
EUROGRAPHICS 2013 / M.- A. Otaduy, O. Sorkine Short Paper

Accelerating kd-tree searches for all k-nearest neighbours

B. Merry, J. Gain and P. Marais

Department of Computer Science, University of Cape Town
South African Centre for High Performance Computing

Abstract
Finding the k nearest neighbours of each point in a point cloud forms an integral part of many point-cloud pro-
cessing tasks. One common approach is to build a kd-tree over the points and then iteratively query the k nearest
neighbors of each point. We introduce a simple modification to these queries to exploit the coherence between suc-
cessive points; no changes are required to the kd-tree data structure. The path from the root to the appropriate leaf
is updated incrementally, and backtracking is done bottom-up. We show that this can reduce the time to compute
the neighbourhood graph of a 3D point cloud by over 10%, and by up to 24% when k = 1. The gains scale with
the depth of the kd-tree, and the method is suitable for parallel implementation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Object hierarchies

1. Introduction

The “all k-nearest neighbours problem” (AKNN) can be de-
fined as follows: given a set of points in space and a number
k, find the k nearest points to each of the given points. It is
a special case of the k-nearest neighbours (KNN) problem,
where the input point cloud is also the set of query points.
AKNN is a standard tool in point-cloud processing tasks, in-
cluding density estimation, normal estimation, smoothing,
surface reconstruction and others [CK10]. It is computa-
tionally intensive and often dominates the execution time of
point-cloud processing tasks [SSV07]. We review previous
work on the AKNN problem in Section 3.

A kd-tree can be used to solve the AKNN problem by
making N independent KNN queries. Section 2 defines kd-
trees and outlines our implementation of them. Our contribu-
tion, presented in Section 4, is a simple modification to this
approach. We process the points in a spatially-coherent or-
der, which allows some information computed in each query
to be re-used for the following query. The modification is
general and can be combined with other variations of the
problem, such as finding approximate nearest neighbours.
The results show a significant reduction in the total time.

2. kd-Trees

A kd-tree is a tree structure where each node corresponds to
a rectangle: in d-dimensional space, a rectangle is the prod-

uct of d closed intervals on the coordinate axes. Each internal
node has an axis-aligned hyperplane that splits the rectangle;
the two sub-rectangles thus formed are associated with the
two child nodes. Each point in a point cloud is stored in a
leaf whose rectangle contains it. As there is a large body of
literature on kd-trees, we will not attempt to review it here.
The interested reader is referred to Elseberg et al. [EMSN12]
for a comparison of several kd-tree implementations.

A kd-tree can be used to accelerate k-nearest neigh-
bour queries [FBF77], using ball-rectangle intersection tests.
Given a query point p and k candidate neighbours, we can be
sure that the true k-neighbourhood will be found inside a ball
centred on p and passing through the current kth-nearest can-
didate. When searching for better candidates, a node which
does not intersect this ball can be skipped without consider-
ing any of its children. Figure 1 shows a 2D example, where
k = 2. While searching for a neighbour for p, we have iden-
tified n1 and n2 as candidates. We can ignore any points that
lie outside the circle shown, allowing the left subtree of the
root to be pruned.

Constructing the tree A kd-tree is constructed recursively,
by repeatedly splitting a node into two children and dis-
tributing corresponding points to the appropriate children.
A splitting rule determines the axis and position of the split-
ting plane for each internal node. We have used the sliding

c© The Eurographics Association 2013.

DOI: 10.2312/conf/EG2013/short/037-040

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2013/short/037-040


B. Merry, J. Gain & P. Marais / Accelerating kd-tree searches for all KNN

p

n1
n2

Figure 1: Search for neighbours in a kd-tree.

Internal node

Leaf node

Point index

Figure 2: A flattened kd-tree. The red arrows are implicit
pointers to the left child, while other arrows are explicitly
encoded array indices. Each leaf node additionally encodes
the size of its bucket.

midpoint rule, which has good theoretical and practical per-
formance for nearest-neighbour searches [MM99].

Elseberg et al. [EMSN12] have obtained high perfor-
mance in their kd-tree library (libnabo) by keeping the
nodes as small as possible. We have closely followed their
design, where each node is represented with only 8 bytes.
The nodes are stored as a flat array, ordered by a pre-order
walk (see Figure 2), so it is not necessary to store a pointer
to the left child as it will always be adjacent in memory.

