore multidimensional arrays to store
image data and perform antialiasing in the form of su-
persampling the image. As each element represented an
RGB color, the array promoted additional practice with
complex data. The latter requirement involved transi-
tioning the ray tracer from redirecting stdout to the
proper use of I/O (FILE) data operations to save the
ppm image. This topic also included file input, which
was part of project 3.

4.3 Project 3 – Advanced Ray Tracer

At this point, student ray tracers were ready to handle a
variety of scenes, not only a single hard-coded environ-
ment. The obvious way to allow this flexibility was to
create a simple scene description language that the ray
tracer could read, and then render the corresponding im-
age. This feature allowed students not only additional
experience with file operations, but also with string

typedef struct object {
 COLOR_T color;

 union {
 SPHERE_T sphere;
 PLANE_T plane;
 } geometry;

 int (*intersect)(struct object *obj,
 RAY_T ray);
} OBJECT_T;

typedef struct {
 double red, green, blue;
} COLOR_T;

typedef struct {
 double x, y, z;
} POINT_T;

typedef struct {
 POINT_T center;
 double radius;
 COLOR_T color;
} SPHERE_T;

Figure 2: Project 1 data types

Figure 3: Project 2 data types

if ((floor(x) + floor(y) + floor(z)) && 1)
 color = white

else
 color = black

Figure 5: Checkerboard expression

Figure 4: Project 2 result

c© The Eurographics Association 2006.

 Davis / Graphics-Based Learning in First-Year Computer Science

processing, as tokens in the file were represented as
strings. Another possible avenue for file input included
reading in ppm files for texture mapping; however, we
did not pursue this option due to time constraints.

 As the number of objects read from a file was arbi-
trary, students were naturally confronted with the prob-
lem of dynamic storage. In dealing with this issue, dy-
namic memory allocation and linked lists were covered
in class. Students implemented solutions using malloc
and pointers with the solid understanding of exactly why
they were doing so!

 Finally, recursion was introduced to handle reflection
in ray tracing. Since reflected rays are subjected to the
same set of intersection tests as a first-level ray, the al-
gorithm is naturally recursive. Using the ray depth as a
stopping condition is also intuitive as students under-
stand the nature of ray tracing at this stage.

4.4 Project 4 – C++ Ray Tracer

At this point in the course, we transitioned from C to
C++, discussing both the procedural and object-oriented
paradigms. Although we had extremely limited time left
in the semester, we were able to proceed quickly due to
the foundations laid in earlier parts of the course.

 For instance, students were able to pick up the con-
cept of a class quickly since our graphics primitives cor-
respond directly to C++ objects (e.g., sphere). Since we
had required that such objects be place in their own
header/source files, the “objects” were already in place.
Further, the notion of function pointers, used earlier to
call the primitive’s intersection test, provided a graceful
transition into member functions.

 Finally, the user-defined vector type, provided a
good opportunity for demonstrating a tight class with
private data (x, y, z) and a variety of public operations
(e.g., add, subtract, normalize, etc.). These op-
erations further led naturally to operator overloading
(e.g., v1 + v2), which was viewed as a greatly simpli-
fied way to express required operations.

 Students were only required to convert project 1 (Ba-
sic Ray Tracer) to C++; however, some students chose
to go further.

5. Conclusion and Future Work

Given the relatively small number of graphics primitives
available in the ray tracer, students produced a surpris-
ingly creative set of images (see example images in Fig-
ure 6). As evidenced by course evaluations, quality of
work, and enthusiasm, students appeared to be much
more engaged in the course than in previous semesters.
One advantage typically cited was the visual feedback
provided by the ray-traced images. Also, students

tended to prefer working on a project they could use or
show off after the course ended, over more traditional
projects. Students also routinely went above and beyond
the requirements of the projects to produce more ad-
vanced effects (such as 3D red/blue images).

