
EUROGRAPHICS 2013 / M.- A. Otaduy, O. Sorkine Short Paper

Real-Time High Fidelity Inverse Tone Mapping for Low

Dynamic Range Content

Francesco Banterle1, Alan Chalmers2, and Roberto Scopigno1

1 Visual Computing Laboratory, ISTI-CNR, Italy
2 Visualisation Group, WMG, University of Warwick, UK

Abstract

In this paper, we present a novel parallel implementation of a high fidelity inverse tone mapping operator. Our

method makes use of point based graphics to accelerate density estimation, and multi-core CPUs for extracting

light sources. We show that our method can achieve real-time performance on a lower-end graphics card, with

minimum loss of quality.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]:

Enhancement—I.3.3 [Computer Graphics]: Picture/Image Generation—Bitmap and framebuffer operations

1. Introduction

High Dynamic Range (HDR) image capturing is now be-

coming more common-place, including now being standard

on DSLRs, compact cameras and even mobile devices. Al-

though many problems have been solved for static HDR im-

age, such as moving objects, compression etc., many chal-

lenges still remain, especially for HDR video. There are a

few prototypes of HDR video-cameras such as the HDRv

by SpheronVR [CBB∗09], the AMP-HDR system by Con-

trast Optical [TKTS11], the RED HDRx (www.red.com),

etc. However, their costs make them unaffordable except

for a few specific high-standard applications, such as cine-

matography.

Despite the growth in HDR content, the vast majority of

legacy footage is Low Dynamic Range (LDR). This paper

addresses the problem of expanding or inverse/reverse tone

mapping (iTM/rTM) LDR videos in real-time at High Def-

inition (HD) resolution (1920× 1080) by exploiting multi-

core CPUs and graphics hardware. This enables the LDR

content to be played on an available HDR display, providing

an enhanced viewing experience.

2. Related Work

Recently, researchers have focused on developing new mod-

els for extending the dynamic range of LDR content in order

for it to be used in applications such as Image Based Light-

ing (IBL) or for viewing on HDR displays.

Inverse Tone Mapping Operators (iTMOs) can be classified

based on image processing techniques they use. For exam-

ple, global operators [MAF∗09] (the same expansion func-

tion for all pixels), or local operators [RTS∗07] (the expan-

sion function varies depending on the content). Reinhard et

al. [RWP∗10] and Banterle et al. [BADC11] provide good

overviews on this topic.

In this work, we propose a novel implementation of the

Banterle et al.’s method [BLDC08] (BiTMO). This method

does not work in real-time, but it can be applied automati-

cally to videos [BLDC08] and it can generate content that

is close to the reference HDR content in terms of percep-

tion [BLD∗09].

2.1. The iTMO method used

In this section, we present more in depth the Banterle et al.’s

operator, see its pipeline in Figure 1.

Luminance Boosting. The first step is to linearise the signal

(using the camera response function or removing gamma).

The linearised image is then expanded using the inverse of

photographic operator [RSSF02], which provides a control-

lable non-linear expansion curve. This is defined as

Lw(x)=L2
whiteβ

(

Ld(x)−1+

√

(

1−Ld(x)
)2

+
4

L2
white

Ld(x)

)

(1)

c© The Eurographics Association 2013.

DOI: 10.2312/conf/EG2013/short/041-044

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2013/short/041-044

F. Banterle et al. / Real-Time High Fidelity Inverse Tone Mapping for Low Dynamic Range Content

Figure 1: The full pipeline of the Banterle et al.’s operator [BLDC08].

where Lw(x) is the expanded luminance at pixel x, Ld(x) is

the input linearised LDR luminance, Lwhite determines the

stretching of the curve, and β is a parameter and determines

the desired maximum luminance output.

Expand Map Computation. As the first step, light source

samples are extracted using a sampling algorithm, e.g.

median-cut. Then, a smooth field, Λ, is generated using the

density estimation as

Λ(x,rs) =
1

|Ω|V (Ω) ∑
p∈P

K

(

‖x−yp‖

rmax

)

Ψp (2)

where x is the position of the current pixel to evaluate, Ω

is the set of samples inside the sphere (x,rs), V is the vol-

ume of Ω, Ψp is the power of the p-th sample, and K is a

smoothing kernel. During sampling a few isolated samples

can be generated due to the presence of large low luminance

areas. These can produce isolated outliers, i.e. areas that do

not need to be expanded. This issue can be solved by clamp-

ing which sets void the density estimation, if ‖Ω‖ < nsmin

where nsmin is a threshold.

