
EUROGRAPHICS 2012 / C. Andujar, E. Puppo Short Paper

Scented Sliders for Procedural Textures

Anass Lasram1 Sylvain Lefebvre1 Cyrille Damez2

1ALICE/INRIA 2ALLEGORITHMIC

Figure 1: Left: Four random variations of the same procedural texture. Middle: Two textures with standard sliders controlling
their appearances. Right: Two textures with our visual slider previews controlling their appearances.

Abstract

Procedural textures often expose a set of parameters controlling their final appearance. This lets end users tune
the final look and feel, typically through a set of sliders. However, it is difficult to predict the changes introduced
by a given slider, especially as sliders interact in non–trivial ways.
We augment the sliders controlling parameters with visual previews revealing the changes that will be introduced
upon manipulation. These previews are constantly refreshed to reflect changes with respect to the current settings.
The main challenge is to generate the visual sliders in a very limited pixel space and at an interactive rate. This
is done by synthesizing the visual slider from a small set of patches ordered in accordance with the slider. These
patches are chosen so as to reveal as much as possible the visual variations induced by the slider. The selection
and ordering are achieved by using the seam–carving algorithm to carve patches with low visual impact. The
obtained patches are then stitched together using patch-based texture synthesis to form the final visual slider.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Procedural texture design software, such as Substance from
Allegorithmic, Genetica from Spiral Graphics or Filter
Forge let technical artists carefully design complex proce-
dures generating a large variety of textures. These proce-
dures are controlled by a set of parameters exposed to the
user. The most widely spread interface for this task is a set of
sliders with the name of the parameters next to them. Such
interfaces have proven efficient for setting parameters in a
computer graphics context [KP10]. However, they are diffi-

cult to use for someone discovering a new procedural tex-
ture: Contrary to other applications, the set of parameters
and their meaning varies strongly from one texture to an-
other (see Figure 1 or Figure 2). Since there is no visual clue
– besides the parameter name – of what each slider exactly
does, it is hard to predict and understand the influence of
each parameter without trying a large number of different
settings. In addition, dozens of parameters are exposed and
many of them change the effect of each other. This quickly
becomes a bottleneck for users exploring the possibilities of-

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/short/045-048

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/short/045-048

Anass Lasram Sylvain Lefebvre Cyrille Damez / Scented Sliders for Procedural Textures

Figure 2: Two settings of the ’Cereals’ texture with visual
sliders control. Top: The ’Milk level’ parameter has a low
value. Bottom: The ’Milk level’ parameter has a high value,
masking the effect of other parameters.

fered by different textures. For instance, the parameters ’Ce-
reals type’ and ’Cereals color’ in Figures 2 would not have
any effect if the parameter ’Milk level’ is set to its highest
value. Our slider previews solve this problem by illustrating
the effect of each parameter for the current settings. In par-
ticular, our sliders dynamically adapt to user interactions by
refreshing all the slider previews if one parameter changes.
This way, our visual slider previews make the user aware
that the ’Milk level’ is the only parameter that could affect
the settings of Figures 2, bottom.

Designing such visual slider previews presents a number
of challenges:

• The slider previews should indicate in an obvious man-
ner all the changes that will occur in the texture when the
slider is manipulated.

• The pixel space is very limited: We cannot afford to dis-
play a large image below each slider, or the navigation
from one slider to the next would quickly become tedious.
This is especially problematic when the slider impacts
small features in the texture.

• The continuous refresh of slider previews imposes a fast
synthesis algorithm.

We address these three points in Section 3.

2. Previous work

In a human–computer–interaction context techniques have
been developed to improve sliders efficiency by augment-
ing the sliders with visual clues such as histograms or color
bars [Eic94, WHA07]. Video tapestry [BGSF10] replaces
the slider used to navigate in a video by a single image strip

that summarizes the content of the video. In a recent work,
Kerr and Pellacini [KP10] compare different approaches for
the task of selecting material shader parameters. The study
concludes that, under interactive feedback, sliders perform
best in particular when precise adjustments are required. Im-
age summarization techniques [AS07,SCSI08] seek to sum-
marize the content of a large image in a smaller pixel-space.
These techniques, mainly targeted at photographs, change
the layout of features in the image in order to preserve the
most important elements. We exploit these approaches to
create our visual sliders.

