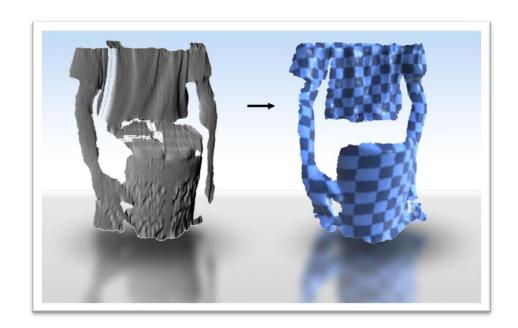


Eurographics 2012

Cagliari, Italy

May 13-18

33rd ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

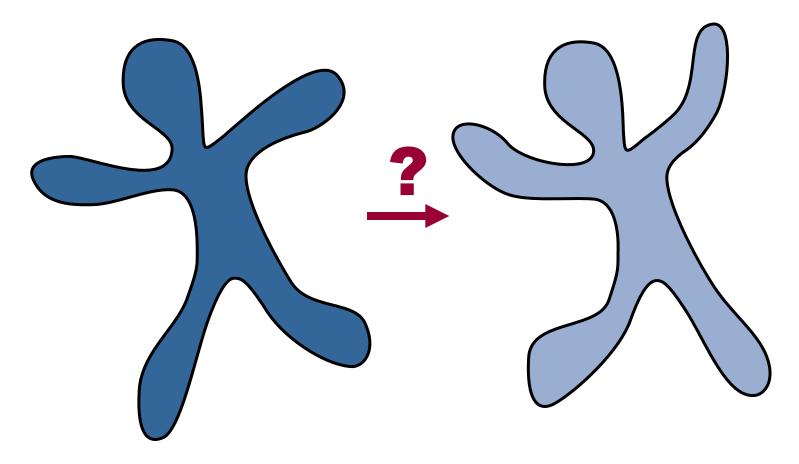


Deformable Sequence Reconstruction

Deformable Shape Matching

Basic Principle

Example



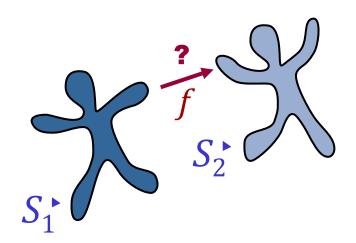
Correspondences?

What are We Looking for?

Problem Statement:

Given:

• Two surfaces S_1 , $S_2 \subseteq \mathbb{R}^3$



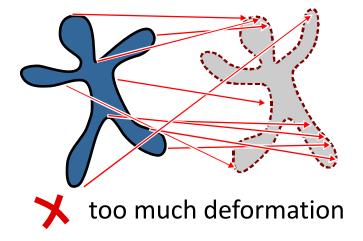
We are looking for:

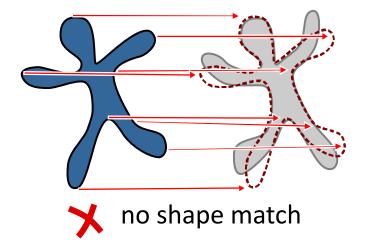
• A *reasonable* deformation function $f: S_1 \to \mathbb{R}^3$ that brings S_1 close to S_2

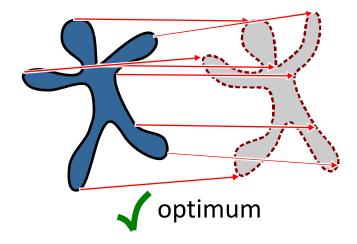
Example



correspondences?



