
EUROGRAPHICS 2012 / C. Andujar, E. Puppo Short Paper

S-buffer: Sparsity-aware Multi-fragment Rendering

Andreas A. Vasilakis † and Ioannis Fudos ‡

Department of Computer Science, University of Ioannina, Greece

Abstract
This work introduces S-buffer, an efficient and memory-friendly gpu-accelerated A-buffer architecture for multi-
fragment rendering. Memory is organized into variable contiguous regions for each pixel, thus avoiding limitations
set in linked-lists and fixed-array techniques. S-buffer exploits fragment distribution for precise allocation of the
needed storage and pixel sparsity (empty pixel ratio) for computing the memory offsets for each pixel in a par-
allel fashion. An experimental comparative evaluation of our technique over previous multi-fragment rendering
approaches in terms of memory and performance is provided.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

Capturing efficiently global information of a 3D scene is an
important feature in many graphics applications that simu-
late complex rendering effects. Example effects include or-
der independent transparency, volume and CSG rendering,
trimming, shadow mapping, collision detection, voxelization
and others all of which require processing of multiple frag-
ments.

Storing multiple fragments efficiently in terms of time
and space is a challenging task. A-buffer [Car84] was the
first method to capture all fragments per pixel in a sin-
gle pass. Fragments are stored into variable-length lists per
pixel during geometry rendering, followed by a post-sorting
process that correctly reorders fragments by depth. Vari-
ants have been proposed [MCTB11] that limit per-pixel
storage requirements generating approximate results. Re-
cently, [YHGT10] introduced an actual implementation of
A-buffer on the gpu by performing concurrent linked list
construction. The algorithm scales well and runs in linear

† This author’s work is co-funded by the European Union - Euro-
pean Social Fund (ESF) & National Sources,in the framework of
the program “HRAKLEITOS II” of the “Operational Program Edu-
cation and Life Long Learning” of the Hellenic Ministry of Educa-
tion, Life Long Learning and religious affairs.
‡ fudos@cs.uoi.gr

time on the number of generated fragments, but its perfor-
mance degrades rapidly in cases where heavy access on the
gpu shared memory is necessary. If fragment overflow oc-
curs, they propose to dynamically reallocate memory and
then re-render the scene. Otherwise, much of the allocated
memory goes unused.

We introduce S-buffer, an efficient and memory-friendly
algorithm built on the A-buffer architecture without relying
at linked-lists or fixed-array structures. Inspired by [Pee08,
Lip10], we perform an additional rendering pass for count-
ing fragments per pixel which enables us to allocate the exact
amount of memory that we shall need. To optimize caching
and data bus occupancy, we organize storage into variable
contiguous regions (bins) for each pixel. Contrary to lin-
ear [Lip10] and common parallel [Pee08] prefix sum for gen-
erating per-pixel memory indices, we employ a randomized
prefix sum in parallel by exploiting pixel sparsity (i.e. the
fact that in many scenes there are many fragmentless pixels).
An inverse mapping strategy is also presented to slightly im-
prove performance. S-buffer successfully integrates into the
standard graphics pipeline and can take advantage of fea-
tures such as multi-sample rendering, gpu tessellation and
instancing.

2. Related Work

[Pee08] computes buffer offsets for linearising A-buffer
storage based on the maintenance of a fragment counter pass

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/short/101-104

mailto:fudos@cs.uoi.gr
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/short/101-104


A. A. Vasilakis & I. Fudos / S-buffer

and a subsequent prefix sum on the fragment counter data.
However, the order of this algorithm depends on the active
screen dimensions resulting in a performance downgrade
even when rendering sparse scenes in higher resolutions.
Closest to our work lies the l-buffer architecture [Lip10] that
exploits pixel sparsity. However, a serialized process on the
used pixels is performed to compute the memory offsets for
each pixel.

