
EUROGRAPHICS 2012 / C. Andujar, E. Puppo Short Paper

Improved Obstacle Relevancy, Distance, and Angle for
Crowds Constrained to Arbitrary Manifolds in 3D Space

Brian C. Ricks and Parris K. Egbert

Department of Computer Science
Brigham Young University

Provo, Utah, USA

Abstract
Recent work has proposed crowd simulation algorithms on arbitrary manifolds in 3D space. These algorithms
simulate crowds on far more realistic surfaces than previously possible, including multi-story structures, science
fiction scenarios, and habitats for insects and other animals that can walk on walls. However, current implemen-
tations can have distinct artifacts, including collision false positives and false negatives. Also, current implemen-
tations fail to account for the cylindrical shape of the characters being simulated. The resulting crowds move
unnaturally and have obvious collisions. After identifying the cause of these artifacts, we propose an algorithm
that does not struggle from these false positives or false negatives and correctly accounts for the non-spherical
shape of agents. The resulting crowds move on large surfaces (over 100k triangles) running with a thousand agents
in real-time.

Categories and Subject Descriptors (according to ACM
CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; Simulation and model-
ing [I.6.8]: Types of Simulation—Animation

1. Introduction

Crowd simulation plays a crucial part in populating vir-
tual worlds, whether for special effects in film, interac-
tive settings in games, or planning with architectural tools.
However, most crowd simulation algorithms focus on 2D
planes instead of arbitrary surfaces. Some algorithms try
to simulate crowds on arbitrary surfaces, like Torchelsen
et al. [TSO∗10], but these algorithms struggle with either
false negatives or false positives and fail to handle the non-
spherical shape of agents. We propose an improved rele-
vancy algorithm for crowd simulation on non-planar sur-
faces that resolves these issues.

At the heart of crowd simulation algorithms is a function
that takes each agent and finds the best heading and ve-
locity for collision-free movement. If we call this function
ObstacleAvoidance, then this function can be written as:

ObstacleAvoidance : R ∈ (θ×d),a→ θ
′,v′

Where R is a set of tuples in (θ× d) (where θ is the an-

gle to a nearby obstacle and d is the distance to that ob-
stacle), and a is the location and orientation of an agent.
ObstacleAvoidance uses the heading and distance to obsta-
cles to choose a change in motion for collision free move-
ment. This change in motion is represented by the outputs of
ObstacleAvoidance, with θ

′ and v′ representing the agent’s
change in angle and velocity respectively.

The set of algorithms that implement the function
ObstacleAvoidance (or a very similar function) includes so-
cial forces [HM95], RVO [VdBLM08], HiDAC [PAB07],
and anticipation [OPOD10]. Finding the correct angle and
distance values for the set R for crowds on a 2D plane is
straightforward, but for crowds on arbitrary manifolds in 3D
space, finding R is quite difficult.

Current techniques that work on arbitrary surfaces suffer
with clear artifacting that limits their applicability. Addition-
ally, these algorithms fail to account for the non-spherical
shape of characters, leading to obvious agent collisions. To
facilitate crowd simulation on arbitrary manifolds in 3D
space for film, games, and architecture, we propose an al-
gorithm for finding R in real-time that leads to natural,
collision-free movement and that lacks the artifacts of previ-
ous work.

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/short/073-076

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/short/073-076


B. Ricks & P. Egbert / Improved Obstacle Relevancy, Distance, and Angle for Crowds Constrained to Arbitrary Manifolds in 3D Space

Figure 1: 3D Surfaces where our algorithm produces natural crowds, eliminating the artifacts of previous work. Stanford bunny
data courtesy the Stanford 3D scanning repository.

2. Artifacts in Current Approaches

In order to use an implementation of ObstacleAvoidance on
arbitrary surfaces in 3D space, a crowd simulation algorithm
needs two functions, Relevant and O f f set, to choose obsta-
cles that are relevant and to determine the angle and distance
to those relevant obstacles.

The Relevant function quickly finds a subset of all the
obstacles in a scene that are relevant to the current agent.
Formally, Relevant can be defined as:

Relevant : a,O→ ORelevant ∈ O (1)

where a is the agent in question, O is the set of all obstacles,
and the result ORelevant ∈ O gives us obstacles that are rel-
evant to ObstacleAvoidance. Without a Relevant function,
crowd simulation algorithms can be O(n2) since the angle
and distance between each pair of agents must be calcu-
lated. A constant-time Relevant function that returns a max-
imum number of obstacles reduces this to O(n) since each
agent only uses the angle and distance to a fixed number of

Figure 2: Examples of scenarios where simply using surface
distance or Euclidean distance produces collision false pos-
itives or false negatives.

agents in its ObstacleAvoidance function. A classic exam-
ple of a Relevant function is presented by Reynolds [Rey06]
who proposed a grid structure for quickly finding obstacles
around a given agent. (Note that although Reynolds’ work
has a Relevant function, the problem of flocking in 3D space
is very different than our problem in the domain of crowds
constrained to arbitrary manifolds.)

