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Introduction: Outline

Dynamic Range and Color Retargeting (~70 mins):

« Rafat Mantiuk, Tobias Ritschel, and Alessandro Artusi

Reverse/Inverse Tone Mapping (~45 mins) :

« Francesco Banterle

Image Spatial Resolution Retargeting (~45 mins) :

« Diego Gutierrez

Temporal Image Retargeting (~70 mins) :

« Tobias Ritschel and Elmar Eisemann

Image and Video Quality Assessment(~70 mins) :
« Tung O. Aydin

Stereo Content Retargeting (~50 mins):
« Piotr Didyk
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Learning outcomes

What is tone-mapping?

What problem(s) does it solve?

Why is the problem so difficult?

How do we perceive high dynamic range
images?

What are the major approaches to tone-
mapping?

How to choose a tone-mapping for a particular
application?
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Tone-mapping problem
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Question to the audience

* Who has never used a tone-mapping operator?

Each camera needs to tone-map a real-world
captured light before it can be stored as a JPEG.
This is essentially the same process as tone-
mapping, although knows as ‘color reproduction’
or ‘color processing’.

Eurographics

Color space retargeting problem

Real-world

Goal: map colors to a restricted color space

Eurographi

Perceptual retargeting problem

The eye adapted to
the display viewing|
conditions|

ﬁ Real-world

The eye adapted to
the real-world viewing
conditions

Goal: match color appearance




Tone Mapping?
« HDR?

« Or something
else ?

What is tone-mapping?

Although tone-mapping may have different meanings, this course is
about:

A) Transformation of an image from an
unrestricted color gamut of real world or an
abstract scene to the restricted color gamut of a
device

B) Retargeting the perceptual appearance from
one viewing conditions to another

Input and output

* HDR

(approximate)
physical units

luminance « luma

linear RGB §>E> + gamma
corrected R'G'B’
display referred

LDR (SDR)
pixel values

scene-referred




Luminance

» Luminance — perceived brightness of light,
adjusted for the sensitivity of the visual system
to wavelengths

Luminance L, = J”ﬂL(;b)' V(A)dA

Light spectrum (radiance) Luminous efficiency function
(weighting)

Do HDR images contain luminance
values?

« Not exactly, because:

« the combination of camera red, green and blue
spectral sensitivity curves will not match the luminous
efficiency function

« But they contain a good-enough approximation
for most applications

« For multi-exposure camera capture the error in
luminance measurements is 10-15%

Sensitivity to luminance

* Weber-law — the just-noticeable
difference is proportional to the
magnitude of a stimulus

The smallest s
detectable Ernst Heinrich Weber
luminance ﬁ l [From wikipedia]
difference _ k

Background A
(adapting) L Constant

luminance

L
Typical stimuli: AL .




Consequence of the Weber-law

+ Smallest detectable difference in luminance

AL L AL
— =k 100 cd/m? 1 cd/m?
L 1 cd/m? 0.01 cd/m?

« Adding or subtracting luminance will have
different visual impact depending on the
background luminance

* Unlike LDR luma values, HDR luminance values
are not perceptually uniform!

How to make luminance (more)
perceptually uniform?
+ Using Fechnerian integration
1

R(L)=——
AL(L)
% ' I
2
esponse Detection 2
threshold S AL
e—
1
Luminance L1 luminance - L
transducer: R(L) = N
0 AL(])

Assuming the Weber law
AL

ok
L

« and given the luminance transducer
ro1
R)=["—a
© AL(D)
« the response of the visual system to light is:

1, 1
R(L) = / L= (D) +h




Fechner law
R(L)=aln(L)

« Practical insight from the Fechner
law:
- The easiest way to adopt image Gustav Fechner
N . N . [From Wikipedia]
processing algorithms to HDR images is
to convert luminance (radiance) values
to the logarithmic domain

But...the Fechner law does not hold for
the full luminance range

« Because the Weber law does not hold either

» Threshold vs. intensity function:

AL

The Weber law
e region

log, , detection threshold AL [cd/m]

) o 2
log, , background luminance [ca/m?]

Weber-law revisited

- If we allow detection threshold to vary with
luminance according to the t.v.i. function:

AL

o, dtction ol . ]

L

[ J—r—

* we can get more accurate estimate of the

Ll
RD)=]! i

“response”:
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Fechnerian integration and Steven’s law

R(L) - function Hyphotetical luminance respanse, y,
derived from the ==~ Brightness function (L") /

function

1500}

Major approaches to tone-mapping

* lllumination & reflectance separation
» Forward visual model

* Forward & inverse visual models

+ Constraint mapping problem

* This is not a crisp categorization

« Some operators combine several
approaches

Major approaches to tone-mapping

* lllumination & reflectance separation
» Forward visual model

» Forward & inverse visual model

+ Constraint mapping problem




lumination &
reflectance
separation

—

Input

Eurographi

Illumination and reflectance

lllumination Reflectance
+ Sun=10°cd/m? » White = 90%
« Lowest perceivable « Black = 3%

luminance = 10-¢ cd/m?

Dynamic range 10,000:1 . pynamic range < 100:1
or more

Visual system partially
discounts illumination

» Reflectance critical for
object & shape detection

Reflectance & lllumination TMO

« Distortions in reflectance are more apparent
than the distortions in illumination.

« Tone mapping could preserve reflectance but

compress illumination
Tone-mapped Id = R T(I)
image

« for example: Id =R-I'"




How to separate the two?

* (Incoming) illumination — slowly changing

< except very abrupt transitions on shadow boundaries
 Reflectance — low contrast and

high frequency variations

Gaussian filter 2

« First order approximation

* Blurs sharp boundaries
« Causes halos

Tone mapping

Bilateral filter L~ 3, flp =18y~ L)Ly

» Better preserves sharp edges

Still some blurring on the
edges

Reflectance is not perfectly
separated from illumination
near edges

[Durand & Dorsey, SIGGRAPH 2002]
—




WLS filter

» Weighted-least-squares optimization

Make reconstructed image u Smooth out the image by making
possibly close to input g partial derivatives close to 0

> au\? du\?
; ((up *Xp)‘ +A ([’r »(8) (j:)l) +ayp(g) (Bi\‘)p)) ->min

Spatially varying smoothing — less
smoothing near the edges

» [Farbman et al., SIGGRAPH 2008]

Eurographics 2(

WLS filter

« Stronger smoothing and still distinct edges

Tone mapping result
=

« Can produce stronger effects @t \
with fewer artifacts .

Eurographics 2(

Retinex

» Retinex algorithm was initially intended to
separate reflectance from illumination [Land
1964]

« There are many variations of Retinex, but the general
principle is to eliminate from an image small
gradients, which are attributed to the illumination

1 step: compute 214 step: set to 0 3 step: reconstruct an
gradients in log domain  gradients less than the image from the vector
I N threshold field
AR .
Ml i Vi =divG
PR R VGl ¢
R " For example by solving the
Poisson equation

VG

34




Retinex examples

Retinex resul with t=3 Retirex resut wih (<5 Retinex rosull with =10

Gradient domain HDR compression

vy [Fattal et al.,
= SIGGRAPH 2002]

« Similarly to Retinex, it operates on log-gradients
« But the function amplifies small contrast instead of
removing it = Contrast
compression
achieved by global
contrast reduction
= Enhance
reflectance, then
compress
everything I

radient domain

H Retinex
3
]

Contrast domain image processing

[Mantiuk et al., ACM Trans. Applied Perception, 2006]

=

Original Image Perceived contrast
representation

Contrast
A

Perceived contrast
representation

Modified Image

Rationale: Human eye is more sensitive to contrast than luminance




Wavelets

Contrast domain image processing

Image transform: Multi-scale
contrast pyramid

Contrast pyramid

Output — approximates
perceived contrast

Contrast

-
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[<I=}

N
© o & o

@
&

Contrast response
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Physical cantrast
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Contrast transducer function

Equalization: Examples




Contrast Equalization: Examples

Tone mapping in photography

» Dodging and burning

« Darken on brighten
image parts by
occluding photographic
paper during exposure

« Ansel Adams, The
print, 1995

« Photoshop tool

» Essentially — attenuate low-pass freq'ugncies
associated to illumination

+ Reinhard et al., Photographic ]

tone reproduction for digital

images.€SIGGRAPH 2002

Choose dodging an burning

kernel size adaptively

« depending on the response
of the center-surround filter

« thus avoid halo artifacts




Major approaches to tone-mapping

* lllumination & reflectance separation
* Forward visual model

* Forward & inverse visual model

» Constraint mapping problem

Eurographi

Forward visual model

» Mimic the processing in the human visual
SyStem Brightness,
Luminance, abstract response

radiance
Original layed
image |:> Visual model I::> image

« Assumption: what is displayed is brightness or
abstract response of the visual system

Forward visual model: Retinex

* Remove illumination component from an image
+ Because the visual system also discounts illuminant

« Display ‘reflectance’ image on the screen

* Assumption:
» The abstract ‘reflectance’ contains most important
visual information

« lllumination is a distraction for object recognition and
scene understanding




Photoreceptor response

« Dynamic range reduction inspired by
photoreceptor physiology
* [Reinhard & Devlin ‘05]

. I
" - m 1’m/n
olley = (fL)".

Pixel value

* From gamma to
sigmoidal response:

Input luminance

Eurographics 2012, Cagliari, Italy

Results: photoreceptor TMO

Hesoguam ausmest. o Photugraphsc wacnapping Goca)

48

Photoreceptor models

) n
- Naka-Rushton equation: R _ Y
S e Ryu Y4om
o
o
§ Z; / | Experiment:
I'Hv o g 9
P e oo o1 1w im0 w0 W me

umminance ¥ [ed ]

» Response of the photoreceptor to a short flicker
of light - less applicable to viewing static images




Sigmoidal tone-curves

« Very common in 20 Shaider_ Prmax
digital cameras 25| | Srgtiee
+ Mimic the response g 10 e
of analog film 05|y 1o
+ Analog film has been i
engineered for many 25 -20 15 -1.0 -05 00 05 1.0 15
years to produce log exposure (lux-seconds)

optimum tone-reproduction (given that he tone curve
must not change)

- Effectively the most commonly used tone-
mapping!

Why sigmoidal tone-curves work

» Because they mimic photoreceptor response

« Unlikely, because photoreceptor response to steady
light is not sigmoidal

« Because they preserve contrast in mid-tones,
which usually contains skin color
+ We are very sensitive to variation in skin color

« Because an image on average has Gaussian
distribution of log-luminance

+ S-shape function is the result of histogram
equalization of an image with a Gaussian-shape
histogram

Eurographic:

Lightness perception

« Lightness perception in tone-reproduction for
high dynamic range images [Krawczyk et al. ‘05]

« Based on Gilchrist lightness perception theory

« Perceived lightness is anchored to several
frameworks
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Gilchrist lightness perception theory

« Frameworks — areas of common w
illumination \

« Anchoring — the tendency of
« highest luminance
« largest area
. to appear white
» Tone-mapping
* Rescale luminance in each
framework to its anchor

Eurographics 2012, Cagliari, Italy

Results — lightness perception TMO

F Y B Y

Photographic Tone Reproduction Silateral Filering Presented Computatianal Mode!