Composition. Once the Λ is computed and filtered using

the cross-bilateral filter, the expanded values, Lw(x), and

linearised LDR luminance values, Ld(x), are linearly inter-

polated obtaining the final luminance values using Λ(x) as

weights.

3. Algorithm

The main idea of the algorithm proposed in this paper is to

split computations of BiTMO between a multi-core CPU and

a GPU. We achieved this by leaving the pure image process-

ing computations to the GPU such as: linear interpolation,

range expansion, linearisation, density estimation, and bi-

lateral filter. The remaining computations, the extraction of

light sources, and the flow control, we kept on the CPU.

Figure 2 shows the work-flow how we re-organised the

operation in the BiTMO pipeline Figure 1 for parallel exe-

cution. The generation of each image/frame has two CPU

threads. The first one, the top thread in Figure 2, simply

calls GPU image processing functions and the density es-

timation. The second thread, the bottom thread in Figure 2,

computes the median-cut sampling algorithm and stores the

results in the light source samples buffer. This buffer is the

input for the density estimation, and samples are stored as

vertex buffers ready to be used by the GPU. This thread is

running asynchronously to the first one and it is typically at

least 5-8 frames ahead in order to buffer the results. In ad-

dition, there is an extra thread that feeds the video frames

buffer, loading frames of the video from the hard drive.

We decided to use the classic graphics pipeline for our

novel implementation of BiTMO. The main reason for doing

so is that most of the operations can be mapped on this model

in a straightforward way.

3.1. Image Processing Operations

Most of the operations of the iTMO are straightforward to

implement on the GPU through writing a shader which eval-

uates a point-wise function. These operations include:

• linearisation: which is the application of a gamma func-

tion, in the best case, or an evaluation of a quintic polyno-

mial applied to the current colour value.

• range expansion: which is the evaluation of a simple non-

linear equation, see Equation 1.

• linear interpolation: which is a linear interpolation be-

tween the linearised image and the expanded one using

the expand map as interpolation weight.

Note that the range expansion and linear interpolation can

be performed in a single pass without the need to calculate

them separately.

The most computational demanding image processing

step of the algorithm is the cross bilateral filter, for reduc-

ing artifacts of the expand map around edges. This filter has

a high complexity, O(k2), where k is the size of the kernel

in pixels. We used an approximation algorithm [BCCS12]

in order to speed-up this test. This approximation is GPU-

friendly, efficient, and it does not require a large amount of

extra memory for filtering. In our experiments, we used as

c© The Eurographics Association 2013.

42

F. Banterle et al. / Real-Time High Fidelity Inverse Tone Mapping for Low Dynamic Range Content

Figure 2: The computation flow showing the co-operation between CPU and GPU threads for the iTMO. The first thread (top) is the CPU

control of the program. The second thread (middle) is a thread which launches GPU operation in Direct3D. The third thread (bottom) computes

median-cut sampling algorithm. In the case of videos, the samples are computed for 5-8 frames ahead and they are stored in a buffer.

filter parameters σs = 4 (the spatial parameter) and σr = 0.2

(the range parameter). These parameters were chosen after

pilot experiments; they allow to transfer strong edges.

3.2. Point-Based Density Estimation

Figure 3: An example of density estimation on a GPU using Cone

and Gaussian kernel applied to Bristol Bridge image (image is cour-

tesy of Greg Ward): a) The input LDR image. b) Density estimation

using a Cone kernel. c) The Cone kernel with α = 1 used in b) in

the domain [−1,1]× [−1,1]. d) Density estimation using a Gaussian

kernel. e) The Gaussian kernel with σ = 1 used in d) in the domain

[−3,3]× [−3,3].

The density estimation on the CPU is typically computed

in two steps. Firstly, for each evaluation point samples are

gathered using a spatial query. Samples can be stored in a

kD-tree or other spatial data structures. Secondly, Equation

2 is evaluated using the gathered samples.

To write a GPU spatial data structure is not a difficult task.