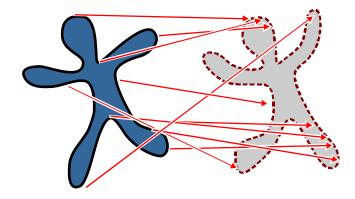




This is a Trade-Off

Deformable Shape Matching is a Trade-Off:

 We can match any two shapes using a weird deformation field



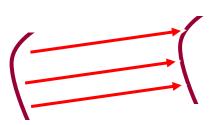
- We need to trade-off:
 - Shape matching (close to data)
 - Regularity of the deformation field (reasonable match)

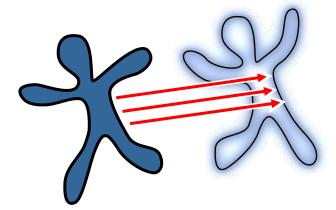
Variational Model

Components:



Deformation / rigidity:





Variational Model

Variational Problem:

Formulate as an energy minimization problem:

$$E(f) = E^{(match)}(f) + E^{(regularizer)}(f)$$

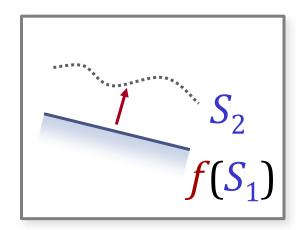
Part 1: Shape Matching

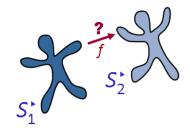
Data Term:

Objective Function:

$$E^{(match)}(f) = dist(f(S_1, S_2))$$

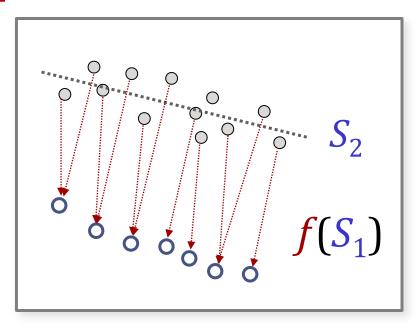
- Distance measures:
 - Least-squares (L₂)
 - Reweighted (robustness)
 - Hausdorf distance
 - L_p -distances, etc.

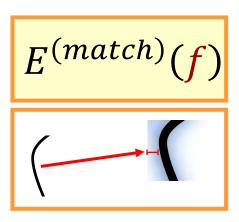




- L₂ measure is frequently used (models Gaussian noise)
 - Reweighting/truncation for robustness

Surface Approximation

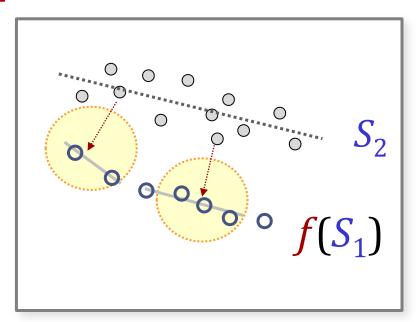


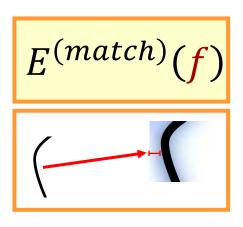


Basic: Closest point matching

- "Point-to-point" energy
- Usually iterated: "Iterated Closest Points (ICP)"
 - Establish nearest-neighbor correspondences
 - Minimize energy (with regularizer)

Surface Approximation

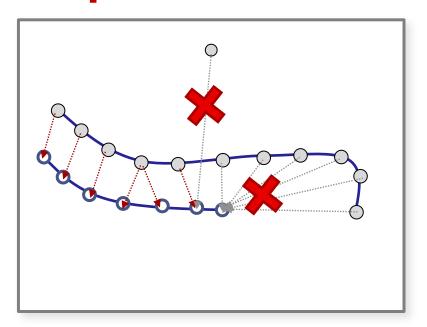


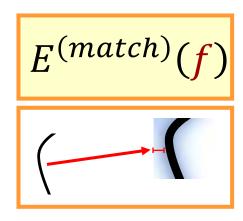


Improvement: Linear approximation

- "Point-to-plane" energy
- Fit plane to *k*-nearest neighbors

Robust Least-Squares





Robustness: Reweighting

- Ignore Outliers
 - Large distance
 - Connection to normal at large angle
 - Many matches to one point

Variational Model

Variational Problem:

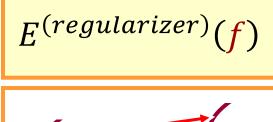
Formulate as an energy minimization problem:

$$E(f) = E^{(match)}(f) + E^{(regularizer)}(f)$$

Deformation Model

What is a "nice" deformation field?