Major approaches to tone-mapping
* lllumination & reflectance separation
» Forward visual model

» Forward & inverse visual model

+ Constraint mapping problem




Forward and inverse visual model

World viewing
conditions

Luminance, abstract

ay

Luminance,

1

Display viewing
conditions

radiance response
Original
e |:> Visual model %

radiance
Displayed Inverse visual @
image } <:' [ model }

Editing

(optional)

Eurographics

Contrast domain image processing

[Mantiuk et al., ACM Trans. Applied Perception, 2006]

—_ =

Original Image Perceived contrast
representation

=

Perceived contrast

Modified Image representation

Rationale: Human eye is more sensitive to contrast than luminance

Contrast
enhancement

Multi-scale model

* Multi-scale model of
adaptation and spatial vision
and color appearance
« [Pattanaik et al. ‘98]

+ Combines

« psychophysical threshold and
superthreshold visual models

« light & dark adaptation models

« Hunt’s color appearance model
« One of the most sophisticated

visual models




?_I

Results: multiscale i——
model ... ¢

1000 cd/m*2

Eurographi

Forward and inverse visual model

« Advantages of F&I visual models
« Can render images for different viewing conditions
- Different state of chromatic or luminance adaptation
« Physically plausible
« output in the units of luminance or radiance
» Shortcomings F&I visual models
« Assume that a standard display can reproduce the
impression of viewing much brighter or darker scenes
< Cannot ensure that the resulting image is within the
dynamic range of the display
« Not necessary meant to reduce the dynamic range
« Visual models are difficult to invert

Major approaches to tone-mapping

* lllumination & reflectance separation
» Forward visual model

» Forward & inverse visual model
 Constraint mapping problem




Constraint mapping problem

» Goal: to restrict the range of values while
reducing inflicted damage

Global tone mapping operator

l Best tone-
4 mapping is the
one which does
not do
anything, i.e.
slope of the
tone-mapping
curves is equal
tol.

log displayed luminance

Image histogram

log input luminance factor (HOR image)

Display limitations

Display peak luminance

u.____-lllll |LDi===='ﬂvh.'sﬂ_k1ev_e‘

But in practice
contrast (slope)
must be limited
due to display
limitations.

log displayed luminance

o ; i
log input luminance factor (HDR image}




Tone mapping

Display peak luminance

log displayed luminance

Global tone-
mapping is a
compromise
." Display black level between
° ] clipping and

contrast
compressi

o : ;
log input luminance factor (HDR image}

Histogram equalization

« 1. Compute cumulative distribution function:

=1 =

350000

Your

300000
250000

200000

¥, =c,)

in

150000
100000

Y,

50000 in

66

T
5 Sqeei.

Histogram equalization

/i —» |« Steepest slope for

\ — strongly represented

- bins

M . Enhanc_e contrast, if

Input log intensity many pIXe|S

» Reduce contrast, if few
pixels

HE distributes contrast

distortions relative to

the “importance” of a

brightness level

Frequency

Output log intensity

e




Histogram adjustment with a linear ceiling
 [Larson et al. 1997, IEEE TVCG]
Histogram equalization

Linear mapping Histogram equalization with ceiling

Eurographics 20:

Histogram adjustment with a linear ceiling

Truncate the bins that exceed the ceiling
Recompute the ceiling based on the truncated
histogram

Repeat until converges

|—=B
G
|—=r
—v

Frequency

Ceiling, based on
the detection
thresholds of the
visual system

aroaninE Visual

g metric
Display
model
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Results: ambient illumination compensation

Non-adaptive TMO Display adaptive TMO
"L B 4
pi
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Results: ambient illumination compensation

liari, ttal

Results: display contrast
ePaper standard LCD HDR display

2, Cagliari, Italy

Tone-mapping for video compression

« Find the tone-curve that minimizes distortion in a
backward-compatible HDR video encoding

Inverse
Tone
Mapping

[0T0Z dIL 3331 “[e 1 ]

Closed-form
solution:




Euro

Which tone-mapping to choose?

« lllumination & reflectance separation
« Forward visual model

» Forward & inverse visual model

« Constraint mapping problem

1. Think what is the target application
- and thus the goal of your tone-mapping

2. Consider which tone-mapping
approach(es) will deliver that goal

Eurographics 2012, Cagliari, Italy

Future of tone-mapping

Tone-mapping of today = Tone-mapping of tomorrow
« Built into cameras « Display tone-maps content
« Assumes that all on demand

displays are the same « Depending on viewing
conditions, viewer, its

capabilities
« Content recorded, stored and
transmitted in an HDR format
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Apparent Contrast and Brightness
Enhancement

Tobias Ritschel
MPI Informatik

Motivation

* Image display
« Dynamic range of existing displays is limited
* No reproduction real-world contrast/brightness
« Good image appearance doesn't require that

* Modern tone mapping operators good at
optimizing the physical contrast and
luminance use

Motivation

* Human preference
« Enhanced contrast and brightness improve image
appearance
» Can we still boost the contrast and
brightness impression?




Human perception

* Spatial vision

» Cornsweet illusion
Apparent contrast boost

» Glare illusion

Apparent brightness boost

+ Usual contrast enhancement
techniques
« either enhance everything
« or require manual intervention
« change image appearance

* Tone mapping often gives
numerically optimal solution

« no dynamic range left for
enhancement

Krawczyk et al. EG2007

Overview

Measure

at Several
Feature Scales

v

Enhance
Lost Contrast in
Tone Mapped Image

> Lost Contrast ¢

Tone Mapped Image




Cornsweet Illusion

O/ Enhanced Imag

—

B S e

Create apparent contrast based on Cornsweet illusion
Countershading

— gradual darkening / brightening towards a contrasting edge
— contrast appears with ‘economic’ use of dynamic range

K
= o

Details of Contrast Illusion

ACTUAL SIGNAL WHAT YOU SEE

K
o =

Details of Contrast Illusion
ACTUAL SIGNAL

WHAT YOU SEE
* Luminance profiles cause contrast
* Properties:
+ Shape matches shape of the enhanced feature
« Amplitude defines the perceived contrast
» Noise (texture) does not cancel the illusion
« Profiles should not be discernible

Kz
- =




Construction of Simple Profile (1/2)
REFERENCE
(e.g. HDR)

SIGNAL
(e.g- T™)

W low-pass filter

—

Profile from low-
pass filtered
reference

Size and amplitude
adjusted manually
= This is unsharp

RESTORED REFERENCE -

Construction of Simple Profile (2/2)

REFERENCE
SIGNAL (with texture)

(texture preserved) m
‘Iow-pass filter
— G-M*

» Well preserved signal is exaggerated by
unsharp masking

Measure
Lost Contrast
at Several
Feature Scales

Y = Yinean|

Yinean

Cr

I e e
o _\
Ry =L
Cfel
! " 2 3 |4 5 & |7
Contrast ratios Y "
at several scales ] | | .
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-
A

+ Contrast defines the sub-band amplitude

» Contrast for larger scales appears also on
smaller scales
« the full profile is always reconstructed (red)

+ Scale of contrast defines the profile size

Link: Contrast Metric & Profiles
1 4

\

Adaptive Countershading
[

final col

Adaptive Countershading




Restoration of TM Images (1/3)

fone mapped image.

Restoration of TM Images (2/3)

reference HDR image (clipped) countershading of tone mapping

countershading profiles tone mapping

Restoration of TM Ima (3/3)

reference HDR image (clipped) countershading of tone mapping [

o R

-

ot
i B




Countershading Variants

» Traditional countershading:

Performed in the achromatic chg
perceived luminance contrast

Cross-modal approach:
Use depth signal to derive counte

Q
o
c
E
2
@
i
[%2)
3
=
]
@
)
<
)
X
[}
>
=
o
3
=
[}
Is)
A

enhances the overall image cont
Color2Grey:
Dimensionality reduction 3->1:

informr
Count »matic channel used to
reproc ~ ntrast

= = Curopraohics

Measure
Missing Contrast
at Several
Feature Scales

¥

Enhance
Missing Contrast in
Reference Depth Map The Input Image Input Image

\ AL
b
Enhanced Image

Depth Map as Contrast Reference

depth information original image
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Colourfulness Countershading

« promotes FG/BG separation
« creates impression of greater dynamic range
« increases impression of depth

P e e o e ey

Countershading Results (or

Results (chroma

Countershading




Color2Grey Application

Isoluminant color pattern transformed to
grey G using Helmholz-Kohlraush effect,
which takes into account the contribution of
chromatic component into brightness

Original CIEY

Color2Grey Application

Figure 1: Lightness values from various H-K effect predic-
tors applied to a spectrum of isoluminant colowrs, compared

1o CIEL*

T e — e e ki T

Color2Grey Application

M=~ = -3solution

countershadin 6. =G + Y kmi(G)  (Upper-
left) to the are = —— | Jower-left)

* G'L* : The effe~* ~© ~~~-

The correction is driven by
contrast in chroma channels

of the original image /
(upper-left)

| - AE(hi(D)\"
T (G|

Ongnal |and G Basic Unsharp

- =




Color2Grey Application

Original GIMP greyscale

Gooch Color2Gray Neumann et al. 0.40.4)

Countershading in 3D?

= Cornsweet in 3D is
More plausible —
Less of an artefact —
Stronger —
Better

D. Purves, A.
Shimpi, R. B. Lotto
An empirical
explanation of the
Cornsweet effect.

J. of Neuroscience 19,

Scene-aligned Countershading




3D Unsharp Masking

* U(S)=S + A(S - S0)
Y ‘
NI o

Lit 3D Smoothly Lit Co_ntrast Enhanced
Surface 3D Surface Signal Image

T =




3D Unsharp

3D unsharp
masking

) Original
ﬁvj image

3D blurred Y

n S\ Enhancement
signal \‘ signal

Mesh 2D unsharp

masking

Ad

Y wbuans

2D vs. 3D Unsharp Masking Comparison

2D 3D
Signal Image Lit Surface
Smoothing (Gaussian) Image Blur Laplacian Surface Blur
Representation Pixels Lit vertices and pixels
Smoothness o Image distance Geodesic world distance
Strength A Factor Factor
= -




3D Unsharp Masking: Scene Coherence

Culling

Occlusion

Perspective

i

Complex Mesh

3D unsharp masked Original
rendering rendering

Ritschel et al. SIG2008

3D unsharp

! Original
masking

image

3D blurred
signal Enhancemem
signal
Mesh 2D unsharp

masking

Curograshics




Results - Legibility

Normal Enhancement
. |5
* Only geometric term '- ‘\
«+ Shadows ? | v
« Hightlights ? v
« Reflectance ?
- Vertex resolution

* 3D unsharp masking:
Pixel resolution
Cignoni et al. ‘05, C & G Vol. 29

Exaggerated Shading

* Object enhancement
 llluminate each vertex at
grazing angle
« Improves geometry
understanding
« Highlights?
* Shadows?
* Scene enhancement
« Change everything




Specular shading

Study

Ihrke et al. SPIE2009

Goals

« Find suitable settings

 See limitations

* Rank preference

» Method of adjustments

« Strength A: adjustable

« Fixed width o: low, medium, high
« 4 scenes,15 participants

 Task: Find such A that:
+ Added enhancement is just noticeable
+ Added enhancement becomes objectionable

« Image appearance is preferred
_bm. = "

Results
T =40 Tunotm = 100 014 =200
: : :
= ¥ ¥ »
— . .
A A= 008 (1 IND) A= 10.06 {1 JND) A= 008 (1 IND]
\: vm:wy‘ \'-m 13 INDY) A= 000 (23 IND)




Results

A(IND)

O Ot L Tt L e LT e nin

— just visible best contrast —— Objectionable

Results

« 2 JND i [ S— ‘
- preferred = —* Dl

- 4 IND g

« objectionable

o

Lower Threshold Best Contrast Upper Threshold

Original Enhancement Halo

Unsharp masking, countershading and haloes: Enhancements or
artifacts?

M.Trentacoste, R. Mantiuk, W. Heidrich, F. Dufrot
Eurographics 2012




Model of acceptable countershading

Objectionable
4 (halos)

Indistinguishable

Applications: Image Resizing

yu




Applications: Tone-mapping

\

Summary

+ Better communicate image contents with a
minimal change to image appearance
» Application of Cornsweet illusion to image
enhancement
« Generalization of unsharp masking
« Automatic enhancement given the reference data:
« HDR image
« depth information
« shading in 3D scene

« Scene consistent 3D unsharp masking leads to
even stronger effects

Glare Illusion [Zavagno and Caputo 2001]

e




Glare Illusion

“Alan Wake"© Remedy Entertainment

I = T

Glare Illusion in Different Media

Arts

Computer games Photography

o =

In Games

* Simple
approximation:
convolution with
Gaussian

Already does a
good job in
conveying
brightness
Yoshida et al.
(2008)




Kawase: Practical Implementation of High
Dynamic Range Rendering. Game
Developer’s Conference 2004

Glare in Realistic Rendering

» Optics-based models for rendering glare
illusion
+ [Nakamae et al. 1990]
« [Ward Larson et al. 1997]
« [Kakimoto et al. 2004, 2005]
« [Van den Berg et al. 2005]
* [Spencer et al. 1995]

o =

Dynamic Glare

* Realism
* Movement
+ Colors

* Required
Model of dynamic
human eye to simulate
temporal glare

+ Study
Can temporal glare
boost even further
boost brightness?