Various techniques have been proposed to simulate the
behavior of A-buffer architecture with reduced memory
requirements. F-buffer [MP01] and R-buffer [Wit01] re-
place the linked list structure with a FIFO buffer to cap-
ture all incoming fragments. Z3-buffer [JC99] sets an upper
bound for the number of fragments stored per pixel. Sim-
ilarly, K-buffer [BCL∗07] and Stencil Routed A-buffer (or
SRAB) [MB07] use fixed-size vectors able to capture up to k
fragments of primitive pre-sorted scenes. There have been a
few attempts to perform the entire rasterization process us-
ing a software graphics pipeline [LHLW10, PTO10]. How-
ever, they limit users to switch from the traditional hardware
pipeline to a CUDA rasterizer. Readers may refer to a com-
prehensive survey [MCTB11] for a detailed description of
the pros and cons in terms of memory and performance of
many of the aforementioned alternatives.

3. Algorithm Overview

We introduce an efficient and memory-aware A-buffer im-
plementation on the gpu based on real-time concurrent con-
struction of per-pixel variable-length fragment bins. The
idea is to accumulate the fragments which influence a pixel
into a counter buffer by performing a fast rendering pre-
pass (Section 3.1), followed by a memory offset buffer com-
putation aimed at packing fragments for each pixel in adja-
cent position of memory (Section 3.2). Capturing the total
number of generated fragments provides for dynamic and
precise allocation of the required storage space. Memory ref-
erencing process is accomplished using a parallelised pre-
fix sum on the randomly arriving non-empty pixels. Then,
a subsequent rendering of the scene is performed to store
the out-of-order fragments per-pixel starting from the mem-
ory location captured at the address buffer. Finally, a sorting
mechanism is employed to reorder the fragments for each
pixel before generating the final image (Section 3.3).

3.1. Fragment Count Pass

First, a rendering pass is employed to simultaneously extract
the number of fragments affecting each pixel and the total
number of fragments generated for all pixels. More specif-
ically, the fragment accumulation can by implemented by
turning off depth test and performing for each rendered frag-
ment per pixel either ADD blending one into a 32-bit floating
pixel format texture (R_32F) or thread-safe increment opera-
tions on a 32-bit unsigned integer buffer (R_32UI). The total

number of rasterized fragments is computed by hardware oc-
clusion queries and used to precisely estimate the size of the
node buffer that will store the information for all fragments
(RG_32F, R: color, G: depth).

3.2. Memory Referencing

Prefix sums on the counter buffer have been used in [Pee08]
to generate the access location of all pixels in the node
buffer. To avoid overheads for pixels with zero fragments,
[Lip10] perform a prefix sum only on the non-empty pixels
in a linear fashion, regardless of the order pixels are pro-
cessed. This can be implemented using one shared counter
(32UI) in the gpu memory which can be updated via atomic
memory operations provided by the recent APIs. For each
pixel processed, the current shared counter value is written
out to the pixel local address buffer location, followed by an
increment of the shared counter value by the pixel fragment
count.

To alleviate congestion from all pixels trying to update
the same memory location, we propose to apply S multi-
ple gpu-accelerated shared counters: C = {C(0), · · · ,C(S)}.
More specifically, non-empty pixels are decomposed into
non-uniform groups using a simple hash function: H(P) =
(P.x + width ∗ P.y)%S, where P.x and P.y denote the pixel
position. We associate one shared counter to each group and
perform in parallel the linear prefix sums for all groups.

After the completion of this process, each group of pix-
els maps to its own memory space by performing a prefix
sum on the final values of the shared counters: Cpr(i) =

i−1
0 C(i), where Cpr(i) is the i-th resulting memory ref-

erence value. An inverse mapping technique is applied to
boost by a factor of two the latter prefix sum process us-
ing information from the total number of the rendered frag-
ments. We accomplish that by splitting the shared coun-
ters into two groups, G1 = {C(0), · · · ,C(� S