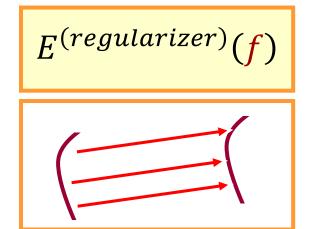
- Elastic deformation
 - Volumetric elasticity
 - Thin shell model (more complex)
- Intrinsic
 - Isometric matching
- Smooth deformations
 - "Thin-plate-splines" (TPS)
 - Allowing strong deformations, but keep shape



Deformation Model

What is a "nice" deformation field?

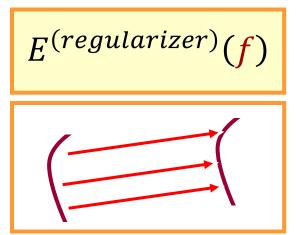
- Elastic deformation
 - Volumetric elasticity
 - Thin shell model (more complex)
- Intrinsic
 - Isometric matching
- Smooth deformations
 - "Thin-plate-splines" (TPS)
 - Allowing strong deformations, but keep shape

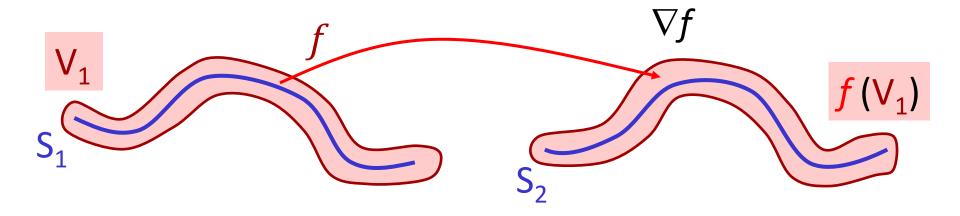


How to Detect Deformations?

Model

- Map volume to volume
- Function $f: V \to \mathbb{R}^3$

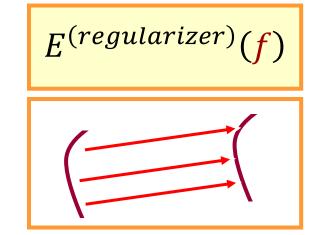




How to Detect Deformations?

Detect deformation

- Look at "deformation gradients"
- Jacobian matrix ∇f
- Function $\nabla f: V \to \mathbb{R}^3$



Criterion

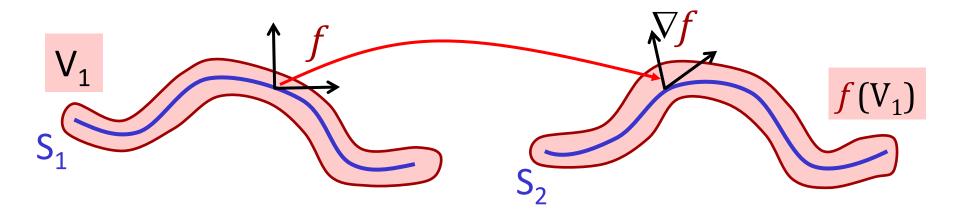
- No deformation: ∇f orthogonal
- *Deformation:* ∇f non-orthogonal

Elastic Volume Model

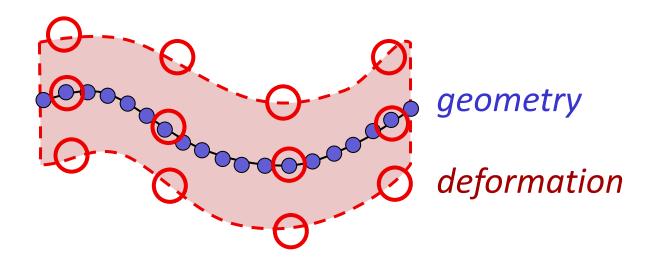
Extrinsic Volumetric "As-Rigid-As Possible"

