
Example-based Road Network Synthesis

Q. Yu and A. Steed

Department of Computer Science, University College London, UK

Abstract

We present a novel method for automatically synthesizing road networks that are perceptually similar to given

example road networks. Our algorithm can grow a new road network from an initial node or expand an existing

network. For an unfinished node in the network, we search a set of candidate nodes in the example road networks

that have similar node topology, and then find a best one by neighborhood edge matching. Rather than simply

copy edges incident to the best matched node, we consider the local constraints including obstacle avoidance and

relationships to existing roads. Our results demonstrate that the method produces good results for various typical

street patterns. Furthermore, we can blend styles of road networks in an intuitive and easy to control manner.

1. Introduction

Within the urban environment roads are one of the most im-
portant structuring elements. A tool for generating a novel
road network should provide for good variety of output, but
allow the artist an intuitive control over that output. Thus
whilst many forms of procedural generation have been pro-
posed for generation of road networks, these suffer from the
problem that the output is not easily customisable.

In this paper, we attempt to marry the goals of variety of
output with artistic control by using a form of example-based
modelling. Our method takes as input a single example or a
set of examples of the style of road network that is desired.
We can then create a new road network from scratch, or aug-
ment an existing input network. The process iteratively ex-
pands the road network from the end of a road (a node). It
does this by finding similar nodes in the example data. How-
ever, rather than simply copying some segment of the exam-
ple data across, we apply local constraints to that segment. In
doing so, we preserve characteristics of the example’s style,
while making sure that the new road network is plausible.

Our algorithm allows for a lot of variety in output, as do
completely procedural methods [PM01]. Indeed it includes
the local constraint step that is a key component of the com-
pletely procedural models. The output is visually similar to
input examples as in [AVB08], but allows flexible control
of output as per [CEW∗08]. The main contribution of our
algorithm is in providing these properties of both of these
algorithms within a single novel algorithm and framework.

2. Related work

Procedural methods have been used for automatically gener-
ating roads following various constrains [PM01,GPGB11].
Simulation-based methods [Wad02, VABW09] can cap-
ture high-level properties that are difficult to model by
production rules, but still lack intuitive control. Chen et

al. [CEW∗08] propose to create street networks though op-
erating on tensor fields. We can achieve similar results as
their work, but provide control by user input samples.

Example-based synthesis approaches have achieved con-
siderable success for creating textures that are perceptually
similar with given samples [EL99]. The example-based ap-
proach has been extended to modeling various geometric
objects such as curves [HOCS02] and 3D models [Mer07].
Ijiri et al. [IMIM08] use neighborhood matching for grow-
ing an underlying triangular mesh. This work is algorith-
mically the most similar to ours, but we support more gen-
eral vector shapes. Having a similar goal as ours, Aliaga et
al. [AVB08] propose an example-based method for urban
layout synthesis. There are several differences between our
work and theirs. First, direct reuse of the intersection points
from a sample network in their method will yield an out-
put identical to the input (see Fig. 8 in [AVB08]). To ex-
pand the sample and get variation, the user must manipulate
the intersection points. Our method works more like a tex-
ture synthesis algorithm which can generate a larger output
with variation automatically. Second, their method relies on
intersection points encoded with street styles, which is not
suitable for capturing street patterns that contain dangling

EUROGRAPHICS 2012 / C. Andujar, E. Puppo Short Paper

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/short/053-056

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/short/053-056


Q. Yu & A. Steed / Example-based Road Network Synthesis

roads and long curved roads. Our method does not have this
limitation. Finally, our road segment generation fits within a
procedural modelling framework and can be extended with
other production rules.

3. The algorithm

Our algorithm represents a road network with a planar graph
G = (V,E), where the nodes V are intersections, dead ends,
or feature points along a road, and the linear edges E are
street segments between the nodes. Given a sample road net-
work Gs = (Vs,Es), our goal is to generate a new road net-
work Gd = (Vd ,Ed) that resembles the input.

Inspired by the procedural road generation tech-
niques [PM01], our method incrementally grows the output
road network at unfinished nodes (see Fig. 1). If starting the
synthesis from an empty network, our algorithm initializes
it with a single node marked as unfinished. Otherwise, we
allow the user to interactively select unfinished nodes from
existing nodes. At each step, we randomly pick an unfin-
ished node vd as a seed node. Unlike the procedural meth-
ods, we generate new segments incident to vd by the guide
of the input sample instead of production rules. Making an
analogy to texture synthesis [EL99], we try to find in the
sample a node vs that has similar neighboring segments with
vd under a rotation by the angle θ. We call such a node pair
and the corresponding transformation a node match, denoted
by a triple m = (vd ,vs,θ). We get a candidate set of node
matches M by a fast estimation process (Section 3.1), and
then choose a best one determined by the measure of neigh-
borhood similarity (Section 3.2). Once the best node match
has been found, we transform the segments that are incident
to vs, and use them as new proposed segments at vd . The pro-
posed segments are then modified or even rejected to satisfy
various local constraints (Section 3.3). Finally, we remove
the current seed node from the unfinished node set, and add
new unfinished nodes that are introduced by the new seg-
ments. We repeat the above steps until no unfinished nodes
remain.