Once the Relevant function has found a small subset of
obstacles, the O f f set function loops over each obstacle in
ORelevant and finds the angle and distance to the obstacle
where O f f is a set containing a tuple in the power set of
angles and distances.

O f f set : a,o ∈ ORelevant → O f f ∈ (θ×d) (2)

For this work we consider the output of O f f set to be a set
of tuples even though most implementations of O f f est re-
turn a single tuple. Allowing O f f set to return a set of tuples
will prove to be a key innovation in allowing our crowd sim-
ulation algorithm to remove the artifacts of previous work.
Implementing O f f set on a 2D surface is simple to under-
stand, but on arbitrary surfaces in 3D space it is far more
complicated. There are two main approaches: surface offset
and Euclidean offset, both of which struggle with clear arti-
facts.

One can implement O f f set using a surface path algorithm
(A*, fast marching methods [Set99], etc.) and calculate the
distance to an obstacle as the sum of each segment in the
path and the angle as the angle of the first segment of the
path. Unfortunately, this fails to produce artifact-free crowd
simulation since agents can collide even when their surface
distance is extremely high. Figure 2 depicts an agent in ques-
tion (the orange agent on the floor) and the obstacle agent
(the blue agent on the ceiling). The orange agent is at most
a few meters from the blue agent, but the surface distance
is the distance from the orange agent to the nearest wall, up

c© The Eurographics Association 2012.



B. Ricks & P. Egbert / Improved Obstacle Relevancy, Distance, and Angle for Crowds Constrained to Arbitrary Manifolds in 3D Space

the wall, and back across the ceiling. Even with an accu-
rate surface distance algorithm, we would incorrectly think
that the orange and blue agents are not about to collide even
though they really are. The angle results of a surface path
implementation of O f f set will produce similar artifacts.

The other method for determining angles and distances
is to use a Euclidean measure (similar to Torchelsen et
al. [TSO∗10]). Given a vector vobstacle that is the vector be-
tween the agent in question a and obstacle, Euclidean dis-
tance is the length of vobstacle. Euclidean angle is found by
projecting vobstacle onto the plane tangent to a. Torchelsen et
al. accurately point out that Euclidean offset does not strug-
gle with the false negative issues of a surface distance al-
gorithm. However, instead of suffering from false negatives
like the surface implementations, a Euclidean implementa-
tion of O f f set suffers from the opposite problem: collision
false positives. Consider the center and right examples in
Figure 2. In both cases a Euclidean distance approach will
inaccurately report that the orange agent is about to collide
with the blue agent, and the agents will evade each other
even though there is no imminent collision. This unnatural
effect is very obvious in the most common crowd simulation
environment on arbitrary surfaces: multi-story buildings.

Neither the surface path nor the Euclidean implementa-
tion of O f f set address the last issue with crowds constrained
to arbitrary surfaces in 3D space: the non-spherical shape
of virtual characters. On arbitrary surfaces in 3D space, two
agents can be on surfaces that are perpendicular to each other
(see the right-most image in Figure 4). If the crowd simula-
tion algorithm only represents characters with a small sphere
near each agent’s feet, the heads of the two agents may be on
a collision course even if the spheres are not. Enlarging the
spheres removes this problem but makes each person have
an enormous personal space bubble, causing jams even when
agents could easily pass each other.

3. Removing Artifacts

We propose key improvements to the Relevant and O f f set
functions that significantly enhance the believability of
crowd simulation of surfaces in 3D space. Instead of com-
bining both a surface path and Euclidean implementation
into O f f set, we have found that a far easier solution lies in
an improved Relevant function. Notice that in all false posi-
tive cases (see Figure 2), the obstacle agent that the relevant
agent incorrectly avoids is not visible to the relevant agent.
Thus, by improving Relevant to discard agents that are not
visible to the agent in question, a Euclidean implementation
of O f f set would not have false positives and the resulting
unnatural motion.