3. Slider previews

Overview To synthesize visual slider previews following
the requirements set in Section 1, we need to concentrate in
a small pixel area the important information: in this case the
parts of the image that are effectively changed by the slider.
We understand this as an importance–driven image–relayout
problem: Starting from an image showing all changes we
would like to discard non–essential information that remains
unchanged when moving the slider. This is done by the fol-
lowing steps:

• A large image is formed by tiling the texture a number of
times horizontally. The large image is then divided into
a grid of patches (Figure 3, (b)). Each column of patches
reflects the appearances of one setting of parameters. The
parameter corresponding to the slider is increasing from
left to right while others keep their current values. This
means that the leftmost column of patches reflects the ap-
pearances produced if the parameter is at its lowest value.
The rightmost column reflects the appearances produced
if the parameter is at its highest value.

• An importance map is computed (Figure 3, (c)) by giving
a score to each patch depending on its variance during
slider manipulation. Patches that vary very often will get
high scores.

• The set of patches is reduced by removing patches with
low scores (Figure 3, (d)). To limit distortions and pre-
serve the layout of patches, seam–carving is applied on
the importance map to remove patches rather than pixels.

• The remaining patches (Figure 3, (e)) are stitched together
using patch–based texture synthesis (Figure 3, (f)).

Generating the grid of patches We note V ∈ [0,1]N the pa-
rameter vector of size N describing the current state of the
texture. There are N sliders and we are interested in synthe-
sizing the slider s, s ∈ {1..N}. The values in V will be fixed
with the exception of V [s] that varies linearly from 0(left) to
1(right). We construct a grid of patches G of size WG×HG
in which every element G[x,y], (x,y) ∈ {1..WG}×{1..HG},
is a patch of size WP×HP. The patch at G[x,y] is contained
in the texture Tx that has a size of WT ×HT and parameters
v such as v[i] = V [i] i f i 6= s and v[s] = x−1

WG−1 otherwise.
The upper–left corner of this patch is located at coordinates

c© The Eurographics Association 2012.

Anass Lasram Sylvain Lefebvre Cyrille Damez / Scented Sliders for Procedural Textures

Figure 3: Algorithm overview: (a) Texture samples from
which patches are extracted. (b) Initial grid G of patches.
(c) Per-patch importance map I. This map will be carved to
remove patches with low scores. (d) Carved map I. Bright
pixels correspond to patches with high scores. (e) The re-
maining patches. Notice how the flowers, which are the most
impacted, dominate the patches. (f) Resulting slider after the
synthesis step.

((x×WP)%WT , (y×HP)%HT)) in Tx. Figure 3 (a) and (b)
highlights the grid creation.

Importance map The importance map I gives a score to ev-
ery patch in G (Figure 3, (c)). This score is high for patches
with high visual impact. We note I[x,y] the score of patch
p = G[x,y]. We note (x0,y0) the upper–left coordinates of
patch p = G[x,y] and stored in texture Tx. The score I[x,y] of
patch p is computed as follows:

I[x,y] =
WG

∑
t=1

e−
||x−t||2

2σ2

1+∑
x0+WP
i=x0

∑
y0+HP
j=y0

||Tx[i, j]−Tt [i, j]||2

The denominator corresponds to a per–pixel difference be-
tween the patch p contained in texture Tx and the patch hav-
ing the same location as p but contained in another texture
Tt . As an example, in Figure 3, (a), the blue patch in texture
Tx is compared to the two blue patches in Tx−1 and Tx+1.
The numerator controls the contribution of each texture Tt in
the score. Textures with very different parameters will con-
tribute less. These contributions can be further customized
using the scalar σ 6= 0. A small σ

2 emphasizes the possi-
ble variations when little changes occur to the slider cursor.
If σ

2 goes to infinity then all textures Tt will have a same
contribution making the score independent from the cursor
position. We typically set σ = 1 and, in order to speed up

the algorithm, we ignore textures with very low contribution
(the numerator is very low).

Patch carving We shrink the grid of patches G with
seam–carving [AS07], removing vertical/horizontal seams
of patches. Carving at the patch–level rather than pixel–level
avoids texture distortion but produces discontinuities along
the boundaries of the remaining patches. The carving is done
simultaneously on G and I according to the scores contained
in I. The shrunk version of the map I is shown Figure 3, (d).
It mostly contains patches with high scores.
In principle, non–linear relayout may occur due to the carv-
ing. However in practice we never noticed a bias strong
enough to justify remapping the parameters.