Ritschel et al. EG2008




Point Spread Function (PSF)

* Point

Spread

Function
* Key to glare modeling
Describes, how

a pixel maps to
a pattern under
an aperture

| o o R R ]

Our Simplified Model

orld

simplification: Fresnel diffraction

Aperture FFT Convolution
plane

Perceived
Ritschel et al. EG2008 image

l . = ... ]

Diffraction: Single vs. Multi Aperture

2

Planes ; .

K |FAP (oo yp) E(¥pop) by gt

K
E(xp.yp) =

Single-plane

Ritschel et al. EG2008




Diffraction: Fraunhofer vs. Fresnel
Lilx.y) = K|F{P(xp.vp)E(xp.3p)}

=15 4=
K = 1/(u)?

E(xp.yp) = et )

Fraunhofer

Ritschel et al. EG2008

= o

Temporal Glare Pipeline

Lens nucleus,
Vitreous Lens cortex
humor
Iris
7
Agueous
humor — AN\
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Light
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Lens

Ciliary
muscles

Ritschel et al. EG2008
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Aperture: Pupil




Aperture: Pupil

* Adaptation
+ Can convert HDR image into pupil size
* Pupillary hippus
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Aperture: Pupil
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Aperture: Lens

Lens nucleus

Lens




Aperture: Lens

Aperture: Gratings / Lens fibers

Aperture: Gratings / Lens fibers




Aperture: Vitreous Humor

Vitreous
humor

Aperture: Vitreous Humor

Aperture: Eyelashes (optional)




Chromatic Blur

» Compute one wavelength - Get others for
free!

380 nm 575 nm 770 nm

Eurographi

Convolution

HDR image PSF Bright pixels Billboard
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Convolution

Convolution

Convolution Billboard
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Psychophysical Experiment

* Goal:
Measuring the brightness boosts caused by
glare illusion
* 2 methods, 6 patterns for each
« Gaussian: blurring kernel
Cheap approximation
« Spencer et al.: human eye's PSF (disability glare)
Optical correctness
* 10 subjects20 minutes per person




Stimuli 220 cd/m

Method 1: Gaussian 150 cd/m?

Yoshida et al. APGV2008

Perceptual Experiment

Reference.

Task:

Adjust the target disk luminance as close as possible to that of the
Reference, but slightly yet visibly darker/brighter.

Yoshida et al. APGV2008

Method I (Gaussian)
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Method II (Spencer et al.)
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Trade-offs
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* Measuring brightness boost of glare illusion
- Increasing the perceived luminance by 20-35% | F ; N
~ Gaussian blurring is equally effective

= Trade-offs Gaussian/human eye's PSF

o =

Summary/Limitations

Glare illusion might boost apparent
brightness up to 30%

Comprehensible model of light scattering in
the eye taking into account dynamic eye
elements

Real-time rendering

Other temporal low-level eye physics like

« Floaters

» Local adaptation (“After images”)

http://www.mpi-inf.mpg.de/resources/hdr/TemporalGlare/
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Retargeting Color Content: Color
Issues in Tone Mapping

Alessandro Artusi
Ramon Cajal Fellow
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Introduction to Color

What is Color?

Source Light Human Visual System

\
\\Q

Stimulus Object




Quantifying Color

1(2) SPD of the light X:I[M)p(/l)f(l)dﬂ.
p(l) Reflectance of the object
X.9.2(4) CIE color matching functions

[1psar
]

1) p(AZ(A)dA

How Color is Produced?
Additive Subtractive

Color Space

« Device dependent: the description of color information is
related to the characteristics of a partic

- Set of primarie
- Technology (001) Bl Cyan
Mageas e
i 0.10) Green
Ay S
(1,00) Red L
Vellow
+ Device indepem’.‘.R ............. e _f color information
is not dependent from the characteristics of a particular
device

- CIEXYZ, CIELab, CIELuv etc...




Chromaticity Diagram and
MacAdam'’s Ellipses

+ MacAdam’s Ellipses

ST

« contains all colors which are
indistinguishable to an human
observer from the color at the
center of the ellipse

onm

‘ w550 ten
NS0
« the contour of the ellipse g0
represents the just noticeable
differences of chromaticity

X
x=—
X+Y+Z

_ Y
7 X+Y+Z

Eurographics

Color Attributes by the CIE

- * Hue
Perception + saturation
e « Lightness

. + Hue The degree to which a stimulus can be described as similar to
or different from stimuli that are described as red, green, blue, and

Saturation is the colorful¥€49f an area judged in proportion to its brightness.
Lightness Human vision has a nonlinear perceptual response to

luminance: The perceptual response to luminance is called lightness.
1

. 3 Y
L =116/ — | =16  0.008856 < —

Color in High Dynamic Range

« Color Ratio (Schlick RGB,, Color Input
1994)
RGB RGB,,, Color Output
RG = et B § . L,  Luminance Input
ou ou.

in L,,  Luminance Output

A) Original B) Preserve color ratios
c=0.3s=1

Mantiuk et al.. “Color Correction for Tone Mapping”, Proceedings Eurographics 2009




Color in H

- Saturation Control (Thumblin and Turk

1999)
RGB,, =

in

RGB,

igh Dynamic Range

s

v

Saturation Parameter
Contrast Compression

o

L

out

Under-saturated colors for S=C.

A) Original

Mantiuk et al.. “Color Correction

C) Per-channel tone curve
¢=0.35=0.3

for Tone Mapping”, Proceedings Eurographics 2009.

Eurographics
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Color in High Dynamic Range

%0
120 — 60
2 80 .
150 Chroma
150 / 157\ 30 ¢ s
/ . 80 "\ 560
{ 45 P 3
]
10 8 p
180 %5=0 £40 a4
L £ A8
\ . 3 y
210 Foet /330 = <
i
- o L
Hue 240 ¥axl8—"g00 G 50 100 150
270 Chroma (C)

Mantiuk et al.. “Color Correction for Tone Mapping”, Proceedings Eurographics 2009.
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Color Rendering Pipeline (8 Bit)

I

Gamut's Mismatcl

>

l Image Acquisition

Device
Independent

m Displaying l

Device
Dependent




Colorimetric Characterisation of a
Device

Device Minimisation Process Spectrophotometer

RAW Data are Linear E 1t E
R 3x3 X
E:}S |
redTRC™'[linR ] = [deviceR)]
X red,green biue, | [linR| greenTRC™[iinG]=[deviceG)

Y =|nG | blueTRC™[linB)=[deviceB]
Z | red, green,blue, linB

Comm)
B

red, green, blue,

Gamma - Curve
EEEEEE oo W R(4)=(0-b)d,+by

Gamma Response for RED “Gamma Response for BLUE
; 7 v ‘ 7
s
| ras
: /7

L. Neumann, G. Zotti and W. Purgathofer “Accurate Display Gamma Function based on Human Observation”

Eurographics

Color Rendering Pipeline in HDR

+ RGB,,‘,,:[ﬁj i,

m Displaying l
Device Device
Independent Dependent

HDR Image
Acquisition




HDR ICC Profile

T
-z L J
L J
=) =) Jv,
..
7,
@ Best Exposure Image ﬂ
ICC Profile

B 12

Goesele et al. “Color Calibrated High Dynamic Range Imaging with ICC Profiles.”

&

HDR Colorimetric Camera
Characterization

Radiance HDR Radiance
Measurements Map

X R
Y @[Mﬁﬁije
Z B

AV
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Gamut Mapping
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Gamut vs. Tone Mapping

1044
1.0 g
| =
s o
L, : :
; i
h i
!
g ;
f f
a
O] 10° cd /m®

Not HDR Content

Gamut Mapping Aims (CS)

- Gray axes alignment, mapping white to white
and black to black




Gamut Mapping Aims (CS)
+ Gray axes alignment, mapping white to white and black to
black

Gamut Mapping Aims (CS)

Unchanged the Hue shift, will keep the overall
image appearance

L
L White

| é Black

Gamut Mapping Aims (CS)

Limiting out of gamut colours
- Soft clipping can be afterwards adopted to eliminate
these extremes

- Increase Image saturation
- Destination gamut has reduced saturation

- Helps maintaining the original chroma differences of the
input Image




Gamut Mapping Pipeline

Gamut Line
Col A
S;a(c):e |:> Boundary Gamut |T—) Mapping
Descriptor Boundary

Hue slice at 1 degree  Clipping
Compression
Spatial GMAs

L

Eurographics

Color Space Issue

50

50 .
.
a i
=
150 -100 50 &0, 100 150
50 ™ m “a
. -
100 .

+ Gamut Mapping that preserves metric hue angle
- No Hue shift after compression or clipping
« CIELab is suffering of non linearity in blue regions, but also
in red regions
- ut | izes

Eurographi

Point-wise Gamut Mapping

Techniques
- Clipping
It changes colours which are outside of the destination
gamut,

mapping them on the boundaries of the destination gamut
- Horizontal (lines of constant lightness)
- Radial to a centre of Gravity
« Centre of lightness axis (Constant)
« Lightness corresponding to the Chroma Cusp (variable)
- Distance in CIELab
« To the colour boundary of the destination gamut that
has the smallest distance (HPMin AE Clipping)




Clipping

L* Preservation Radial to L*/2

’

Eurographi

Clipping — Major Drawbacks

Erase Local Image variation (Details)

Preserve Saturation

PRAN |




Point-wise Gamut Mapping
Techniques

« Compression

It makes changes to all the colors of the source gamut to
be

accommodated into the destination gamut .
- Linear
- Sigmoid
- Knee-function

« Parametric

The behaviour change based on the shapes of the two
gamut’s

(source and destination) at the hue angle, or it depends
from user

parameters. (Clipping and Compression)

Eurographics 2(

Compression

c __I—_h’il[q _Cl|pp|ng

omax

\ Soft

Linear

Knee-Function

imax > Cn max C Ci
f1nax




C

omax

Eurographics

Parametric

Eurographics 20:

Preservation of Spatial Details

+ Optimization

Making use of Human Visual System Models minimize the perceived
differences between the input and output image.

* Multiscale

Re-inserts high-frequency information content in the gamut mapped
image (clipped).

« Clipping — loss of details

« General framework has been proposed that includes the different
cases




Preservation of Spatial Details
X‘ % == ) Manipulation

—
T
Bonnier et al. "siua\ and Color Adainvi Gamut Miiimi A Mathematical Framework and Two New A\iorwhms "
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Mantiuk et al. “"Color Correction for
Tone Mapping

Automatic estimation of desaturation (s) factor in function of contrast
compression (c) (non-linear color cor ="~ %

(I +k) ™
Cin § — s(c) = R iy
Cout = I Low k1=2.3882, k2=0.8552
n

s = f(c) determined based on results of
perceptual experiment

A) Original
€=0.35=0.63

Mantiuk et al. “"Color Correction for
Tone Mapping
luminance( C;, ) = luminance( C,, )
k1=2.3892, k2=0.8552

Cout = (_ - s+ 1> Lout
in \ o (1+ky)

Unchanged luminance value after color correction (luminanc: 1+k1 ck
preserving solution)




Conclusions

Works on high dynamic range imaging have mostly
operated on luminance (lightness) information
— some works start to appear proposing solution for color saturation,
acquisition of colorimetric correct high dynamic range color values, and
color appereance
In Color Science a lot of works have been presented in
the context of colorimetric characterisation, color
appearance and gamut mapping on low dynamic range [0,
100]
- Some of these works have been extended or re-used for high dynamic
range applications
- Tone mapping can bee seen as an extension or a particular case of
gamut  mapping (if we consider only the luminance information)

- Many gamut mapping works started to analyse the details preservation
on color information

Low Dynamic Range [0,100]

Eurographics
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Inverse/Reverse Tone Mapping
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Outline of the Talk

¢ An Overview on Reverse/Inverse Tone Mapping
e Expansion Methods:
¢ Global Methods
¢ Expand Map Methods
¢ Classification Methods
¢ User Based Methods
e Evaluation:
e Psychophysical Experiments
¢ Computational Metrics
¢ Conclusions

Overview on Reverse/lnverse Tone
Mapping

x 10

3

Luminance value (odfmz)

|/ —— LDR (8-bit)
Y

2| — HDR

O ™ LJ\L\_;

] 200 800

00 00
Column value (in pixels)
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Overview on RTM/ITM: Why?