2 �)} and G2 =

{C(� S
2 �+1), · · · ,C(S−1)}. The key idea is to perform for-

ward prefix sum for the G1 group and inverse prefix sum for
the G2 group. We define as inverse, the prefix sum that starts
accumulating from the end of the processing set towards the
start. Then, the memory offset for each pixel P is computed
using the following equation,

offset(P) =

{
A(P), if P ∈ G1

totalFragments-1-A(P), otherwise

where A(P) = address(P)+Cpr(H(P))

(1)

Figure 1 illustrates a simple example of creating memory
offsets applying 3 shared counters with forward mapping
({C(0),C(1),C(2)} ∈ G1). A rendering pre-pass calculates
the per-pixel fragment counters. We illustrate pixels with the
same hash value by painting them with the same color. A se-
quential prefix sum is applied for each pixel group via atomi-
cally updating the associated shared counter. Without loss of

c© The Eurographics Association 2012.



A. A. Vasilakis & I. Fudos / S-buffer

generality, we assume that pixels are processed from the top
row to the bottom row. Forward prefix sums are performed
to compute Cpr(i) mapping each group of pixels to its own
memory space. The head memory location for each pixel is
finally computed using equation 1.

0 0 0 - - - - - -

0 2 0 - 0 - - 1 -
0 3 2 - 2 0 - 3 7

1 1 1 0 5 2 0 6 9

0 0 1 - - 3 - - 10

0 0 0 - - - - - -

C(i) 1 6 4 Cpr(i) 0 1 7

Counter Buffer Address Buffer Memory Offsets

0

0

00

0

1111

0

0 0000000

0

11111 1

1

0

0

00

222222

11111

22222222222

1

333333333333

Figure 1: S-buffer workflow when rendering a red, a blue
and a green triangle.

3.3. Fragment Storing - Resolve

In this phase, we perform an additional rendering pass to
store pixel fragment data to each bin indicated by the loca-
tion information generated in the previous phase. The asso-
ciated fragment information is then written out to the given
buffer index. The address buffer for the current pixel is then
adjusted to the next free space.

Finally, we use insertion sort to correct the ordering of
the captured sample fragments since it performs well when
the number of generated fragments per pixel remains small
(see also [YHGT10]). A large repertoire of multi fragment
effects can be supported after sorting. Figure 2 illustrates
transparency effects and CSG operations using S-buffer.

Figure 2: (a) Transparency, (b) translucency and (c) CSG
rendering on different models.

4. Results

We present an experimental analysis of our S-buffer ap-
proach versus the other A-buffer realizations. We have mea-
sured performance in terms of frames per second (fps) and
milliseconds (ms) and memory requirements in terms of
MBytes for a set of different testing conditions. For the
purposes of comparative time and space complexity evalu-
ation, we have developed PreCalc_OpenCL, a faster varia-
tion of PreCalc [Pee08] which handles memory offsetting

using an OpenCL-accelerated parallel prefix sum (provided
by NVIDIA Corporation). Moreover, we have implemented
PreCalc_Fixed, the fastest A-buffer which exploits a one-
pass scheme by adapting per-pixel fixed-size arrays based
on [Pee08]. This allows prefix sums to be efficiently ob-
tained using a full-screen pass (address(P) = (P.x+width∗
P.y) ∗ array_size). Instead of using the software rasterizer
of FreePipe [LHLW10], we have used an OpenGL-based
implementation [Cra10] which performs similarly with the
CUDA one. Finally, our variation that uses only one shared
counter may be consider as an advanced l-buffer implemen-
tation. All methods are implemented using OpenGL 4.2 API
and were tested on NVIDIA GTX 480 hardware.