A full synthetic vision algorithm could be used to deter-
mine which agents are mutually visible, but we have been
unable to implement such an algorithm that runs at real-time
speeds. Instead, we propose leveraging what we know about

Figure 3: Our improvement to the Relevant function. The
relevant agent (orange) checks if the vector to possible ob-
stacle agents penetrates an approximate surface at each
agent’s feet (dotted blue line). If the vector penetrates these
surfaces (dashed red arrow) the obstacle agent is not consid-
ered relevant. If the vector does not penetrate (lighter green
arrow) the agent is considered relevant.

the position of agents to make a close approximation to their
visibility (see Figure 3). The key fact is that since each agent
is constrained to a manifold, we know there is a surface at
the feet of each agent. Using this fact, we add two additional
checks to our Relevant function for each obstacle agent. We
find the vector from the agent in question to the head of the
agent which is proposed as an obstacle. We call this vector
vhead . We then assume that the surface the obstacle agent
is standing on can be locally approximated by a one meter
radius circle at its feet and that the normal of this circle is
the same as the obstacle agent’s normal. If vhead penetrates
this circle, then we remove this agent from the set ORelevant .
Likewise, we assume the agent in question is standing on a
locally flat surface and check to see if vhead penetrates this
agent’s surface on the way to the obstacle agent. This ap-
proximation is not perfect, but in practice there are no false
positives or false negatives in the crowd movement. As we
discuss in our results, our crowds are significantly more re-
alistic than those produced by previous work.

This improvement to Relevant does not handle the non-
spherical nature of agents. To handle this additional compli-
cation and produce very realistic crowd motion, we further
improve the definition of O f f set to account for the non-
spherical nature of agents. Instead of one small sphere or
one giant sphere, we define each character with three spheres
stacked in a way that approximates a cylinder. For the center
of each of these spheres, we use a traditional implementation
of O f f set and return the union of tuples. Formally, if oup is
the normal of the obstacle agent for which we want a more
realistic representation, then our implementation of O f f set
is as follows:

O f f setImproved =
2⋃

i=0
O f f set(a,o+ i ·oup)

c© The Eurographics Association 2012.



B. Ricks & P. Egbert / Improved Obstacle Relevancy, Distance, and Angle for Crowds Constrained to Arbitrary Manifolds in 3D Space

Figure 4: Examples of where improved distance and angle measures are essential for accurate movement, including ants on
thin tree branches, humans on a Mobius strip, and science fiction characters walking on walls.

Figure 5: An example surface that brings agents close to-
gether on the ceiling and floor. Without an accurate distance
and angle function, agents will run into each other.

These improvements have a minuscule computational foot-
print, have a clear impact on the motion of the agents in a
crowd, and can handle intentionally complex scenes like that
in Figure 5.

4. Results

For our tests we generated crowds of 1,000 agents across
an array of surfaces inspired by architecture, nature, outer
space, insect habitats, and topologically unique surfaces (as
seen in Figure 1). These models range from a dozen tri-
angles to over a hundred thousand triangles, which sur-
passes the highest triangle count model used in Torchelsen
et al. [TSO∗10] and which we believe is the highest triangle
count model reported in the crowd simulation literature.

We compared our crowds against a surface path-based
algorithm and a Euclidean algorithm similar to Torchelsen
et al. [TSO∗10] and found our crowds moved noticeably

smoother than previous work. For our quantitative tests, we
calculated collision percentages using social forces [HM95]
and reciprocal velocity obstacles [VdBLM08]. The median
collision rates were very low: .05% and .009% respectively.
We also calculated the speed of our algorithm. In all our
meshes, including the Stanford Bunny and an abstract art
piece with over 100k traingles, our algorithm ran at over 33
frames-per-second.

References
[HM95] HELBING D., MOLNAR P.: Social force model for

pedestrian dynamics. Physical review 51, 5 (1995). 2, 5

[OPOD10] ONDŘEJ J., PETTRÉ J., OLIVIER A., DONIKIAN S.:
A synthetic-vision based steering approach for crowd simulation.
ACM Transactions on Graphics (TOG) 29, 4 (2010). 2

[PAB07] PELECHANO N., ALLBECK J., BADLER N.: Control-
ling individual agents in high-density crowd simulation. ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2007), 99–108. 2

[Rey06] REYNOLDS C.: Big fast crowds on ps3. Proceedings of
the 2006 ACM SIGGRAPH symposium on Videogames (2006),
113–121. 3

[Set99] SETHIAN J.: Fast marching methods. SIAM review
(1999), 199–235. 3

[TSO∗10] TORCHELSEN R., SCHEIDEGGER L., OLIVEIRA G.,
BASTOS R., COMBA J.: Real-time multi-agent path planning on
arbitrary surfaces. ACM SIGGRAPH symposium on Interactive
3D Graphics and Games (2010), 47–54. 2, 4, 5

[VdBLM08] VAN DEN BERG J., LIN M., MANOCHA D.: Re-
ciprocal velocity obstacles for real-time multi-agent navigation.
Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on (2008), 1928–1935. 2, 5

c© The Eurographics Association 2012.