* Why do we need RTM/ITM?

+ We want to retarget LDR content into HDR monitors,
applications (i.e. Image Based Lighting), and editing!

* The general operator is typically defined as:
Mmﬂ xh;u::L
D

LDR HDR

e Common steps of these operators:

« Linearization of the LDR image

+ Noise and quantization reduction

« Luminance Expansion

Global Methods (l)

« Landis [Landis02] proposed a simple function for generating HDR
images for VFX:

Luf) = ( — E)g(x) + b, muckra (%) 1 Lufx) = B;
tag) otharioe,
(B —RY"
x= (HEAZRY,
Original LDR EM Rendered with LDR EM Rendered ITMO EM

LDR Environment map is courtesy of H. Landis [Landis 02]

Global Methods (I1)

3000 |

»
g
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§

g
g

1000|

Output values (cd/m?)
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Global Methods ()

* Akyuz et al. [AFR*07] shown that “a simple linear scale can
provide an HDR experience” based on psychophysically
experiments:
Ll k]
L) =& Lalx) — Lo, min
0 =4 e~ L
Masia et al. [MAF*09] shown that for over-exposed images a non-

linear function (gamma) needs to be applied. This non-linearity
depends on exposedness of the image:

Lo(x) =E3(x)" ¢=1044%k—5.282

k,w E>065
log La, Max — log Ly, Min

[ ———

Global Methods (IV)

g 8

Output values (cd!m2
g

Global Methods (IV)

T
|
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Classification Methods:
Highlights Reproduction on HDR Monitors (1)

* Meylan et al. [MDDS06, MDS07] present a classification
approach:
¢ Expand highlights and specular surfaces (©>0)
* o is computed using robust thresholding

* Expansion using a two-scale model:

1ot =10 {8 ) e
s=?f - 1P
w Ly, e — w0

© 10 &VO0IU COMNLOUNING I0W-Pass 1ILENNg Of expanuey regions

Classification Methods:
Highlights Reproduction on HDR Monitors (I1)

i/’
@ 8
g

Output values (cd

o 01 02 03

07 08 o8 1

Classification Methods:
Enhancement of Bright Videos (I)

* Didyk et al. [DMHS08] extended Meylan et al.’s method:

* Three classification areas: diffuse, reflections, and
lights

¢ Automatic Classifier (AC):
« SVM + Nearest Neighbor + Tracking = 3% error
¢ User interface for adjusting the AC errors

* Non-linear adaptive tone curve for expanding the range
based on the histogram of the region:

« Bilateral filtering layers separation (high and low
frequencies) for avoiding contouring




Classification Methods:
Enhancement of Bright Videos (Il)

Classification Methods:
Selective Reverse Tone Mapping (1)

¢ Masia et al. [MFSG10] proposed a novel approach based
on saliency:
* Range Expansion (RE): pice-wise linear expansion using
the zonal system by Adams (9 zones):

= exp{:xp((':;_‘l))) I)H v=52 z€[0,9

¢ Labeling:
« salient objects and background discrimination using
different techniques:
* learning-based saliency detection (Liu et al.
[LSZ*07])
 saliency cuts (Fu et al.[FCLLO8])
« Different Labels = Different RE functions

- @ mes

Classification Methods:
Selective Reverse Tone Mapping (I1)

Input

©

®

<

b

=

Auto-Labeling

@

— Salient Object
Backpound |

[

U A
Normalized Output Luminance values
o

H

E

02 04 06 08
Binary Mask Normalized Input Luminance values




Expand Maps Methods:
Non-Linear Expansion using Expand Maps (I)

* Banterle et al. [BLDC06,BLDBCO07,BLDC08,B09] presented
a general and real-time framework:

+ Range Expansion: non-linear (inverting an TMO; other
functions)

« Expand Map: sampling+density estimation+cross bilateral
(avoiding contouring and compression artifacts)

LDR Image ange Expand Map Full Expanded LDR

Expand Maps Methods:
Non-Linear Expansion using Expand Maps (Il)

GrigalSgmal.
| Expnied wihost B |
- — Expnded it T L

Expand Maps Methods:
Non-Linear Expansion using Expand Maps (Il)

IBL using original HDR IBL using expanded LDR




Expand Maps Methods: LDR2HDR (I)

* Rempel et al. [RTS*07] presented a similar work of
Banterle et al.:

+ Range Expansion: linear

« Expand Map: thresholding-+filtering+edge stopping

input LDR Image

Tnverse G

- Edge Siapping
Mo Flicone Euncico

Expand Maps Methods: LDR2HDR (1)

A variant of the algorithm was presented by Kovaleski and Oliveria
[KO09] using the bilateral grid to improve the quality of the Expand
Map.

User Based Methods: Hallucination (1)

e Wang et al. [WWZ*07] proposed the first user based
method with reconstruction of details:

* HDR frequencies using the bilateral filter: base
(low) and detail (high) layers
* Automatic Expansion (base layer): saturated
regions are fitted using 2D Gaussian lobes (elliptical)
« Reconstruction (detail layer):
* Automatic: texture synthesis

¢ User-based: Stamp tool (similar to the Healing tool
of Photoshop 7)

* NOTE: other images can be used as source for the
missing details




User Based Methods: Hallucination (Il)

Input LDR: Image ne ‘ Bilaieral Fillering.

Gradient Image 2 Output HDR Image

Mexican Mug's image is courtesy of Ahmet Oguz Akyuz

User Based Methods: Hallucination (lll), Copying
Fine Details in the Detail Layer

- @ mes

Evaluation: Why validation

¢ Need to evaluate different expansion methods
against a “ground truth”. Why?

¢ To understand weak features or drawbacks
¢ To understand important features

¢ rTMO/iTMO techniques do not generate exact
luminance values

¢ Evaluation:

¢ Perceptual Image Metrics: not exact comparison as in
the PSNR, RMSE, etc.

¢ Psychophysical Experiments




Evaluation: Perceptual Image Metrics

* HDR-VDP (current version 2.1) [MDMS04,MKRH11]:
determines the probability for each pixel of being
different:

* Banterle et al. [BLDC06,BLDCB07,BLDC08,B09] used it to
validate that their models were performing better than a
simple non-linear expansion, validate against other
methods, etc.

¢ DI-IQA [AMMSO08]: detects changes in details visibility,
quantization artifacts. Validation of the quality in general:

¢ Masia et al. [MAF*09] and Kovaleski and Oliveria
[KOO09] used it to prove that their methods introduce
less distortions during LDR expansion

Lucy model is courtesy of the Stanford 3D Scanning Repository

- @ mes

Evaluation: Psychophysical Experiments

e Pairwise comparisons of HDR videos [DMHS08]:
* validation of the method against LDR, and LDR2HDR

¢ Pairwise comparisons of HDR images [BLD*09]:
comparisons for image visualization and IBL:
* quantization artifacts need to be handle for better quality.
¢ IBL needs non-linear expansion.
¢ Rating of HDR images and tone mapped expanded images
[MAF*09]:
¢ understanding preferences in very over-exposed area

¢ understanding artifacts in expanded images.




Conclusions:

* LDR Expansion for HDR applications:
* LDR expansion methods are needed to be used in HDR
applications (HDR visualization, Image Based Lighting, etc.)
* The size of over/under-exposed areas is a limitation when
recreating the content

¢ What's important?
* To have non-linearity or controllable expansion functions
* Avoid artifacts’ boosting: quantization and JPEG-like
compression
* Take care of over-exposed areas differently
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Spatial Retargeting

Diego Gutierrez
Universidad de Zaragoza

(slides material also from Miki Rubinstein, Olga Sorkine,
Arik Shamir, Shai Avidan and Susana Castillo)

The Retargeting Problem

cagliari, Italy

Common solutions

Cropping

Homogeneous Scaling




Important content

Content-aware

Ignore content |

Common solutions

sC
[Avidan+Shamir 2007]

WARP
[Wolf et al. 2007)

SNS
[Wang et al. 2008]

Common solutions

+ Homogeneous squeezing/stretching
« Cropping [DeCarlo and Santella 2002; Viola and Jones 2004...]
+ Hybrid solution [modem TV sets]




Ariel Shamir Olga Sorkine

The Interdisciplinary Center, Herzliya New York Univeristy

Eurographics 2012, Cagliari, Italy

Visual Media Retargeting: An Example

[Avidar & Shamir 2007]

Eurographics

Visual Media Retargeting: Scaling

Scaling

[Avidar & Shamir 2007]




Visual Media Retargeting: Seams

Insert & remove seains

Scaling

[Avidar & Shamir 2007]

Visual Media Retargeting: Energy Concept

2. Use some operator(s) |

1. Define an energy function E(l)
(interest, importance, saliency...) to change the image |

— B

[Avidar & Shamir 2007]

Visual Media Retargeting: Energy & Saliency

* Magnitude of gradients (simple)
 Saliency (e.g. Itty’'s method) — multi-res

[Shamir and Sorkine 2009]




Different energy functions

*Histogram of Gradients

*Entropy
*E1
*Mean Shift & E;

[Shamir and Sorkine 2009]

Different energy functions

*Histogram of Gradients

“Entropy
*E1
*Mean Shift & E;

[Shamir and Sorkine 2009]

Different energy functions

*Histogram of Gradients

+Entropy
*El
*Mean Shift & E;

[Shamir and Sorkine 2009]




Different energy functions

*Histogram of Gradients

*Entropy
*E1
*Mean Shift & E;

Eurographi

Simple operators: cropping

» Crop s.t. important (salient) parts remain

» Use domain-specific tools, such as face
detector, gaze estimation... [DeCarlo and
Santella 2002; Viola and Jones 2004]

Simple operators: scaling

« Can combine with cropping techniques (done on
modern TV sets — center remains, peripheral
data is scaled)

« Distorts content but is perfectly temporally
coherent (video)

original squeeze hybrid




Figure 2: A digital image as a 210 discrete grid of pivels. In this
case the cells contain 3 values af RGB coior

LA -

Figure 3: A digital image as a sampiéng of a continuans function

Eurographics 2012, Cagliari, Italy

Problem statement

Given an image | of size (n x m), we want to produce an image
I* of size (n* x m*) which is a good representative of image |

But what is a “good representative”? No definitions exist

Goals of a retargeting algorithm:

— 1. The important content of I should be preserved in I*.
— 2.The important structure of | should be preserved in I*.
— 3.1* should be artifact-free

Eurographic agliari, Italy

Discrete approaches

Seam carving for content aware image resizing
* SIGGRAPH 2007
* S. Avidan and A. Shamir
Improved seam carving for video retargeting
* SIGGRAPH 2008
* M. Rubinstein, A. Shamir and S. Avidan
Seam carving for Media Retargeting
+ Trans. Of the ACM
* S. Avidan and A. Shamir
Multi-Operator Media Retargeting
* SIGGRAPH 2009
* M. Rubinstein, A. Shamir and S. Avidan
..and the list goes on




Continuous approaches

Feature-aware texturing

+ EGSR 2006
* R.Gal, O. Sorkine and D. Cohen-Or

* N tent-drive video il
* ICCV 2007

* L. Wolf, M Guttmann and D. Cohen-Or

* Optimized scale-and-stretch for image resizing
* SIGGRAPH ASIA 2008
* Y. Wang, C. Tai, O. Sorkine and T. Lee

*  Shrii ility maps for content: video resizing
* Pacific Graphics 2008
* Y. Zhang, S. Hu and R. Martin

. and the list goes on

Eurographics

Discrete example: Seam carving

Eurographic

Seam carving

[Rubinstein, Avidan and Shamir 2007]




Seam carving

[Rubinstein, Avidan and Shamir 2007]

Seam carving: problems

« Discrete and greedy — may break structures
+ Can run out of good seams in one direction




Continuous example: Warping

 Allow important regions to uniformly scale

» Find optimal local scaling factors by global
optimization

» Result: preserve the shape of important regions,
distort non-important ones

importance map

Eurographi

Continuous example: Warping

« Grid mesh, preserve the shape of the important
quads

» Optimize the location of mesh vertices,
interpolate image

Continuous example: Warping

« Grid mesh, preserve the shape of the important
auads

|

||

quads with high importance:
uniferm sealing

]
MERERRRREEE
quads with low importance:

allowed non-uniform scaling
« Optimize the location of mesh vertices,
interpolate image




Video?