Figure 3 shows how the performance of the memory-
friendly A-buffer variants scales by moving from a sparse to
a dense rendering of the Stanford Bunny positioned inside
a cube (69463 faces, 12 depth layers) under a 1024× 1024
viewport. l-buffer exhibits performance downgrade due to
the linearisation of prefix sum which leads to O(n) time
complexity, where n is the number of the non-empty pix-
els. Performance is significantly boosted by increasing the
number of S-buffer shared counters. Even with two global
counters we match the PreCalc_OpenCL performance when
the pixel sparsity remains high. Observe that our buffer ex-
hibits its performance peak using about 30 counters. Since,
final memory mapping is obtained through a linear pre-
fix sum on the shared counters, performance starts down-
grading when the number increases out of proportion. The
Linked Lists technique, using only one rendering pass, has
the worst behavior since it suffers from an O(m) complex-
ity, where m(� n) is the number of generated fragments.
Finally, an interesting observation is that the performance
of PreCalc_OpenCL converges to S-buffer when the number
of used pixels increases rapidly. Even when the rendering
scene covers all pixels, our buffer performance is slightly
better (7% faster) than the full parallel prefix sum solver of
PreCalc_OpenCL.

30

60

120

240

25 50 75 100

fp
s (

lo
g 2

sc
al

e)

% of non-empty pixels (density)

Linked Lists

l-buffer

S-buffer(2)

S-buffer(10)

S-buffer(20)

S-buffer(30)

S-buffer(40)

S-buffer(50)

PreCalC_OpenCL

Figure 3: Performance evaluation in fps (log2 scale) for
rendering Stanford Bunny positioned inside a Cube at dif-
ferent clipping stages. S-buffer exhibits its performance peak
using about 30 counters.

Figure 4 illustrates performance evaluation of all A-Buffer
variants on rendering Minoan Palace of the Knossos model
(109168 faces, 25 depth layers, 45% used pixels) for a set
of different screen resolutions. In general, we observe that
fixed-size FreePipe and PreCalc_Fixed solutions outperform
memory-aware variants. But this comes with the burden of

c© The Eurographics Association 2012.



A. A. Vasilakis & I. Fudos / S-buffer

memory limitations which is discussed later on. KB and
SRAB have the worst behavior since they have to carry out
multiple iterations for capturing the entire scene informa-
tion. PreCalc_OpenCL appears to perform quite well de-
spite the synchronization penalties of OpenGL/OpenCL in-
teroperability. S-buffer using 30 counters outperforms the
other memory-friendly A-buffer variants, rendering at a 85%
to 90% of the optimal frame rate (PreCalc_Fixed). Note
that inverse memory mapping boosts S-buffer performance
by (13%,10%,6%), where percentages in brackets denote
of the acceleration for each of three testing resolutions:
640×480, 1024×768, and 1600×1200.

20

40

80

160

320

640

640x480-(0.14M,0.45M) 1024x768-(0.35M,1.16M) 1600x1200-(0.86M,2.84M)

fp
s 

(l
o

g
2

sc
a

le
)

Screen resolution-(used pixels, generated fragments)

K-buffer

SRAB

Linked Lists

l-buffer

S-buffer(For,30)

S-buffer(Inv,30)

PreCalC_OpenCL

PreCalC_Fixed

FreePipe_OpenGL

Figure 4: Performance evaluation in fps (log2 scale) for
rendering the Knossos model at different rendering dimen-
sions. S-buffer with inverse mapping outperforms the other
memory-friendly A-buffer variants.

We further provide a time comparison of the memory ref-
erencing step for the buffers that include this step. S-buffer
with 30 counters needs (0.215ms, 0.425ms, 1.08ms) to com-
pute memory offsets which is ≈ 10× slower than the fastest
PreCalc_Fixed (0.027ms,0.05ms,0.11ms). Moving from in-
verse to forward mapping results at an extra 0.05ms cost
for all resolutions which explains why inverse mapping
boost is decreasing when moving to higher resolutions. Pre-
Calc_OpenCL takes (1.5ms,2.45ms,4.85ms) to compute the
parallel prefix sum regardless of the pixel sparsity, which
is 5× to 7× slower than our method. Finally, fragment-
aware Linked Lists exhibits the worst performance by taking
(4.66ms,10.4ms,21.98ms).