 Although overall the course ran smoothly, we do rec-
ognize some areas for improvement in future semesters.
First of all, although part of our goal was for students to
learn to program without a great deal of supplied starter
code, some students fell behind and were not able to
complete the final version of the ray tracer. Perhaps in-
termediate baseline code could be made available in fu-
ture offerings of the course. Also, we would like to im-
prove the introduction of the ray tracer to the students,
such that the learning curve can be relaxed.

During the trial period, we offered two sections of CS2
(approximately 20 students in each section) per year:
one using the � � � � � approach and one without. Students
were originally placed in the � � � � � program randomly,
but once they began with the approach, they had to con-
tinue with it through their second years. In terms of in-
structors, most � � � � � courses thus far have been taught
by professors and graduate students with backgrounds in
computer graphics. We have already begun to indoctri-
nate non-graphics faculty. To ease this process, we
work closely with them on their first preparation and
provide extensive web-based resources as well. Our
goal is that any faculty member would be able to teach a

� � � � � course without significant problems.

Acknowledgments

This work was supported by the CISE Directorate of the
U.S. National Science Foundation under award EIA-
035318.

References

[AR98] ASTRACHAN, O., AND RODGER, S. H. Ani-
mation, visualization, and interaction in
CS1 assignments. SIGCSE Bulletin, 30(1),
1998, 317-321.

[Bur03] BURGER, K. R. Teaching two-dimensional
array concepts in Java with image process-
ing examples. SIGCSE Bulletin, 35(1),
2003, 205-209.

[Cun02] CUNNINGHAM S.: Graphical problem solv-
ing and visual communication in the be-
ginning computer graphics course, ACM
SIGCSE Bulletin, 34(1), 2002, pp. 181-
185.

[DGMW04] DAVIS T., GEIST R., MATZKO S., WESTALL
J.: � � � � � : A first step, ACM SIGCSE Bul-
letin, 36(1), 2004, pp. 125-129.

c© The Eurographics Association 2006.

Davis / Graphics-Based Learning in First-Year Computer Science

[DGA01] DUCH B., GRON S., ALLEN D.: The power
of problem-based learning, Stylus Pub-
lishing, LLC, Sterling, VA, 2001.

[FP97] FELL, H. J., AND PROULX, V. K. Exploring
Martian planetary images: C++ exercises
for CS1. SIGCSE Bulletin, 29(1), 1997,
30-34.

[Hun03] HUNT, K. Using image processing to teach
CS1 and CS2. SIGCSE Bulletin, 35(4),
2003, 86-89.

[Mar97] MARTINEZ M.: Designing intentional
learning environments, Proceedings of the
15th Annual International Conference on
Computer Documentation, ACM Press,
1997, pp. 177-178.

[MD06-1] MATZKO, S. AND DAVIS T.: Teaching CS1
with graphics and C, ACM SIGCSE Bulle-
tin, 38(3), 2006 [to appear].

[MD06-2] MATZKO, S. AND DAVIS, T.: Using graphics
research to teach freshman computer sci-

ence, SIGGRAPH 2006 (Educators Pro-
gram), 2006 [to appear].

[MV05] M CANDREW, A., AND VENABLES, A.: A
"secondary" look at digital image process-
ing. SIGCSE Bulletin, 37(1), 2005, 337-
341.

[Mor98] MORDECHAI B-A.: Constructivism in
computer science education, Proceedings
of the 29th SIGCSE Technical Symposium
on Computer Science Education, 1998, pp.
257-261.

[RAG01] REINHARD, E., ASHIKHMIN, M., GOOCH, B.,
AND SHIRLEY, P. Color Transfer between
Images. IEEE Computer Graphic and Ap-
plications, 21(5), 2001, 34-41.

[WN05] WICENTOWSKI, R., AND NEWHALL, T.: Us-
ing image processing projects to teach
CS1 topics. SIGCSE Bulletin, 37(1), 2005,
287-291.

Figure 6: Student images

c© The Eurographics Association 2006.