3.1. Node matching

The core part of our algorithm is to find a portion of the sam-
ple best matching the neighborhood of current seed node vd .
Ideally, we should test all feasible rigid transformations of
the sample, but the computational cost of this is impractical.
In our method, we greatly simplify the problem by giving
priority to local topology matching at nodes over neighbor-
hood matching.

The task in the node matching stage is to find a candidate
set of node matches for vd , considering only the angles of
edges which are incident to vd . An eligible match (vd ,vs,θ)
should satisfy the following criteria: after a clockwise rota-
tion with the angle θ, any edge incident to vd can be well
matched with an edge incident to the node vs in the sample

so that the angle between the two edges is less than a user
specified threshold ε.

We iterate all nodes in the sample. For each pair of vd
and vs, we use the following method to find eligible node
matches. Let ekd and eks be the k-th edge incident to vd and
vs, respectively. We start from guessing a match by align-
ing e0d to e0s by a rotation with the angle of α. After the

rotation, for each edge eid , we find an edge e
j
s to minimize

γi = angle(eid ,e
j
s). If one of the angle difference γi > ε, we

discard the current guess; otherwise, we have found an el-
igible match. We repeat above steps to find more eligible
matches between vd and vs by aligning e0d to other edges in-
cident to vs.

For each found eligible node match, we refine its rotation
angle α to make angle differences between edges evenly dis-
tributed. This can be achieved with an offset rotation of angle
δ by minimizing ∑

N
i=1(δ+ γi)

2, where N is the degree of vd .
Thus, the final optimized rotation angle will be θ = α+ δ,
where δ =−∑

N
i=1 γi/N

3.2. Neighborhood edges matching

Once a set of candidate node matches has been found, we
need to find a best match by neighborhood edges matching.
To measure the similarity between two neighborhood net-
work, we employ the concept of line segment Hausdorff dis-
tance (LHD) originally proposed in [GL02] for face match-
ing. Compared with Hausdorff distance measure that is de-
fined over two point sets, LHD measure has the advantage
that it takes into account structural and spatial information.

We first construct a subgraph Gn ∈ Gd around vd , where
the distance from each segment to vd is less than r, a main
parameter in our method set by the user. For a match m =
(vd ,vs,θ), we define a transformed input Gs(m) by rotating
the sample graph Gs anticlockwise with the angle of θ, and
translating it to align vs with vd . Finally, we can find the best
node match that minimizes the following matching cost:

E(m) =
1

∑wi
∑

eid∈Gn

wi · min
e
j
s∈Gs(m)

D(eid ,e
j
s), (1)

wherewi is weight factor 1/dist(vd ,e
i
d), andD(·) is line seg-

ment Hausdorff distance.

The principle to choose the size of neighborhood r is sim-
ilar to that in texture synthesis [EL99]. It should be the same
scale as the biggest regular feature we want to capture.

3.3. Generating road segments at seed node

Given a best node match m = (vd ,vs,θ), we can use it to
guide the growth of new road segments originating from the
unfinished node vd . For each segment incident to vs, a new
segment ep incident to vd is proposed. Two parameters need
to be determined: the length of the segment l, and the angle
to the horizontal axis φ. We let ld = ls, and φd = φs+θ.

c© The Eurographics Association 2012.



Q. Yu & A. Steed / Example-based Road Network Synthesis

vs
vdvd

θ

Figure 1: Algorithm overview. For an unfinished node vd in the existed road network (middle), we find in the input sample (left)
a node vs that has similar neighboring segments (inside red circle) under a rotation of θ. New road segments are then created

at vd by copying segments around vs while adapted to local constraints, e.g., snapped to nearby existed node (right).

Before adding a proposed segment at vd , we use proce-
dural methods to check if it can be adapted to the local en-
vironment and existing road segments. As in [WMWG09],
the check could include: (1) avoid generating new nodes in
obstacles, such as water area, or out of the target region; (2)
snap to nearby road segments; and (3) avoid cross intersec-
tion with nearby segments. In addition, we use the topology
of nearby roads in the sample as constraints. One benefit of
this is to avoid using an arbitrary value as snapping distance
as in previous pure procedural methods. For example, we
keep a dangling road copied from the sample still be a dan-
gling road.

After the proposed segment is modified and finally ac-
cepted by all the local constraint checks, we insert it to the
output road network. When the new road ends at a newly
created node, we mark the node as unfinished unless (1) its
corresponding edge eps is an edge with valence 1 in the sam-
ple, or (2) it falls out of the legal area. Finally we remove vd
from the unfinished node list.

4. Results and applications

We have tested our algorithm for various applications. Our
method produced good results for a wide range of street pat-
terns. In the experiments we set ε = 30◦, and the neighbor-
hood radius r three times the average road segment length.

Figure 2 demonstrates a synthesis in a river scene.
Our method can avoid the river and procedurally generate
bridges. We have built the algorithm in to a tool that allows
refinement of a road network. In the example shown in Fig-
ure 3, we deleted a part of a grid road network, and filled in
the gap with roads based on another pattern.