However, a much simpler approach is to exploit the rasteriser

power of drawing primitives in a fast way, especially for sim-

ple primitives such as points. Therefore, we redesigned the

density estimation. The idea is to render a textured point for

each light source sample, where the size of the point is equal

to the radius rs. This covers all pixels under the influence of

that sample. The texture used for these points is a discretised

smoothing kernel used in Equation 2, which allows to per-

form filtering, see Figure 3. Furthermore, the accumulation

of values, when two points are overlapped, is achieved by

disabling the Z-buffer and enabling the alpha blending. Fi-

nally, the implementation on a GPU is straightforward, be-

cause there are only two steps to compute: load samples into

a vertex buffer, and render points from the vertex buffer us-

ing a short shader.

3.2.1. Extension to Videos

The method described before is designed for 2D still im-

ages, but the extension to videos requires only a few modifi-

cations. The first step is to add samples from backward and

forward frames to the vertex buffer used for rendering. Fur-

thermore, each sample in the vertex buffer has an attribute

t ∈ [−5,5], which identifies the frame of the sample, where

t = 0 is the current frame. The second step is to discretise the

3D smoothing kernels. The idea is to store each slice in time

of the 3D kernel into a 3D texture. When textured points

are rendered, the access to the correct time slice of the 3D

texture is achieved using the extra attribute t added to each

sample. Note that the CPU version needs all frames to create

the 3D-tree used for the spatial query. The GPU implemen-

tation needs only a few backward and forwards frames, up to

5, which makes it suitable for real-time streaming of content

with buffering.

3.2.2. Light Sources Samples Clamping

On the CPU, to discard the density evaluation, if clamping is

needed, is straightforward. The spatial radius query for gath-

ering samples returns the number of samples in the volume.

However, this process can be less intuitive on the GPU using

the graphics pipeline. One solution would be to count sam-

ples using the alpha channel. Therefore, clamping needs a

second pass for discarding evaluations. This solution slows

down performance, because we need extra memory and a

second pass for checking the counting. A more efficient solu-

tion is precomputed clamping which is directly performed on

samples. For each sample x, Ω=
{

y : ‖x−y‖< 2rs

}

is com-

puted. Then, the number of samples in Ω is tested if there is

enough for a density estimation in its area, |Ω| ≥ nsmin.

4. Results

We evaluated our novel GPU implementation against a CPU

version of BiTMO for still images and videos. While the

CPU version was implemented in C++ and optimized using

c© The Eurographics Association 2013.

43

F. Banterle et al. / Real-Time High Fidelity Inverse Tone Mapping for Low Dynamic Range Content

OpenMP, the GPU one was implemented in C++ using Di-

rect3D9c for accessing the GPU capabilities and Boost for

threading management. Both versions were timed on an In-

tel Extreme Quad core at 2.4 Ghz (only three threads were

used), with 2Gb of main memory, and a GeForce 8800GTX

with 768 Mb of memory under Windows XP-32 SP3.

Resolution CPU GPU CPUv GPUv

360×240 510 10.49 990 11.92

720×480 1850 14.30 3560 16.40

1280×720 7730 18.58 11680 21.01

1920×1080 26930 32.69 29270 35.16

Table 1: The timing results of the performance of the CPU and

GPU algorithm for static images and videos (v) in milliseconds (ms).

The CPU and GPU versions were timed for still images

and videos. The timing results are shown in Table 1. As can

be seen the GPU version can achieve on average 28.44 fps

(never dropping under 24 fps) at high definition (HD) resolu-

tion (1920×1080) while the CPU version can only achieve

1 fps at low resolution (360×240). The main bottleneck of

this implementation is the low band for transferring frames

from the main memory to the GPU’s one. This can be an is-

sue for images larger than HD resolution because less mem-

ory is available for buffering the video stream. However, the

algorithm can expand content in real-time for DVDs and HD

content which are, at the time of writing, the standard for

digital entertainment. Note that the difference between the

GPU version for still images and videos is quite small, on

average 7-8fps. This is due to the fact that more samples in

the density estimation are used, on average 8 times more for

frame in the sequence in Table 1. Finally, our novel parallel

implementation achieves large speed-ups, e.g. it is 809 times

faster than CPU version using HD content.