* Naive... every frame by itself

¢ |y &

Improved seam carving for video resizing [SIGGRAPH 2008]

cagliari, Italy

Too jittery!




Slightly less naive...

Reduction of the video problem to image seam
carving by using projection of maximum energy
through time:

Reduction of the video problem to image seam
carving by using projection of maximum energy
through time:

Rescale Retarget




Rescale

Retarget

Problems?

* More complex scenes:
+ Object movement
+ Camera movement

Global Seams

More Complex Scenes

» More complex scenes:
+ Object movement
+ Camera movement

I

Global Seams




More Complex Scenes

» Seams should adapt and change through time!

Eurographics 2012, Cagliari, Italy

Global Solution

2, cagliari, Italy

One 3D Seam




[Setlur et al. MUM 2005] [Liu+Gleicher, Multimedia 2006]
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P2003] [Krahenbinl et al., SIGASIA 2008] [Pritch et al., ICCV 2009]




Current State of Retargeting Research

%\lo clear evaluation methodology!
— Mostly visual comparison
— Small subset of previous techniques

W

RSN LY

L)l TN o e o)
tational retargeting measure?

4
ompu

Eurographics

A Comparative Study of Image Retargeting
Miki Rubinstein, Diego Gutierrez, Olga Sorkine and Arik Shamir
ACM Transactions on Graphics, Vol. 29(5) (SIGGRAPH Asia 2010)

« Benchmark and evaluation methodology for image retargeting

RetargetMe

ail.mit.

« Comprehensive perceptual study and analysis of image
retargeting




Goals

* What is the “correct” way to retarget this image?

Eurographics 2(

Goals

The dataset and user study
User response (subjective) analysis
— Is there consensus between viewers?
— When is one method better than another?
« Computational (objective) analysis
— Can an image distance measure predict retargeting quality?

Constructing the Dataset

» Image Retargeting objectives:
1. Preserve the important content and structures
2. Limit artifacts




Retargeting Operators

* Cropping [CR]
 Scaling [SCL]

[Manual]
[Cubic interpolation]

souasejey




User Statistics

« Each participant performs 12 comparisons over 5
images

« 210 participants; 252 votes per image
— Halfamazonmechanical turk

— Half (25 cents per completed survey)

« Average time to complete: 20 minutes
“It was a very interesting survey. Very nice experience”

“i need your more survey so that i can help u a lot”

Eurographi

User Statistics

Gender

Country

= & & B HCE

o Begreer mmedetn Aivareed W™




User Agreement

Similarity of votes = consensus on “good” retargeting

Coefficient of Agreement [Kendall 1940]

a; = # times method i chosen over method j

m = # participants

t = 8 (# retargeting operators)

User Agreement
lines/ | faces/ | Textur | foregroun | Geometri | Symmetr | Total
edges | people e d c y

objects Structure
s
u 0.073 | 0.166 | 0.070 0.146 0.084 0.132 0.095

* Low agreement in general

* Greater agreement on images containing faces/people,
evident foreground objects and symmetry.

Operator Ranking

Lines/edges

—

. Total

srr Faces/people
) |

MsY WMCR MULTIOP |EsM [l SNS SCL WARP sc
Streaming Cropping  Multi- shift-  Scale& Scaling Nonhomo. Seam
Video operator maps  Stretch Warping ~ Carving




Operator Ranking

Inos/edges |
SV MULTIOP GR) (SM_[SNs SCL) (WARP] SC
facesipecple 1

CR) (SV_MULTIOP)| (SM) (SNS_[WARP_SCD sC)
1

sture
muLTioP (v (cRI[sm sns) (WARP_sci] sc)

By foreground objects |
Attribute GR_(8V) MULTIOR), (W
geometic stnctures |
SV CR (MULTIOP)| (SM) [SCL  SNS) (WARP SC)
symmetry 1

MULTIOP [8V) SCLI CR| (SNS WARP SM_ SC)

Aggregate 1
SV CRMULTIOP)I (SM_[SNS) (SCL_WARP SC
1
1 2 3 1 4 5 6 7 8
Rank  [Rubinstein, Gutierrez, Sorkine and Shamir 2010]

Total

Eurographics 2(

Additional Questions

!lll I

T8 6 011121318 1518

=
—
=

ISNS]
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Partial Conclusion

* (At least for our retargeted setup)
* SUBJECTIVE:
« Clear and consistent division in groups
+ CR, SV, MULTIOP: good!
* SCL, SC, WARP: not so good
« Greater agreement for faces/people and foreground
objects:
« Saliency at object level?
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“No Reference” Experiment Results

« Similar setup, source image not shown
* New set of 210 participants

“No Reference” Experiment Results

) | | Reference “_ No Reference
" | | " | | | |

Msvy EcrR EwmuLTior Elsm [ SNS scL WARP sC
Streaming Cropping  Multi- shift-  Scale& Scaling Nonhomo. ~Seam
Video operator  maps  Stretch Warping ~ Carving
foreground | geometric

0964 | 0.988 | 0946 | 0737 0950 0.957 0978 0.98

symmetry | A

I texture

5




Operator Ranking

inesiadges
CR_MULTIOP _SV) (SM_[SNS) WARP SCL SC
faces/peopie

CR_MULTIOP SV) (SM) (SCL_SNS WARP SC
texture

1
MULTIOP SV CR SM [SNS_WARP_SCL SC)
foreground objects
CR SV MULTIOP) (SM) (SNS WARP SCL SC

geometric structures

(3 @uLTIuF SV) (5M) [SNS) SCL WARP SC)

1
MULTIOP [SV_CR (SCL] SC SM| SNS WARP

Aggregate
CR_MULTIOP SV) (SM) (SNS_SC_ SCL WARP

Eurographics

Computational Retargeting Measures

* Goal: can computational image distance measures predict
human retargeting preferences?

— Can be used to evaluate new operators
— Can be used to develop new operators — [Simakov et al. 2008],
[Rubinstein et al. 2009]

Eurographics agliari, Italy

(Non-blind) Retargeting Measures

Source ’ Retarget




« Define rate of agreement as the correlation between

Objective Measures

High level semantics:

— Bidirectional Similarity [BDS] - Simakov et al. 2008

— Bidirectional Warping [BDW] - Rubinstein et al. 2009

— SIFT Flow [SIFTflow] - Liu et al. 2008

— Earth Mover’s Distance [EMD] - Pele and Werman 2009

Low level features
— Edge Histogram [EH] — Menjunath et al. 2001
— Color Layout [CL] — Kasutani and Yamada 2001

See dataset website and supplemental material for
more details

Eurographics

How to Evaluate an Objective Measure?

rankings induced by the user responses, and the

objective measure
Subjective Objective

el

TR v WUTOP 5C SCL  SW SNS WARP CR SV IALTIOP SC SCL SN SHS WARP

4

Eurographics 20:

Objective Analysis Results

lines/ faces/

Metric edges people texture| objects Y y| total
BDS 0.04 0.19 0.06 0.17 0.00 -0.01 0.08
BDW 0.03 0.05 -0.05 0.06 0.00 0.12 0.05

EH 0.04 -0.08 -0.06 -0.08 0.10 0.30 0.00
CcL -0.02 -0.18 -0.07 -0.18 -0.01 021 -0.07

SIFTflow 0.10 0.25 0.12 0.22 0.08 0.07 0.14

EMD 0.22 0.26 0.11 0.23 0.24 0.50 0.25

The results were spectacular(ly poor!)

We tried something else:
— SIFT-flow [Liu et al. 2008]: SIFT
— Earth mover’s distance [Pele & Werman 2009]: EMD

Somewhat better ©




Can computational image distance metrics predict human
retargeting perception?

Eurographics 2(

Conclusions

SUBJECTIVE:
More recent algorithms do outperform their predecessors
in a (surprisingly) consistent way

Cropping is the simplest and one of the best:
« loss of info OK

« distortion NOT OK

 bring it back!

Interestingly, scaling and seam carving do not do very
well on their own... but are two of the three in MULTIOP:
combination of simple methods?




Conclusions

OBJECTIVE:

* We are a long way from predicting human perception

+ Four similarity image metrics did not perform well at all

« Two metrics not originally designed for that purpose did
somewhat better

« Optimize retargeting wrt those?
« Further research is (badly!) needed

Eurographics

Image Retargeting Quality Assessment
Computer Graphics Forum, 2011, Vol. 30, No. 2, Eurographics 2011,
Yong-Jin Liu, Xi Luo, Yu-Ming Xuan, Wen-Feng Chen, Xiao-Lan Fu

ColSim(CS,;,Ch ) = wiSalSim(L:%, Li3 )+
waSalSim(a}S, arly) -+ wySalSim(b:5, b

Eurographi

Conclusions

We need video analysis and experiments!




Using Eye-Tracking to Assess Different Image Retargeting Methods
Susana Castillo,Tilke Judd and Diego Gutierrez
Applied Perception in Graphics and Visualization 2011
Using Eye-Tracking to Assess
Different Image Retargeting Methods

[Castillo, Judd and Gutierrez 2011]

Using Eye-Tracking to Assess Different Image Retargeting Methods
Susana Castillo,Tilke Judd and Diego Gutierrez
Applied Perception in Graphics and Visualization 2011

How to measure the relevance of a retargeting approach?

[Chamaret et al. 2010]

Overview

[Castillo, Judd and Gutierrez 2011]




Retargeting Operators

D)

' |
Rank [Rubinstein et al. SIGAsia 2010]
[Castillo, Judd and Gutierrez 2011]

Eurographics 2012

Collect eye tracking data

Screen resolution
1280x1024

Each image
shown for 5
seconds

Eye tracking data

Contextual guidance of eye movements and attention in real-world scenes: The role of
global features on object search [Torralba et al. 2006]

= i
Fixations for 7 users
[Castillo, Judd and Gutierrez 2011]




Eye tracking data

Learning to predict where humans look [Judd et al. 2009]

Average fixation locations / continuous saliency map

[Castillo, Judd and Gutierrez 2011]

Eye tracking data

Learning to predict where humans look [Judd et al. 2009]

Top 20% salient locations
[Castillo, Judd and Gutierrez 2011]

Eye tracking data

[Castillo, Judd and Gutierrez 2011]




[Castillo, Judd and Gutierrez 2011]

Eurographic:

MIT Predictive Model of Saliency

Body parts  Cars  Animals

Judd et al. 2009]

Eurographic: cagliari, Italy

MIT Predictive Model of Saliency

Saliency Maps from eye-tracking data

80% correlation

Saliency Maps predicted by the model from Judd et al. [2009]

udd and Gutierrez 2011]




[Castillo, Judd and Gutierrez 2011]

Eurographics 2012, Cagliari, Italy

Conclusions

« Lots of methods in the past few years, in top-notch places
* Relatively small impact in industry

RetargetMe

http://people.csail.mit.edu/mrub/retargetme/
or Google: “retargetme”

¢ We need more (and better!) metrics
* Does video retargeting really work?