To take advantage of a multi-core CPU, we construct the
tree in parallel: initially only smaller subtrees are stored in
flat arrays, with the top levels of the tree linked together by
“super-nodes” (Figure 3) that contain pointers. The separate
flat arrays are produced in parallel, then stitched together
in a subsequent pass. Further details may be found in our
technical report [MGM13].

Super-node

Internal node

Leaf node

Point index

Figure 3: Hybrid kd-tree. Each super-node is allocated sep-
arately. Each connected piece of internal and leaf nodes is a
separate array that is produced as a serial task.

Finding nearest neighbours To reduce the number of com-
putations needed to find the distance between the query point
and a rectangle, we use incremental distance computations
[AM93]. While processing a node N, we store the minimum
squared distance between p and N, as well the portion of this
squared distance along each axis. When moving to a child
of N, we update the per-axis squared distance correspond-
ing to the splitting hyperplane, and use the change in this
value to incrementally update the total squared distance. We
briefly experimented with visiting leaves strictly in order of
increasing distance (priority search [AM93]), but found that
the overhead of maintaining the priority queue exceeded the
gains from examining fewer leaves.

We store candidate neighbours in a sorted array rather
than a binary heap as the former is more efficient for small
k [EMSN12], which is typically the case for point-cloud pro-
cessing tasks.

3. Related work

In this section we will focus on the AKNN problem, as
the whole field of nearest-neighbour techniques is too broad
to be reviewed here. However, we will mention one tech-
nique that forms the basis for our contribution. Nüchter et al.
[NLH07] use kd-trees to answer nearest-neighbour queries
in the Iterated Closest Point (ICP) algorithm. They note
that each query is typically quite close to the correspond-
ing query from the previous iteration of the algorithm. To
exploit this, they modify the query procedure to return both
the closest point and the leaf node that contains it. On the
next query, the search is started in this leaf node, and back-
tracking is implemented explicitly using pointers in the tree
to parent nodes, rather than top-down using recursion.

Connor and Kumar [CK10] sort the input points along a
space-filling curve, which places points close to many of
their neighbours. For each point, they obtain a candidate
neighbourhood by testing O(k) elements to either side in the
sorted list. The candidate is then refined by finding a conser-
vative range to search and recursively subdividing it, prun-
ing sub-ranges when they provably contain no nearest neigh-
bours. Their implementation also parallelises the queries.

The AKNN problem has also been studied in the con-
text of databases, where it is generalised to the “k-nearest
neighbour join”: for each point in one set, find the k near-
est neighbours in another set. Böhm and Krebs [BK04] and
Xia et al. [XLOH04] consider the problem from the perspec-
tive of I/O scheduling, but each neighbourhood is still com-
puted independently. Sankaranarayanan et al. [SSV07] im-
prove the search by using the neighbourhood of the previous
point as an initial candidate for the neighbourhood of the cur-
rent point. This gives an upper bound on the search radius,
and they further modify the search to avoid re-searching the
space occupied by the previous neighbourhood.

c© The Eurographics Association 2013.

38



B. Merry, J. Gain & P. Marais / Accelerating kd-tree searches for all KNN

N0

N1

S2

prev p

N2

N3

p
S3

S1

Figure 4: Primary path update. The gray nodes belong only
to the old primary path, and are popped (bottom-up). The
blue nodes are then pushed (top-down) until reaching Nm.

4. Exploiting coherence

Once a kd-tree has been constructed, a naïve approach to
solving the all k-nearest neighbours problem is to perform
an independent search for each point against the tree. This
is sub-optimal, because it discards information determined
for one point which can be reused for nearby points. Our
approach is based on the work of Nüchter et al. [NLH07],
but adapted to the all k-nearest neighbours problem. In par-
ticular, our approach does not store parent pointers in the
kd-tree.

We iterate over the query points in the kd-tree order,
which gives good spatial coherence. Given a query point p,
let P = {N0, . . . ,Nm} be the path through the kd-tree from
the root (N0) to the leaf containing p (Nm), as shown in Fig-
ure 4. We will call this the primary path. Let Si be the sibling
of Ni. If we expand the recursive calls from a standard search
that follow the primary path, we find that we first visit Nm
and then the subtrees rooted at Sm,Sm−1, . . . ,S1. This corre-
sponds to lines 7–13 in Algorithm 1.