- Measure orthogonality
- Integrate over deviation from orthogonality

$$E(f) = \int_{V_1} \| [\nabla f(\mathbf{x})] [\nabla f(\mathbf{x})]^{\mathrm{T}} - \mathbf{I} \|_F^2 d\mathbf{x}$$



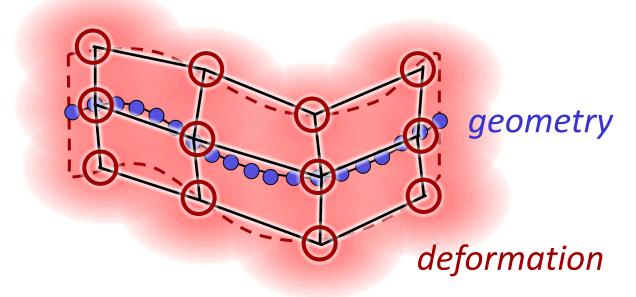
Discretization



Example Approach:

- Full resolution geometry
- Subsample deformation

Discretization



"Subspace" Approach:

- Sample volume
- Place basis functions
- Decouple from resolution of geometry

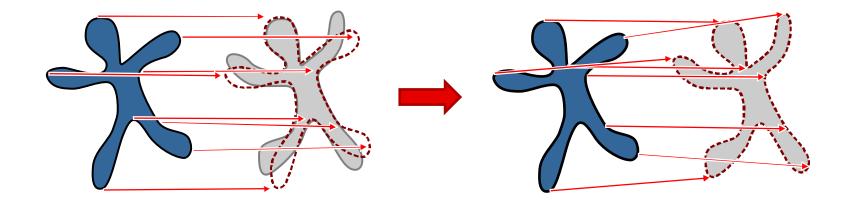
Deformable ICP

How to build a deformable ICP algorithm

- Pick a surface distance measure
- Pick an deformation model / regularizer

$$E(f) = E^{(match)}(f) + E^{(regularizer)}(f)$$

Deformable ICP



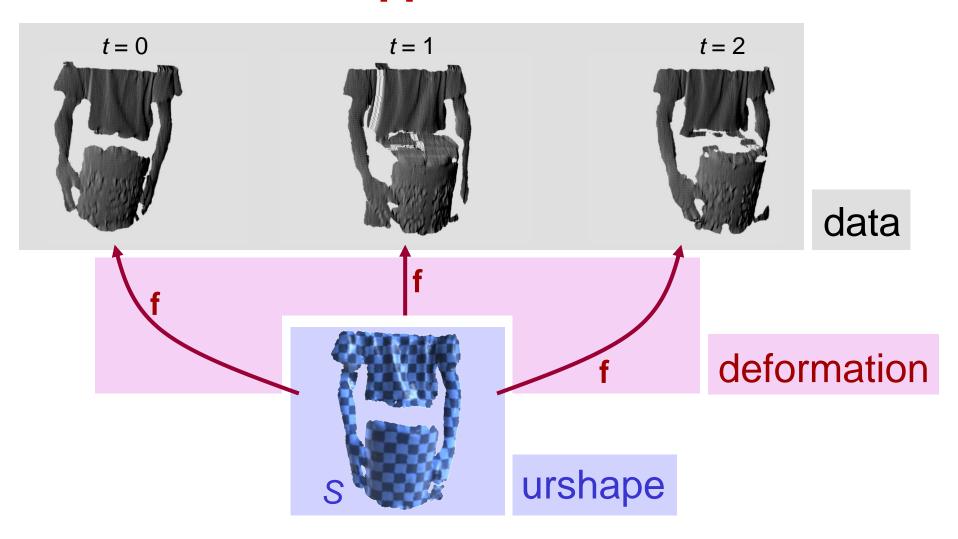
Deformable ICP Algorithm

- Select model: $E^{(match)}$, $E^{(regularizer)}$
- Initialize $f(S_1)$ with S_1 (i.e., f = id)
- (Non-linear) optimization:
 - Newton, Gauss Newton
 - LBGFS (quick & effective)