Synthesizing After carving, we hide abrupt and discontin-
uous changes of appearance between patches by optimiz-
ing their boundaries. Starting from the shrunk version of G
(Figure 3, (e)), we find an optimal boundary with graph–
cut [KSE∗03]. To further reduce potential visible seams, we
allow for small changes in the patch positioning and repeat
graph–cut optimization a few times (typically four times).
The result is a continuous preview strip, with an emphasis
on the part of the texture impacted by the slider Figure 3, (f).

4. Results

Figures 4 shows the benefit of our patch summarization
method. In this figure, the most varying elements of the tex-
ture (the green stars) represent small features that are far
from each other. Sliders (a) and (c) are generated with a
naive algorithm that starts from a large slider preview hav-
ing the same width as the final slider and the same height
as the procedural texture. It then crops the horizontal region
that maximizes the overall variation. Sliders (b) and (d) are
generated using our method. These sliders reveal more vari-
ation and give a better insight to the user.

Figure 5 shows an example containing texture and color
parameters. User interactions are shown in the accompany-
ing video. Generating one slider for this texture takes on
average 151 milliseconds. This timing is dominated by the
generation of the 16 textures required to build the slider.

Figure 6 shows another example of sliders for a more
complex texture. In this case, an average of 355 milliseconds
is required to generate one slider.

5. Limitations

Photographs or textures exhibiting global structural changes
are not handled well by our approach. The synthesizer fails
to preserve the structure as shown Figure 7, top. One possi-
ble work–around is to show these particular parameters as
thumbnails. We included this possibility in our sliders by
selecting high variance regions as thumbnails and ordering
them on the slider Figure 7, bottom.

c© The Eurographics Association 2012.

Anass Lasram Sylvain Lefebvre Cyrille Damez / Scented Sliders for Procedural Textures

Figure 4: A procedural texture with two different types of
sliders controlling parameters. (a) and (c): Sliders gener-
ated by cropping the best horizontal strip from a larger ini-
tial slider. (b) and (d): Sliders generated by our method.

Figure 5: Two different settings of the ’bark’ texture with
visual sliders controlling parameters.

6. Conclusion

Procedural textures tend to have parameters exhibiting un-
predictable effects. In this paper a visually driven slider in-
terface for procedural textures has been described to ease
parameter selection. Our algorithm generates and analyses
several procedural textures at interactive rates. This allowed
the creation of dynamic visual sliders that give users more
control over the result.

Our sliders are not only useful for final users, but also dur-
ing the design of the texture. Most procedural textures are
obtained by assembling image filters, between tens to hun-
dreds of them. Each filter exposes a number of parameters
(e.g. blur intensity, blending alpha value, emboss direction).
Our slider previews help quickly revealing the possible ef-
fects to the designer.

Acknowledgments
We thank Allegorithmic’s texture artists for producing the
examples shown in this paper. This work was supported by
the ANR SIMILAR-CITIES 2008-COORD-021-01.

Figure 6: Two different settings of the ’rotten wall’ texture
with visual sliders controlling parameters.

Figure 7: Top: Failure cases : our approach does not cap-
ture global, sudden structural changes in the textures. Bot-
tom: Slider thumbnails constitute a possible solution for
structural parameters.

References
[AS07] AVIDAN S., SHAMIR A.: Seam carving for content-aware

image resizing. Transactions on Graphics (2007). 2, 3

[BGSF10] BARNES C., GOLDMAN D. B., SHECHTMAN E.,
FINKELSTEIN A.: Video tapestries with continuous temporal
zoom. Transactions on Graphics (2010). 2

[Eic94] EICK S.: Data visualization sliders. In ACM symposium
on User interface software and technology (1994). 2

[KP10] KERR W. B., PELLACINI F.: Toward evaluating mate-
rial design interface paradigms for novice users. Transactions on
Graphics (2010). 1, 2

[KSE∗03] KWATRA V., SCHÖDL A., ESSA I., TURK G., BO-
BICK A.: Graphcut textures: Image and video synthesis using
graph cuts. Transactions on Graphics (2003). 3

[SCSI08] SIMAKOV D., CASPI Y., SHECHTMAN E., IRANI M.:
Summarizing visual data using bidirectional similarity. 2

[WHA07] WILLETT W., HEER J., AGRAWALA M.: Scented
widgets: Improving navigation cues with embedded visualiza-
tions. IEEE Transactions on Visualization and Computer Graph-
ics (2007). 2

c© The Eurographics Association 2012.