Figure 4: An example of HDR-VDP comparison between frames

of an HD video generated using the CPU version of the algorithm

and our novel method. The HDR-VDP error is less than 1%.

Finally, we tested the quality of this approximation

compared to the original method. We employed HDR-

VDP [MDMS05] a popular metric for assessing images

against a reference image in HDR. From our experiments,

we found out that on average the HDR-VDP is less than 1%

for P(X) = 0.75 (the percentage of pixels in the image that

the human-eye can spot as different in the whole image with

a probability of 75%), see Figure 4.

5. Conclusions and Future Work

We proposed a novel parallel implementation of the Ban-

terle et al. [BLDC08] algorithm for producing high fidelity

inverse tone mapped content for still images and videos. We

modified the original algorithm to efficiently exploit the per-

formance of GPUs. Despite these modifications, the quality

has not significantly changed compared to the original algo-

rithm. The new method works in real-time for HD content

even on old graphics hardware. Performance on this hard-

ware obtained large speed-ups compared to the CPU imple-

mentation.

References

[BADC11] BANTERLE F., ARTUSI A., DEBATTISTA K.,
CHALMERS A.: Advanced High Dynamic Range Imaging: The-

ory and Practice, first edition ed. AK Peters, Ltd, 2011.

[BCCS12] BANTERLE F., CORSINI M., CIGNONI P., SCOPIGNO

R.: A Low-Memory, Straightforward and Fast Bilateral Filter
Through Subsampling in Spatial Domain. Computer Graphics

Forum 31, 1 (2012).

[BLD∗09] BANTERLE F., LEDDA P., DEBATTISTA K., ARTUSI

A., BLOJ M., CHALMERS A.: A psychophysical evaluation of
inverse tone mapping techniques. Computer Graphics Forum 28,
1 (March 2009), 13–25.

[BLDC08] BANTERLE F., LEDDA P., DEBATTISTA K.,
CHALMERS A.: Expanding low dynamic range videos for high
dynamic range applications. In SCCG ’08: Proceedings of the

4th Spring Conference on Computer Graphics (New York, NY,
USA, 2008), ACM, pp. 349–356.

[CBB∗09] CHALMERS A., BONNET G., BANTERLE F., DUBLA

P., DEBATTISTA K., ARTUSI A., MOIR C.: High-dynamic-
range video solution. In ACM SIGGRAPH ASIA 2009 Art Gallery

& Emerging Technologies: Adaptation (New York, NY, USA,
2009), SIGGRAPH ASIA ’09, ACM, pp. 71–71.

[MAF∗09] MASIA B., AGUSTIN S., FLEMING R. W., SORKINE

O., GUTIERREZ D.: Evaluation of reverse tone mapping through
varying exposure conditions. ACM Trans. Graph. 28, 5 (2009),
1–8.

[MDMS05] MANTIUK R., DALY S., MYSZKOWSKI K., SEIDEL

H.-P.: Predicting visible differences in high dynamic range im-
ages - model and its calibration. In Human Vision and Electronic
Imaging X, IST SPIE’s 17th Annual Symposium on Electronic

Imaging (2005), Rogowitz B. E., Pappas T. N., Daly S. J., (Eds.),
vol. 5666, pp. 204–214.

[RSSF02] REINHARD E., STARK M., SHIRLEY P., FERWERDA

J.: Photographic tone reproduction for digital images. ACM

Trans. Graph. 21, 3 (2002), 267–276.

[RTS∗07] REMPEL A. G., TRENTACOSTE M., SEETZEN H.,
YOUNG H. D., HEIDRICH W., WHITEHEAD L., WARD G.:
Ldr2hdr: on-the-fly reverse tone mapping of legacy video and
photographs. ACM Trans. Graph. 26, 3 (2007), 39.

[RWP∗10] REINHARD E., WARD G., PATTANAIK S., DEBEVEC

P., HEIDRICH W., MYSZKOWSKI K.: High Dynamic Range
Imaging, Second Edition: Acquisition, Display, and Image-Based

Lighting (The Morgan Kaufmann Series in Computer Graphics).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2010.

[TKTS11] TOCCI M., KISER C., TOCCI N., SEN P.: A Versatile
HDR Video Production System. ACM Transactions on Graphics

30, 4 (2011).

c© The Eurographics Association 2013.

44