Animation Reconstruction

Reconstructing Sequences of Deformable Shapes

"Factorization" Approach



Hierarchical Merging

data

f(*S*)

f

Hierarchical Merging

data

f(**S**)

f

Initial Urshapes

data

f(S)

f

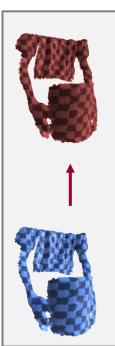


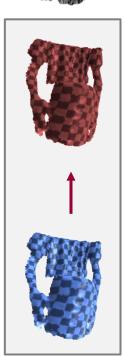
Initial Urshapes

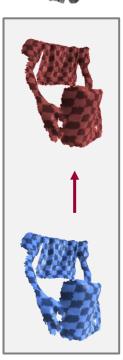
data

f(*S*)

f





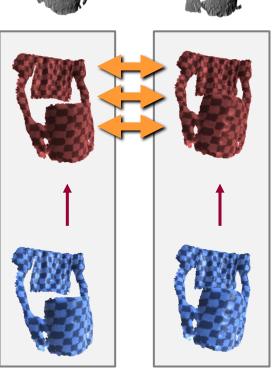


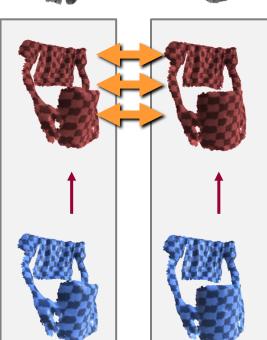
Alignment

data

f(**S**)

f



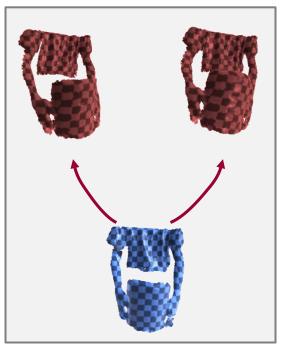


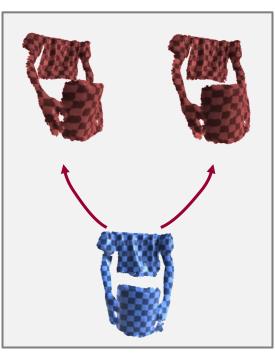
Align & Optimize

data

f(*S*)

f



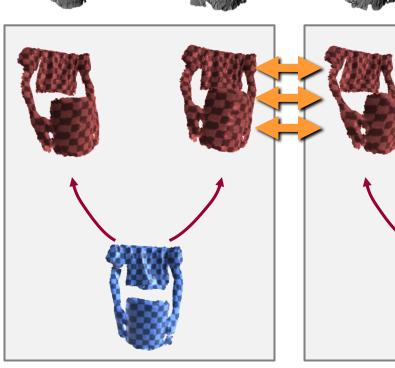


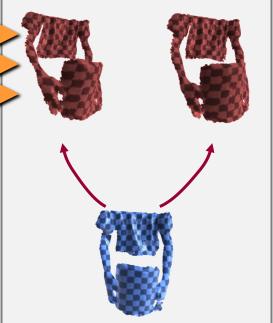
Hierarchical Alignment

data

f(**S**)

f



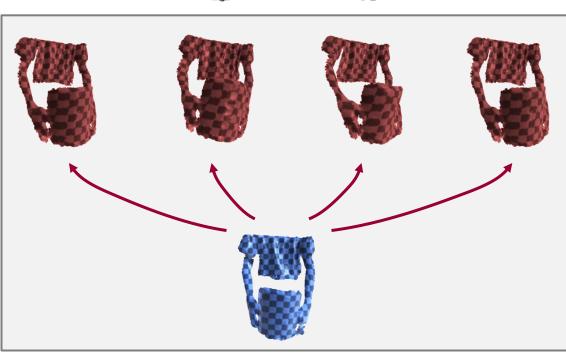


Hierarchical Alignment

data

f(**S**)