Eurographics agliari, Italy

Conclusions
Eye-tracking data framework

The model of saliency from Judd et al. [2009] can be an useful tool in
a retargeting context when using an eye tracker is not feasible

Analysis of 4 retargeting operators with 6 image distance measures
— Using eye-tracking data can improve the predicting capabilities of these
measures

Alteration of the image semantics.
— Content removal alters Rols although the results can be aesthetically
pleasing

Attentional tension between Rols and artifacts

— Large artifacts can remain unnoticed when not in a Rol (At least for our 5
second task)




Spatial Retargeting
Diego Gutierrez
Universidad de Zaragoza

(slides material also from Miki Rubinstein, Olga Sorkine,
Arik Shamir, Shai Avidan and Susana Castillo)




r_ Eurographics 2012

Cagliari, Italy

ERENCE OF THE EUROPEAN ASS

Elmar Eisemann
Telecom ParisTech / CNRS-LTCI

Introduction

- Example:
2002 (2 hrs) vs.2012 (13 Hz)

First Observation

- Today’s main cost is shading




Second Observation

< Many pixel computations-are similar over space
and time

Eurographics 2012, G

Third Observation

Frames do not differ much...

Consequence

- Given:
— Pixel color determination is expensive

— Computations can be spread over space and time

— Frames are similar

+ Reuse pixel information over space and time
to reduce shading costs




Remember?

Observation: shading correlates with geometry
World information behind pixel is for “free”

— Depth (position)

— Normals

— Materials, Textures

— Geometric motion flow

y
help?

- Find correspondences and transfer shading!

Forward Reprojection

* Requires forward motion vectors
- Holes and gaps
+ Difficult to implement with DX9/ 10




Reverse Reprojection

[Nehab 06/07, Scherzer 07]

+ Reprojection operator (x',)',z') = 7, ,(p)
+ Resolve occlusion: Test if z'= d,_(x',y")
+ Holes filled with additional pass

new frame ( f,)

Reverse Reproictio '
[Andreev 2010, Yang 2011]

A + Reverse Reprojection also
works for extrapolated frames

Search in a window around equivalent position for:
Q+Motion(Q) =P

Reverse Projection - iterative
approximation [andreev 2010, Yang 2011]
« For a pixel P, we need to find a pixel Q:

Q+ Motion(Q) = P

Corresponds to a fixpoint:
Q= P - Motion(Q) := F(Q)
Solution: initialize Q0 = P,
iterate Qi =F(Qi-1)
No guarantee for convergence, but often does




Reality Check — is Reprojection Useful?

+ Regular rendering loop (without using TC)
— Recompute every pixel with original pixel shader

Eurographics 2012, Cagliari, Italy

Reality Check — is Reprojection Useful?

+ Reuse previous results using the RRC
— Reshade on demand
— Cache reuse path must be cheaper for acceleration

Eurographics 2012, Cagliari, Italy

Static procedural texture Globalillumination

(

<
Numerical integral Multi-pass effects




Multi-pass Rendering Effects
+ Render a set of images with similar viewpoints

— Shade one
— Shade others via reprojection

c e Jle]lell o

Eurographics 2012, G

Motion Blur

3 time samples 6 time samples 14 time samples
60fps brute-force 30fps brute-force 13fps brute-force
60fps RRC 60fps RRC 30fps RRC

Depth of Field

Py

pinhole lens model

‘

depth of field
(DOF)




Depth of Field

+ View synthesis using image-based ray tracing

Lens

4 aperture samples g aperture samples 20 aperture samples
45fps brute-force 20fps brute-force 8fps brute-force
45fps RRC 45fps RRC 20fps RRC




Stereoscopic Rendering

+ Generate images from two nearby views
— Render the left eye normally
— Render right eye with reprojection

reproject

combine

Eurographics 2012, G

This sounds amazing, but...

- So far: shading was static!

+ How to deal with temporal changes?
— Can we exploit spatial coherence where needed?

Exploit Spatial Coherence

« Idea: use low resolution, then upsample

Smart filter




Remember?

- Observation: shading correlates with geometry
« World information behind pixel is for “free”

— Depth (position)

— Normals

— Materials, Textures

— Geometric motion flow

|
High res. reconstruction

ws (4, 7)

[Eisemann 2004, Petschnigg 2004, Kopf 2007, Yang 2008]
Non-linear interpolation steered by geometry:

Image-space filter
(e.g. hai/ box)

N la 'A A) r

k(i,j) + d(z

Joint-Bilateral Spatial Upsampling
[Eisemann 2004, Petschnigg 2004, Kopf 2007, Yang 2008]

Low-s. shading input

Reference




Spatio-Temporal Upsampling

+ Choose preferable method:

combine spatial upsampling
& temporal caching

Gain information over time?

+ Over time, the same low-res image gives...
the same information!

Temporally Interleaved Sampling

« Cache different pixel positions to upsample over
> Refresh out-dated pixels (e g. every k * k frames)

Regular sampling pattern (efficient) 4nx 4n pixels
I.I HpE N

n x n pixels

10



Putting things together:

- temporal
Jittering -> more information for static over time

+ Spatial
Bilateral Upsampling (low2high) -> responsiveness

e

Choose according to change 4x4 upsampled result

Eurographics 2012, Ca

4 x difference

Spatio-Tempo:raI Upsampling -
[Herzog et al. 2010]

« Beneficial to use
Spatial
& temporal upsampling

— Static frame convergence

— Robustness with respect
to changing lighting conditions

11



Extension: Remote Rendering

+ OnLive, OToy, Gaikai rely on video encoding
Naturally exploit coherence in video

Server

Client

Cospplicaion ——>  Internet  ————— | Video -

Deceding <>

Full-frame
Rendering

Video
Encoding

Streaming for Rendered Content
[Pajak et al. 11]
Server Client
e, W
J— -

CGapplication  —>  Internet

Full-frame Bandwidth:

Rendering 2-6Mbit per client

Video

Encosing

2012, Cagliari, Italy

&

Streaming for Rndered Coten»t
[ngak et al. 11]

Clients

N

Video

CGapplication  ——>  Internet

Decoding
Fulframe Bandwidth:
Rendering 2-6Mbit per client
Video
Encoding

12



Streaming for Rendered Content

[Pajak et al. 11
server Clients

] - Video
3 Decoding
|

Video
CGapplication | > Internet Decoding
Ful-frame Bandwidth:
Rendering 2-6Mbit per client
Video
Video Decoding
Encoding

Streaming forfRenderedCi)nteint
[Pajak et al. 11]
+ Rely on spatio-temporal upsampling strategies

— Less bandwidth
— Less server workload

Specialized Depth Encod
encode discontinuities
exploit smooth variation

.

Euragraphics 2012,

Streaming for ReneredCbnten
[Pajak et al. 11]
Server Clients

Video

Decoding
Upsampling

Auxiliary

= Stream N~

- Decoding ‘

Video
o Internet pecoding
Upsampling
Auxilary
Similar bandwidth: Stream

CG application

Auxliary Stream 2-6Mbit per client Decoding a
Encoding

Video Video

Auxiliary
Sweam s
Decoding ~

13



Streaming for Rendered Cnté_nt
[Pajak et al. 11]

Pajak et al. solution
+ more (depth, motion)

Extension to Stereo

[Didyk et al. VMV*‘10]

- Adaptive Image-space Stereo View Synthesis
+ More sophisticated (adaptive) warping

A
4‘ b ‘Wiqh“l

14



Extension to Stereo

- Temporal coherence of viewpoint
— Reuse nearby view from previous frame
— Only render one new view and rely on warping

Viewpoint at time t+1

Extension to Stereo - Results

Qe

(L

—7 4

i

Reference Previous work  Warping Temp.
Warping

Eurographi

Use a cheap warping technique [Didyk10]

Regular Grid Snapped Morphed

Similar warp as for hold-type blur reduction

15



Warping

Very efficient

— Maps very well to GPU

— Executes in less than 4ms on a full-HD frame
- NVIDIA GT 460

Easy to implement

+ Important for streaming architectures

2012, Cagliari, Italy

Conclusion

- Spatio-temporal upsampling is very powerful
« Extrapolation is possible

+ Cheap alternatives to rendering all frames

2012, Cagliari, Italy

So far...

- Different ways rendering (reconstruction,
warping, etc.) allow us to produce more
efficient high-quality imagery

« So far:
Have a low computational cost to produce high-
quality

« Now:

Make use of temporal domain to improve
quality

16



Exceed display limitations

+ ldea: Exploit temporal domain to e
content
— Even beyond physical limits

+ Examples:

— Color and Brightness: Frame Rate Control +
Afterimages
— Resolution: Apparent Resolution Enhancement

Eurographics 2

Display Improvement

1990's 2000's Joday Future

We are here

< W

AN
“ﬁ -
High refresh rate No fickering Brighter
morathan 120Hz  Higher lovel of luminance  geyer conirast Higher refresh rate
Low brighiness  Low reffeshrate - ~60Hz | o rasponse time Bettercalors,

Betier contrast

Fiicker for low rates  Long response time

Better brightness

Exploit HVS to
improve quality Less expensive ;)

Color Bit Depth: Frame Rate Control (arto4]

« Use eye latency to integrate color sequences
— Similar principle as DLP projectors

— Most screens have 6 bit color depth
but card delivers 8 bit
-> Flicker different colors and have eye average them

/H > N

17



Effect known from older video games

« Virtually augment the color palette

¢ 0
‘&

12, Cagliari, Italy

Effect known from older video games

« Virtually augment the color palette

¢ 0

- %

Overdriving in LCD TV

Combating slow response of LC

Norrnal Driving
Drive

S
a compensated Response
&
2
A =

o ’
= /

/ ~

/ ™~ Un-compensated Response

1 frame

JH. Souk, J. Lee, Recent Picture Qualily Enhancement Technology Based on Human Visual Perceplion in LCD TVs, 2007]

18



Flickering even works for >8 bit

- Fight mach banding artifacts

.

Manually:
— Switch last color bit

.

Useful for HDR imagery,
but very high refresh rates needed...

Based on perception (eye integration)

os 2012, Cagliari, Italy

Afterim aQges [Ritschel&Eisemann2012]

2012, Cagliari, Italy

Afterim AaJes [Ritschel&Eisemann2012]

+ The brighter a stimulus,
the stronger the afterimage

- Bleaching of photoreceptors creates
afterimages on retina

19



Afterim aJes [RitschelaEisemann2012]

+ Computational model for simulation

content
— Even beyond physical limits

« Examples: E !

— Color and Brightness:
Frame Rate Control + Afterimages

— Resolution: Apparent Resolution Enhancement

Eurographics 2012,

Apparent Resolution Enhancement
[Didyk et al. 2009]

20



Apparent Resolution Enhancement
[Didyk et al. 2009]

[Didyk et al. 2009]

low res

Many High-Resolution Sources

Photographs: > 10MPix Panoramas: > 50MPix

—_—

&

Computer generated: Unlimited
Gigapixel Photography:

21



Foveal Photoreceptor Mosaic

A-C fovea center - cones only

D rod-free region boundary,
the arrow shows rod

E cones-rods balanced

F rods outnumber cones

Eurogras

Motivation

1px > > 9 recoptors

Perception: Spatial Visual Acuity

Target resolution threshold: the smallest angular size at
which subjects can discriminate

< Il %

Target localization threshold: the smallest difference in
position which subjects can discriminate (Vernier
hyperacuity)

22



Display content?

1px — >9 receptors

Temporal Domain

Pixel 1

prett -

Pixel 2

framo 1 frame 2 framo 3

framo 1 framo 2 framo 3 tomporal intogration

23



Perception: Smooth Pursuit Eye Motion (SPEM)

Eye tracking [Laird et al. 2006]
—Almost perfect tracking and instant for steady linear motion
« velocities of 0.625 — 80 deg/s
— HVS compensates for fixational eye movements:

- tremors, drifts, and microsaccades

.

Reality: Blur from object motion is eliminated
Screen: Blur can be used to increase resolution!