In the context of storage requirements for the latter
scenario, FreePipe and PreCalc_Fixed lead to increased
memory requirements (60.94MB, 159MB, 380.86MB)
most of which is not actually used (88%) due to
their strategy to allocate the same memory for each
pixel. K-Buffer (21.09MB, 54MB, 131.84MB) and
SRAB (23.44MB, 60MB, 146.48MB) due to their nature,
capture up to 8 fragments per pass and therefore need 30%
less memory resources than previous bounded buffers. Con-
versely, PreCalc_OpenCL (8.02MB, 20.53 MB, 50.10MB)
and S-buffer (6.99MB, 17.90 MB, 43.69MB) allocate the
exact amount of memory needed since the number of frag-
ment insertions is known apriori. Linked Lists needs slightly
more memory resources for storing memory pointers with
an extra linked list (8.73MB, 22.35 MB, 51.7MB). However,
in cases where the number of fragments varies (camera or
mesh animation) overflows may occur.

5. Conclusions

We have presented S-buffer, a two-pass A-buffer implemen-
tation on the gpu designed so as to take advantage of the
fragment distribution and the sparsity of the pixel-space. S-
buffer exhibits improved combined memory usage and per-
formance behavior even in low pixel sparsity rasterizations.
However, the need of an additional rendering step results in
performance downgrade when compared to FreePipe.

References

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA

J. A. L. D., SILVA C. T.: Multi-fragment effects on the gpu
using the k-buffer. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games (New York, NY, USA, 2007),
I3D ’07, ACM, pp. 97–104. 2

[Car84] CARPENTER L.: The a -buffer, an antialiased hidden sur-
face method. SIGGRAPH Comput. Graph. 18 (January 1984),
103–108. 1

[Cra10] CRASSIN C.: Fast and accurate single-pass a-buffer using
opengl 4.0+, icare3d blog, 2010. 3

[JC99] JOUPPI N. P., CHANG C.-F.: Z3: an economical hardware
technique for high-quality antialiasing and transparency. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware (New York, NY, USA, 1999), HWWS ’99,
ACM, pp. 85–93. 2

[LHLW10] LIU F., HUANG M.-C., LIU X.-H., WU E.-H.:
Freepipe: a programmable parallel rendering architecture for ef-
ficient multi-fragment effects. In Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2010), I3D ’10, ACM, pp. 75–82. 2, 3

[Lip10] LIPOWSKI J. K.: Multi-layered framebuffer condensa-
tion: the l-buffer concept. In Proceedings of the 2010 inter-
national conference on Computer vision and graphics: Part II
(Berlin, Heidelberg, 2010), ICCVG’10, Springer-Verlag, pp. 89–
97. 1, 2

[MB07] MYERS K., BAVOIL L.: Stencil routed a-buffer. In ACM
SIGGRAPH 2007 sketches (New York, NY, USA, 2007), SIG-
GRAPH ’07, ACM. 2

[MCTB11] MAULE M., COMBA J. L., TORCHELSEN R. P.,
BASTOS R.: A survey of raster-based transparency techniques.
Computers & Graphics 35, 6 (2011), 1023 – 1034. 1, 2

[MP01] MARK W. R., PROUDFOOT K.: The f-buffer: a
rasterization-order fifo buffer for multi-pass rendering. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware (New York, NY, USA, 2001), HWWS ’01,
ACM, pp. 57–64. 2

[Pee08] PEEPER C.: Prefix sum pass to linearize a-buffer storage.
U.S. Patent, 2008/0316214 (2008). 1, 2, 3

[PTO10] PATNEY A., TZENG S., OWENS J. D.: Fragment-
parallel composite and filter. Computer Graphics Forum 29, 4
(2010), 1251–1258. 2

[Wit01] WITTENBRINK C. M.: R-buffer: a pointerless a-
buffer hardware architecture. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware
(New York, NY, USA, 2001), HWWS ’01, ACM, pp. 73–80. 2

[YHGT10] YANG J. C., HENSLEY J., GRÃIJN H., THIBIEROZ

N.: Real-time concurrent linked list construction on the gpu.
Computer Graphics Forum 29, 4 (2010), 1297–1304. 1, 3

c© The Eurographics Association 2012.