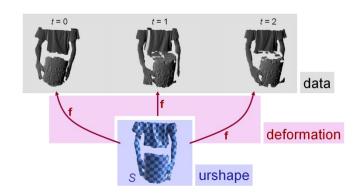
f



Global Optimization

Energy Function

$$E(\mathbf{f}, S) = E_{data} + E_{deform} + E_{smooth}$$



Components

• $E_{data}(\mathbf{f}, S)$

data fitting

• $E_{deform}(\mathbf{f})$

elastic deformation, smooth trajectory

• $E_{smooth}(S)$

- smooth surface

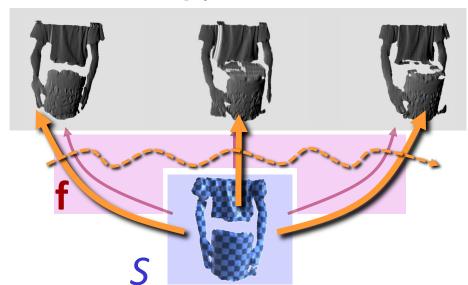
Final Optimization

Minimize over all frames

Elastic Deformation Energy

 D_i

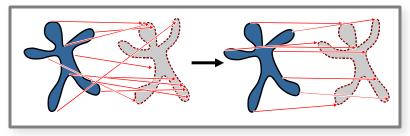
 $E_{deform}(\mathbf{f})$

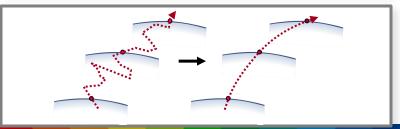


Regularization

Elastic energy

Smooth trajectories





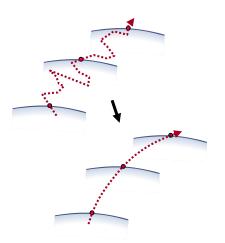
Additional Terms

More Regularization

- Acceleration:
 - Smooth trajectories
- Velocity (weak):
 - Damping

$$E_{acc} = \int_{T} \int_{V} |\partial^{2}| \mathbf{f}|^{2}$$

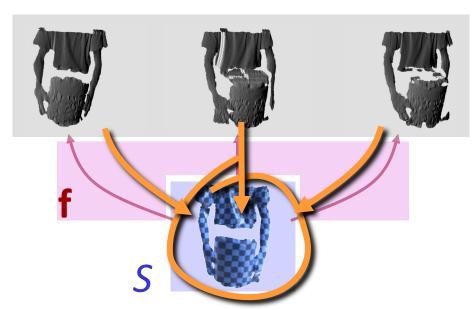
$$E_{vel} = \int_{T} \int_{V} |\partial_{t}|^{2}$$



Surface Reconstruction

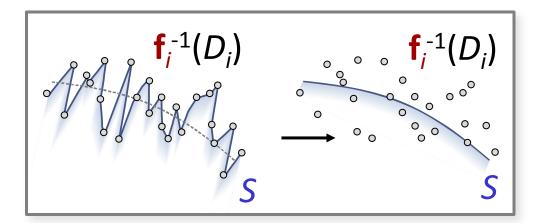
 D_i

 $E_{smooth}(S)$



Data fitting

- Smooth surface
- Fitting to noisy data

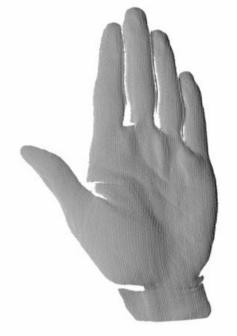


Results

79 frames, 24M data pts, 21K surfels, 315 nodes

98 frames, 5M data pts, 6.4K surfels, 423 nodes

120 frames, 30M data pts, 17K surfels, 1,939 nodes



34 frames, 4M data pts, 23K surfels, 414 nodes