Pixal 1 Pixel 2

® N m -
ol N N B4 |
© N E - .

frame 1 framo 2 framo 3 tomporalintegration

Temporal Integration Model

(@ v |

Receptor signal:

i -segment

N

E w; I(p(i),1) pli) e insagmenti
;. I

i=0

i) -intensity of pixel xin segment/

w; - weights proportional o the lengih of the segment

24



Prediction in Equations
m - L

oS
subimages
L
W | =
Ik

retina image

lay prediction for
one receptor

Optimization Problem

model

integration |

:
v g

subimages

high resolution image

Optimization Result

Display

integration

—

Predicted image on the retina

25



Fusion Frequency

« Depends on
— temporal contrast

— spatial extent i
SoHz
3 —
§ oz
s
o §o
19 deg S 2ok
3 1/
T ok
@ 2deg oz
El T
Temporal Contrast

itialFickor Fraquarey - Hecht and Seit's daatrom
Biown ) L. Acker and biommiont Semuadn

ARE vs. Lanczos

-

< compare each frame
to moving image
— downsample separately
hence, slightly different
information over time

praerence

App. an
m PP wtancios

Paint Cat Hair Car Text

ARE vs. Mitchell

« Mitchell downsam pIirﬁg

— participants adjusted parar
to match high resolution ifmay et Gt Hair

B

= App.
= 3% u Mitchel
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ARE - Alphabet

AECDEFGHIJKLMNOPARSTUWVYEYZ

Size: 2 x 3 pixels

readability

« Applications:
— scrolling text or maps on low resolution devices

2012, Cagliari, Italy

Recently: Extension to movies

Apparent Resolution Enhancement for Animations
[Templin et al. SCCG 2011]

2012, Cagliari, Italy

Conclusions

.

Human perception is a crucial
component to high-quality imagery

Resolution & Colors
physical screen capabilities

.

Works for large range
of commonly used display devices

27



Future?

- Bigger,
better,
faster...

— More realism
— More details
— More effects

.

Higher quality beyond physical limitations
— Only first steps in this direction
— More to come...

Thank you very much
for your attention!

Karol Myszkowski
karol@mpi-inf.mpg.de

Elmar Eisemann
eisemann@telecom-paristech.fr

Acknowledgments:
Thank you for support in creating the slides go to
Daniel Scherzer, Robert Herzog and Dawid Pajak
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Stereo content
retargeting

Piotr Didyk

MPI Informatik

Why stereo?

Images are no longer flat

* Improves realism
+ Images are not longer flat
* Better layout separation

Reproduced view dependent effects

* Improves material perception

History of stereo

1838: different images for both eyes

1890: patent on 3D movies

1900: tripod for taking 3D pictures
1915: exhibition of 3D images
1922: 3D movie

1923: 3D movie with stereo sound
1952: 3D movie in color

90’s: IMAX cinemas, TV series
2003: feature film in 3D for IMAX

2009 - now: became very popular




Number of 3D productions

Short films Feature Films

Why didn’t get popular?

#3D productions

e
1922 1930 1938

o dlidk .||||| Bam ||I|||I|II“I|I
1962

1970 1978 1986 1994 2002 2010

year

Early 3D production

Expensive hardware

Lack of standardized format

Impossible at home

Lack of interesting content

Number of 3D productions

Short films Feature Films

Now

#3D productions

! L - e II‘I-. o dlidk .||||| | namn ||I|||I|II“I|I

1922 1930 1938 1946 1954 1962 1970 1978 198§ 1994 2002 2010

year




Stereo in daily life

i K

Shutter glasses.

Autostereoscopic

Current 3D production

Great content:
Beautiful shots with complex depth
« Computer generated special effects

3D is coming to our homes:
«  Equipment is getting less expensive
+ 3Dgames/TV

New better 3D equipment: \
ot
«+ Shutter glasses (e ‘\
+ Polarized glasses _‘“e\{ )

*  Autostereoscopic displays are getting better

Stereo on a flat display
» Different image for each eye
@
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Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues: i
accommodation,

e

Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues: i
accommodation,

@




Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues: Vergence i
accommodation, vergence

Depth perception

We see depth due to depth cues.

Stereoscopic depth cues: 3
binocular disparity ’ ’
Ocular depth cues:

accommodation, vergence

Pictorial depth cues:
occlusion,

Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity r ,
Ocular depth cues:

accommodation, vergence

Pictorial depth cues:
occlusion, size,




Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity ’
Ocular depth cues:

accommodation, vergence

Pictorial depth cues:

occlusion, size, shadows... -

Cues sensitivity

Personal Action
Vista space
space space
0.001 Gectusion
%
8 o001 %
5 o
£ 3
5 - o, ﬁ Relate s
%, NI Y
£ o1 2, NG b
£ o e s % Relatve densy
3 “, %,
e, ‘e,
X
10
10 10 100 1000 10000

Depth [meters]

“Percelving layout and knowing distances: The integrotion, relative potency,
ind contextual s of different information about depth”
by Cuting and Vishton [1995]

Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity
Ocular depth cues: Challenge:
accommodation, vergence . . .
Consistency is required!

Pictorial depth cues:
occlusion, size, shadows...




Present cues:
* Size
+ Shadows
* Perspective

Simple conflict example

Present cues:
* Size
* Shadows
* Perspective
* Occlusion




Disparity & occlusid
conflict

B

Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity Require 3D space

Ocular depth cues: We cheat our Human Visual System!
accommodation, vergence

Pictorial depth cues:
occlusio: size, shadows... |:> Reproducible on a flat displays

Cheating our HVS

| Accommodation|
Screen i (focalplane)|

Viewing discomfort

Objechll left eye

Object perceived in3D |

Depth




Viewing discomfort

Comfort zones

Comfort zone size depends on:

« Presented content
* Viewing condition

Simple scene

@ I
o =

2-20m

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zones

Comfort zone size depends on:

*  Presented content
+ Viewing condition

Simple scene, user allowed to look away from screen

0.2-03m 05-2m
@®

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001




Comfort zones

Comfort zone size depends on:

+ Presented content
* Viewing condition

Difficult scene

10-30cm ——— ‘ — 8-15cm
@®

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zones

Comfort zone size depends on:

« Presented content
* Viewing condition

Difficult scene, user allowed to look away from screen
11em i | — 6-15em
o

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zones

30|
Comfort zone size depends on: Cinema }
« Presented content — 10 ..
£ 5
+ Viewing condition E g
+  Screen distance & /
] Television
= 3
2
g=s F .U’/_.
Other factors: 2
=1
«  Distance between eyes g
+ Depth of field . ~ — Deskiop
+  Temporal coherence asb £ — — — Mobile — — — -
03 1 3 10 30

“The zone of comfort: Predicting visual discomfort with stereo displays” by Shibata et al. 2011




Depth manipulation

Viewing discomfort

Depth manipulation

Viewing discomfort -Scenemanipulation  yjje\ing comfort

Camera manipulations

Viewer/Display space N
L F

eye Display

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001




Camera manipulations

P

Camera/Scenf/space
camera

, Virtual display

A

Reamera .

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Camera manipulations

Camera/Scene space

+ The parameters can be the same
> may cause discomfort

+ Different parameters for capturing the scene

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Camera manipulations

+  Define the disparity limits

+ Calculate appropriate camera parameters
+ Adjustmentin each frame

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001
“Evaluating methods for controlling depth perception in stereoscopic cinematography” by Sun et al. 2009




Camera manipulations

Nk R

Game controller:

“0SCAM - Optimized Stereoscopic Camera Control for Interactive 30" by Oscam et al. 2011

+ Adjustmentin each frame

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001
“Evaluating methods for controlling depth perception in stereoscopic cinematography” by Sun et al. 2009

Camera manipulations

General procedure:

1. Define viewing condition
2. Adjust cameras parameters
3. Capturing

Displaying on different device:
(captured content)
*  Potential discomfort
+  Recapturing ?

Pixel disparity

Zero disparity
on the screen plane

Bigger disparities
in front and behind screen

Left + right view




Stereo content

Left view Right view

Can we have pixel disparity / depth ?

Stereo image pair Pixel disparity map

Rendering —_— Usually available

Only image pair ———— Computer vision technique

Stereo image pair Pixel disparity map Modified pixel disparity

& Image-based rendering A
F—y—|

Adjusted stereo pair

“Adaptive Image-based Stereo View Synthesis” by Didyk et al. 2010
“Nonlinear Disparity Mapping for Stereascopic 30" by Lang et al. 2010




Stereoscopy from Light Fields

Light Field

.QA

—v—vy——

Left Right

“Multi-Perspective Stereoscopy from Light Fields” by Kim et al. 2011

Stereoscopy from Light Fields

Light Field

Scene

IQA

“Multi-Perspective Stereoscopy from Light Fields” by Kim et al. 2011

Stereoscopy from Light Fields

Stereo image pair

Light Field

“Multi-Perspective Stereoscopy from Light Fields” by Kim et al. 2011




Camera separation

“Multi-Perspective Stereoscopy from Light Fields” by Kim et al. 2011

Stereoscopy from Light Fields

“Multi-Perspective Stereoscopy from Light Fields” by Kim et al. 2011

Disparity manipulations

“Nonlinear Disparity Mapping for Stereoscopic 30" by Lang et al. 2010




Disparity manipulations

Mapping function

. W

Output pixel disparity

Pixel disparity map

Function: Other possibilities:
+ Liner *  Gradient domain
* Logarithmic * Local operators

+  Content dependent

Modified pixel disp:

“Nonlinear Disparity Mapping for Stereoscopic 30" by Lang et al. 2010

Saliency map

Input tereo image saliency map
E 0w > 4 2 0.3 60
s(d) d(d) [s(rjdx
Jo

Disparity importance Disparity mapping function

“Nonlinear Disparity Mapping for Stereoscopic 30" by Lang et al. 2010

Saliency map

fermas

Input disparity

——

10 Disucs Evsonpiscs

“Nonlinear Disparity Mapping for Stereoscopic 30" by Lang et al. 2010




Scene manipulation

Misperception

12 z
P
B perceived object

right image

left image ﬁu h

Bl BN J

Parameters are the same

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993

Misperception

1z z
P
B captured object

right image
leftimage

o
Eyes position and interoccular distance changed

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993




Misperception

Eye separation = 65 mm

-5mm +5mm

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993

Misperception

Screen width = 300 mm

|

-150 mm +200 mm

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993

Misperception

Viewing distance=1m

-0.5m +1m

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993




Misperception

“Misperceptions in Stereascopic Displays: A Vision Science Perspective” by Held et al. 2008

3D image prediction

Depth perception

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...

“A perceptual model for disparity” by Didyk et al. 2011




Disparity perception

Depth difference

Depth

gliari, Italy

Disparity perception

Is it noticeable? %)

How significant O )

is the difference?

)

I"

epth difference

Depth

Disparity perception

Is it noticeable? o)
How significant O B

is the difference?
o\; E 0

Depth difference
disparity = |a — |

Depth




Eurographic:

One just-noticeable difference

Just noticeable

Detection threshold

@O

Depth

How big is the detection
threshold?

For sinusoidal depth corrugation

@ g \\).

o<

dispariy = la - 1

“Sensitivity to horizontal and vertical corrugations defined by binocular disparity.”
by Bradshaw et al. 1999

Disparity perception

@
How significant O @
is the difference? D

@

@

Depth




Eurographic:

Discrimination threshold

Existing
depth difference

Depth -

Discrimination threshold

-l Just noticeable
depends on the previous

amplitude

Depth

Disparity perception

Sensitivity to depth changes depends on:
= Spatial frequency of disparity corrugation

= Existing disparity (sinusoid amplitude)




Measurements

Parameter space:

1. Sample the space

3. Measure thresholds

> Experiment with adjustment task

“A perceptual model for disparity” by Didyk et al. 2011

Measurements

[ S—

R

ol e (e 00
résholds measurement:

+ 12 partcipants = 300e samples

“A perceptual model for disparity” by Didyk et al. 2011

Model

3. Fit analytic function

Threshold

Frequency [cpd| ‘Amplitude [arcmin




The HVS response

Disparity sensitivity

Threshold [

-}
]
<
5
I
<
=

Frequency

Disparity [arcmin]

The HVS response

Disparity sensitivity

= X
5 &
€ &€
g &

5 &
&
2 X
2 &
: @ \{

£

=
- Depth
Disparity [arcmin] —_—

The HVS response

Disparity sensitivity
10

1IN0

1D 9]

O

4 JND

Disparity [arcmin]




Eurographi

The HVS response

Transducers
s
-
3 - s
& 1
Frequency [cpd] o Disparity [arcmin

“A transducer function for threshold and suprathreshold human vision” by Wilson 1980

“A perceptual framework for contrast processing of high dynamic range images” by Mantiuk et al. 2005

Perceptual space

We show so far:

VVVV

: > HVS response
(disparity, frequency) [IND]

[arcmin, cpd]

Perceptual space

Our problem:

w 10p¢ strong

=

-10px.