To exploit coherence, we compute the primary path in-
crementally, starting with the primary path for the previous
query. We pop nodes that do not contain p until we are left
with a prefix of the primary path, and then complete this par-
tial path by walking down the tree as usual (Figure 4). This
is shown in lines 1–6. Each node is pushed once and popped
once (due to the queries being made in kd-tree order), so this
takes amortized O(1) time per query.

We also exit the search early if the rectangle associated
with node Ni completely contains the ball centred at p and
passing through the kth-nearest candidate — the so-called
“ball-within-bounds” test [FBF77] (line 10). This test could
also be applied to the naïve search. We found that applying it
there reduced performance, while it increased performance
in our incremental implementation.

To implement these operations efficiently, we need to as-
sociate some extra fields with each node: the range of node
indices for the descendants of the node, and the rectangle
corresponding to the node. It is not necessary to store these

Algorithm 1: Bottom-up backtracking. FindKNN is a
standard top-down recursive walk. The incremental dis-
tance computations are omitted for clarity; refer to our
technical report for details [MGM13].

Input: Query point p
Input: Leaf L containing p
Input: Primary path P of some point
Output: Neighbourhood of p
Output: Primary path of p

1 while L is not a descendant of P.back do
2 P.pop();
3 while P.back 6= L do
4 Find child C of P.back containing L;
5 Compute rectangle and node range of C;
6 P.push(C);
// P now the primary path of p

7 FindKNN(P.back);
8 foreach Ni in P except the root do // bottom-up
9 if Ni completely contains candidate ball then

10 break;
11 d← dist(p,sibling(Ni));
12 if d < current kth-smallest distance then
13 FindKNN(sibling(Pi));

fields in the kd-tree itself: they are maintained only for the
primary path.

Finally, we multi-thread our implementation by dividing
the buckets into contiguous chunks, and processing each
chunk independently. For the first query point in each chunk
the primary path is computed from scratch rather than incre-
mentally.

5. Results

Experiments were carried out on an Intel Core i7-2600 (4
cores, 3.4 GHz) with 16 GiB of RAM running Ubuntu 12.04.
The code was written in C++ and compiled with GCC 4.6.

Table 1 shows the reduction in total time (including time
taken to build the tree) due to our modified search. For com-
parison, we also show the time taken by the integer version
of STANN 0.74 [CK10]. STANN was not able to process
the Pisa data set as our test machine has insufficient virtual
memory. We have not implemented the scheme of Sankara-
narayanan et al. [SSV07], but a comparison with their re-
ported results suggest that their scheme is not competitive
for in-core use.

Figure 5 shows the improvement against the number of
vertices. In general, larger point clouds benefit more. Large
clouds have deeper kd-trees, and so gain the most from elim-
inating the top-down computation of the primary path.

Our parallelisation is reasonably successful, achieving
about a 4.4–4.6× speedup using 8 threads over 4 cores.

c© The Eurographics Association 2013.

39



B. Merry, J. Gain & P. Marais / Accelerating kd-tree searches for all KNN

Table 1: Data sets and search times with k = 8 and 8 threads. The data sets marked with a (*) are range-scanned point clouds,
while the other models are reconstructed meshes with the connectivity information removed. Build is the time to construct
the kd-tree. Naïve and Backtrack are the times for independent queries and for our method respectively, and Reduction is the
difference between them. Values in parentheses exclude the build time. STANN is the time taken by the STANN library [CK10].
The Armadillo data contains a significant amount of noise and background, while the other range-scanned data sets contain
clean data. We also dropped scans from the Armadillo data set that had no registration information.