Our basic algorithm determines the rotation of samples by
node matching. This works well for general road networks,
especially those dominated by curved roads. However, we
are not obliged to do this. For grid like patterns, we prefer
disabling the rotation. We can also determine the rotation
by user given functions, or curves to control global patterns
(Figure 4). This kind of control can easily make roads follow
curved boundaries such as river banks.

Our algorithm allows the use of more than one sample

Figure 2: Given a small patch of sample roads, a raster im-

age defining obstacles (park and water), and a vector curve

representing the river, we create a new road network that re-

sembles the input. Procedural rules ensure avoiding roads

in obstacles, and generating reasonable bridges.

Figure 3: We fill in a hole in a grid pattern (left) with real

world irregular streets, and get a new, well connected street

network (right) . The synthesis starts from the nodes on the

boundary of the hole, which are manually marked as unfin-

ished.

as input. Figure 5 demonstrates smooth transition between
two street patterns. For each unfinished node, we use a user-
defined function to select a sample for node matching and
neighborhood matching.

We have also extended the algorithm to work with multi-
ple scales of road network. We do this by using examples of
road at different scales (e.g. minor road and major roads).
Each segment in each network is labelled with its scale.
When matching nodes we then need to match the level of
the segment as well as the angle. Figure 6 shows an example
with two levels of curved roads.

c© The Eurographics Association 2012.



Q. Yu & A. Steed / Example-based Road Network Synthesis

Figure 5:Given a grid example (left) and a curve example (right), our method synthesizes a new road network gradually varying

from grid pattern to curve pattern from left to right (middle). Given a normalized x coordinates of a node being processed, we

choose the grid example when f < x, and choose the the curve example when f > x, where f is a uniformly distributed random

number between 0 and 1.

Figure 4: Left: input network and a synthesized output with-

out direction control. Right: A synthesized road network fol-

lowing a user given brush stroke.

Figure 6: Left: Input a real road network (South Woodham

Ferrers, UK) with major and minor curved roads. Right:
Starting from a random initial node, our method arrive a

road network that resembles the input.

5. Conclusion and future work

We have presented an example-based technique for automat-
ically synthesizing road networks. Our method grows the
output road network segment by segment as a procedural
method, and it avoids using production rules or parameters
that are non-trivial to configure. New road segments are gen-
erated according to a matched portion in the sample road
network. The method can synthesize a wide range of road
styles implicitly modeled by the examplars, including long
curved roads, under various local constraints. Furthermore,
we demonstrated its applications for complicated edit oper-
ations such as extending an existing road network, and con-
necting or blending two road networks. Last but not least,
our method is simple to implement and intuitive for users.

A number of problems remain open. A straightforward ex-
tension is to synthesize roads in different levels with differ-

ent samples. Thus we can not only capture local patterns but
also global patterns. It would be interesting to incorporate
the shape and size of street blocks into our neighborhood
similarity measure. Finally, we would also like to explore
a reverse problem: automatically extracting style examplars
from real world data.

References

[AVB08] ALIAGA D. G., VANEGAS C. A., BENEŠ B.: Interac-
tive example-based urban layout synthesis. ACM Trans. Graph.

27 (2008), 160:1–160:10. 1

[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P.,
ZHANG E.: Interactive procedural street modeling. ACM Trans.

Graph. 27 (2008). 1

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. In Proc. ICCV (1999), pp. 1033–1038. 1,
2

[GL02] GAO Y., LEUNG M. K. H.: Line segment hausdorff dis-
tance on face matching. Pattern Recognition 35, 2 (2002), 361 –
371. 2

[GPGB11] GALIN E., PEYTAVIE A., GUÉRIN E., BENEŽ B.:
Authoring hierarchical road networks. Computer Graphics Fo-

rum 30, 7 (2011), 2021–2030. 1

[HOCS02] HERTZMANN A., OLIVER N., CURLESS B., SEITZ
S. M.: Curve analogies. In Proc. Eurographics Workshop on

Rendering (2002), pp. 233–246. 1

[IMIM08] IJIRI T., MÊCH R., IGARASHI T., MILLER G.:
An example-based procedural system for element arrangement.
Computer Graphics Forum 27, 2 (2008), 429–436. 1

[Mer07] MERRELL P.: Example-based model synthesis. In
ACM-SIGGRAPH Symp. Interactive 3D Graphics (I3D) (2007),
pp. 105–112. 1

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In Proc. ACM SIGGRAPH (2001), pp. 301–308. 1, 2

[VABW09] VANEGAS C. A., ALIAGA D. G., BENEŠ B., WAD-
DELL P. A.: Interactive design of urban spaces using geometrical
and behavioral modeling. ACM Trans. Graph. 28 (2009), 111:1–
111:10. 1

[Wad02] WADDELL P.: Modeling urban development for land
use, transportation, and environmental planning. Journal of the

American Planning Association 68, 3 (2002), 297–314. 1

[WMWG09] WEBER B., MUELLER P., WONKA P., GROSS M.:
Interactive geometric simulation of 4D cities. Computer Graph-
ics Forum 28, 2 (2009), 481–492. 3

c© The Eurographics Association 2012.