3D scene with pixel disparity Map of HVS response
[pixels] [JND]

'l




Perceptual space

Our problem:

= Pixel disparity [pixels] < Disparity [arcmin

sProblems:- compleximages ng
|
Z
I ak
3D scen - — -
[pixels] [IND]

agliari, Italy

Pixel disparity to disparity

disparity = |a— |

Pixel disparity to disparity

e T

Screen distance

Interaxial

a ]» Pixel disparity




Pixel disparity to disparity

(viewing conditions, pixel disparigy) - vergence

Vergence to disparity

W =: o

Vergence [arcmin]

How do people deal with luminance?

Perceptual space
(Perceived contrast)

Luminance




Lowpass filters Contrast decomposed
into frequency bands

Luminance (contrast perception)

Works because:

Different frequencies are processed separately.

For disparity is similar.
Disparity is processed in independent
channels.
Seeing indepth” by Howard and Rogers 2002
Lowpass Tiers ROrEpIUGESPETRTIOES
into frequency bands

Luminance (contrast perception)

Luminance & Vergence

Luminance contrast <> Disparit

Disparity / Luminance similarity:

LOWPAss TIers RervepiuaroperRniees
into frequency bands




Vergence to disparity

Vergence [arcmin]

Vergence to disparity

Lowpass filters Differences

Vergence to disparity

g

Lowpass filters Differences

* We can process frequencies independently
¢ Vergence — Disparity




Perceptual space

“A perceptual model for disparity” by Didyk et al. 2011

gliari, Italy

Disparity metric

Disparity metric

For Luminance:

“A visual discrimination model for imaging system design and development”
by Lubin 1995




Disparity metric

strong

“A perceptual model for disparity” by Didyk et al. 2011

Disparity manipulations

— The HVS is taken into account
— Efficient disparity reduction

péecepteaisgace:

“Noniinear Disparity Mapping for Stereoscopic 30"
by Lang etal. 2010

“A perceptual model for disparity” by Didyk et al. 2011




Disparity manipulation

“A perceptual model for disparity” by Didyk et al. 2011

Inverse model

Invertible

Inverse model

Perceptual space




Disparity manipulation

Standard technique In perceptual space

strong.

weak

]

Perceived distortions Perceived distortions

» Important disparities preservation

Personalization

Disparity perception depends on:

Eo! c:! -
P AR

Equipment User




Personalization

Originaldisparity

Perceptual space

‘Adjusted disparity

“A perceptual model for disparity” by Didyk et al. 2011

Personalization

All users perceive the same regardless:

* Equipment
* Disparity sensitivity

Standard stereo




Backward-compatible stereo

Standard 20 image

Backward-compatible stereo

Cornsweet illusion

S * Similar perceived
contrast
* Luminance range reduced

—

Cornsweet illusion works for depth:

“A Craik-0'Brien-Cornsweet llusion for visual depth * by Anstis et al. 1997




Standard stereo Backward-compatible stereo

+ 3D impression preserved
* No artifacts when special equipment is unavailable

“A perceptual model for disparity” by Didyk et al. 2011

y R
Phato Standard steres  Backward-compatible stereo

Backward-compatible

* 3D impression preserved
* No artifacts when special equipment is unavailable

“A perceptual model for disparity” by Didyk et al. 2011

Conclusions

« Stereo perception is complex phenomena

* Important aspects:

Viewing conditions
. Viewer
+  Equipment
+ Temporal coherence ...

« Different adjustment techniques:
+  Camera adjustment
- Pixel disparity mapping operators
+ Perceptual space
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Image / Video Quality 7
Assessment/ 4’%,
%’e;,,

Tung O. Aydin
Disney Research, Zurich

<tunc@disneyresearch.com>

Problem Definition

Subjective Quality Assessment

Figures taken from [Ferwerda 2008]

Detection Discrimination Scaling

Refer to: [James Ferwerda, Psychophysics 101: How to Run
erception Experiments in Computer Graphics, SIGGRAPH 2008].

3/2/2012




Objective Quality Assessment

Refer to: [Wang & Bovik, Modern Image Quality Assessment, 2008].

Eurographi

Generic Objective Quality
Assessment Workflow

Dis\ur‘lmr\
Map / Rate
eyt

Reference Test Distortion Map

Eurographics

Simple Distortion Metrics

1 N
+ Mean Squared Error \/SF(x,y)=— x —y.)?
) Ng(, )

(MSE)
- Peak Signal to Noise )&
Ratio (PSNR) PSNR(x,y) = IOIOg]Um

« Structural Similarity Index Metric (SSIM): More
sophisticated, accounts for luminance contrast and
structural distortions

SSIM (x,) = (1, 11,)" €(0,.7,) 5(0,.5, )

3/2/2012




Limitations of Simple Distortion
Metrics

Reference Random Noise Blur ~15% Decreased

Luminance

Same MSE for all three
images!

Difference Image
(Color coded)
Reference Compressed

(bmp, 616K) (irg, 48K)

Limitations of Simple Distortion
Metrics, cont.
T | —

2012, Cagliari, Italy

Visible difference doesn’t always mean lower
ityl

3/2/2012




The Human Visual System (HVS)

- —— - Experimental
il A Methods of Vision
i iy Science
| / - Micro-electrode
. - Radioactive
Marker
4 L - Vivisection
% - Psychophysical
V Experimentation

Eurographics 2(

HVS effects: (1) Glare

- Disability
Glare
(blooming)

Video Courtesy of Tobias Ritschel

Eurographics 2(

Disability Glare

+ Model of Light

Scattering

- Point Spread
Function in
spatial domain

- Optical Transfer
Function in
Fourier Domain
[Deeley et al.
1991]

Spatial frequency [cycles per degree]

3/2/2012




Adaptation Level: Adaptation Level:

104 cd/m? Time —> 17 cd/m?

(3) Contrast Sensitivity

Contast
«—

Spatial Frequency

CSF(spatial frequency, adaptation level,
temporal freq., viewing dist, ...)

Contrast Sensitivity Function (CSF)

Steady-state CSFS:
Returns the Sensitivity
(1/Threshold contrast),
given the adaptation
luminance and spatial
frequency [Daly 1993,
Mantiuk et al. 2011].

Sensitvity
2

1000

. Tt

o™

Taoor Lorins™?
2

3/2/2012




(4) Visual Channels

Cortex Transform

Generic HVS-based Quality
Assessment Workflow

Visible Differences Predictor (VDP) [Daly 93, Mantiuk et al. 05, Mantiuk et al. 11],
Visual Discrimation Model (VDM) [Lubin 95]

3/2/2012




QA of Retargeted Images? HDR
Tone mapping case

5X  Luminance
Luminance

LDR HDR

Case Study

ocal Gaussian Blur

HDR Test HDR Reference LDR Test LDR Reference

Eurographics 2012, Cagliari, Italy

(1) HDR pair

HDR-VDP SSIM

Detection Probability

3/2/2012




3/2/2012

(2) LDR pair

HDR-VDP SSIM

Detection Probability

(3) HDR test, LDR reference

HDR-VDP SSIM

Detection Probability

Eurographics 2012, Cagliari, Italy

(4) LDR test, HDR reference

HDR-VDP SSIM

Detection Probability




3/2/2012

Test (Clipping)

Distortion map

Eurographics 2012, Cagliari, Italy

Amplification of Invisible Contrast

Reference Test(Contouring) Distortion map*

2, Cagliari, Italy

Local contrast
reversal




Generic DRI Image Quality
Assessment Workflow

Eurographics 2012, Cagliari, Italy

(1) HDR pair

DRI-IQM
[ Loss
W Amplification
Detection Probability I Reversal

(2

HDR-VDP SSIM DRI-IQM

[ Loss
W Amplification

Detection Probability I Reversal

3/2/2012

10



(3) HDR test, LDR reference

HDR-VDP SSIM DRI-IQM

[ Loss
W Amplification

Detection Probability I Reversal

HDR-VDP DRI-IQM
[ Loss
Detection Probability I Reversal

Eurographics 2012, Cagliari, Italy

Detecting distortions

Reference Sharpening

HDR-VDP

3/2/2012

11



Detecting “types” of distortions

Reference Sharpening Blur

[ Loss
W Amplification

I Reversal

Eurographics 2012, Cagliari, Italy

HDR Tone Mapping Evaluation

Tone Mapping Inverse Display
Tone Mapping Analysis

Aidm et al. 2008]

Eurographics 2012, Cagliari, Italy

Generic DRI Video Quality
Assessment Workflow

TPUT

3/2/2012

12



Extended Contrast Sensitivity
Function

« CSFwpl,—S

* w: temporal
frequency,

« p: spatial frequency,

_, Normalized Sensi

+ L, adaptation level,

« S sensitivity.

Spatio-temporal CSF

Eurographics 2(

Extended Contrast Sensitivity

Function, cont.

« CSF: w,p,L,— S
- w: temporal
frequency,
- p: spatial
frequency,
- L,: adaptation level, 2w
- S: sensitivity.

_, Normalized Sen:

Spatio-temporal CSF"

Eurographics 2(

Extended Contrast Sensitivity
Function, cont.

+ CSFwpl,— S

* w: temporal
frequency,

Sensitivity

« p: spatial frequency,
» L, adaptation level,

* S: sensitivity.

Steady-state CSF°

3/2/2012
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Extended Contrast Sensitivity Function, derivation
CSF(w,p,L,= L) CSFT(w,p,L, = 100 cd/m?) f(o,La)

a = 100 cd/m?

Eurographics

Extended Cortex Transform

Filter Respanse

Frequency [cy/sec]

Sustained and Transient
Temporal Channels [Winkler 2005]

Spatial

Eurographics 20:

Temporal Channels

a
8
g
5
8
G g,
3
5
£
i

0% 05 75 5 10 El

Frequency [cyfsec]
Sustained and Transient Signal Sustained ~ Transient

Temporal Channels

3/2/2012
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Evaluation of HDR
Video Tone Mapping

HDR Reference LDR Test Contrast
Amplification

Evaluation of HDR Compression

HDR Reference

Eurographics 2012, Cagliari, Italy

Evaluation of HDR Compression

Medium Compression High Compression

[Aydin et al. 2010]

3/2/2012
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Subjective Calibration

- Modelfest St 02T 0sTH
dataset at
five contrast
levels

Eurographi

Subjective Validation

Example [Cadik et al. 2010]

Noise, HDR video compression, tone
mapping

“2.5D videos”

LDR-LDR, HDR-HDR, HDR-LDR

Subjective Validation, cont.

(1) Show videos side-by-side (2) Subjects mark regions
on a HDR Display where they detect differences

3/2/2012
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Subjective vs. Objective Results

Subj. Response: DRI-VQM HDRVDP  DRI-IQM

Subjective Validation, cont.

Stimulus_ DRI-VQM  PDM HDRVDP  DRIVDP
0.765 -0.0147 0591 0488
0883 0686 0673 0859
0843 0.886 00769 0865
0815 00205 0211 -0.0654
0844 0565 0803 0689
0.761 -0.462 0.709 0299
0879 0155 0882 0924
0733 0109 0339 0393
0753 0368 0473 0617

Average 0.809 0.257 0.528 0.563

[Cadik et al. 2010] Data available at: http://www.mpi-
inf.mpg.de/resources/hdr/quality

Conclusions

+ A number of It metrics are
as source code or web service

- SSIM:
https://ece.uwaterloo.ca/~z70wang/research/ssi
m/

- HDRVDP :
http://sourceforge.net/projects/hdrvdp/files/hdr
vdp/

- DRI-IQM and DRI-VQM:

http://drim.mpi-inf.mpg.de/
Researchers are starting using these metrics
instead of user studies.
Future directions:

- Metrics for retargeted images [Liu et al. 2011]

~ Better HVS models [Mantiuk et al. 2011]

- Smarter distortion measures.
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