Data set Points (×106) Build (s) Naïve (s) Backtrack (s) Reduction (%) STANN (s)

Bunny (*) 0.36 0.02 0.10 (0.08) 0.09 (0.08) 4.6 (5.4) 0.82
Happy Buddha 0.54 0.02 0.14 (0.11) 0.13 (0.10) 6.3 (7.8) 0.97
Turbine Blade 0.88 0.04 0.23 (0.19) 0.21 (0.17) 6.2 (7.5) 1.94
Armadillo (*) 2.93 0.20 0.98 (0.78) 0.88 (0.69) 9.4 (11.7) 6.65
David (2mm) 3.61 0.20 0.99 (0.78) 0.90 (0.70) 8.6 (10.9) 6.89
Lucy 14.03 0.85 3.90 (3.05) 3.47 (2.62) 10.9 (13.9) 27.23
David (1mm) 28.18 1.60 7.67 (6.07) 6.78 (5.18) 11.6 (14.7) 56.42
Pisa (*) 157.43 10.02 48.07 (38.05) 41.81 (31.80) 13.0 (16.4) —

106 107 108

5

10

15

20

25

Vertices

R
ed

uc
tio

n
in

tim
e

(%
)

k = 1
k = 8

k = 16

Figure 5: Improvement over the naïve implementation for
the models listed in Table 1 (including build time). Pisa with
k = 16 is omitted due to lack of memory.

6. Conclusions

We have presented a modification to a standard kd-tree
search that accelerates queries in the all k-nearest neighbours
problem, with the greatest improvements when k is small and
the point cloud is large. The modification is simple to imple-
ment and requires no modifications to the tree structure. It
is also extensible to a number of related techniques, such
as approximate nearest neighbours, searches within a radius
bound, non-Euclidean metrics, user-provided predicates to
exclude certain neighbours, and so on. Our implementation
supports higher dimensions, but the impact of dimension on
performance is unknown.

7. Acknowledgements

The data sets are courtesy of Stanford, Georgia Institute of
Technology and the Digital Michelangelo project. Funding
was provided by the South African Centre for High Perfor-
mance Computing.

References
[AM93] ARYA S., MOUNT D. M.: Algorithms for fast vector

quantization. In Data Compression Conference, 1993. DCC ’93.
(1993), pp. 381–390. 2

[BK04] BÖHM C., KREBS F.: The k-nearest neighbour join:
Turbo charging the KDD process. Knowl. Inf. Syst. 6, 6 (Novem-
ber 2004), 728–749. 2

[CK10] CONNOR M., KUMAR P.: Fast construction of k-nearest
neighbor graphs for point clouds. IEEE Transactions on Visual-
ization and Computer Graphics 16, 4 (July–Aug 2010), 599–608.
1, 2, 3, 4

[EMSN12] ELSEBERG J., MAGNENAT S., SIEGWART R.,
NÜCHTER A.: Comparison of nearest-neighbor-search strategies
and implementations for efficient shape registration. Journal of
Software Engineering for Robotics 3, 1 (Feb 2012). 1, 2

[FBF77] FRIEDMAN J. H., BENTLEY J. L., FINKEL R. A.: An
algorithm for finding best matches in logarithmic expected time.
ACM Trans. Math. Softw. 3, 3 (Sep 1977), 209–226. 1, 3

[MGM13] MERRY B., GAIN J., MARAIS P.: Accelerating kd-
tree searches for all k-nearest neighbours. Tech. Rep. CS13-01-
00, Department of Computer Science, University of Cape Town,
2013. 2, 3

[MM99] MANEEWONGVATANA S., MOUNT D. M.: It’s okay
to be skinny, if your friends are fat. In Center for Geometric
Computing 4th Annual Workshop on Computational Geometry
(1999). 2

[NLH07] NÜCHTER A., LINGEMANN K., HERTZBERG J.:
Cached k-d tree search for ICP algorithms. In Proceedings of
the 6th IEEE International Conference on Recent Advances in
3D Digital Imaging and Modeling (3DIM ’07) (August 2007),
IEEE Computer Society Press, pp. 419–426. 2, 3

[SSV07] SANKARANARAYANAN J., SAMET H., VARSHNEY A.:
A fast all nearest neighbor algorithm for applications involving
large point-clouds. Comput. Graph. 31, 2 (April 2007), 157–174.
1, 2, 3

[XLOH04] XIA C., LU H., OOI B. C., HU J.: GORDER: an
efficient method for KNN join processing. In Proceedings of
the Thirtieth international conference on Very large data bases
(2004), VLDB ’04, VLDB Endowment, pp. 756–767. 2

c© The Eurographics Association 2013.

40


