EUROGRAPHICS 2012 / C. Andujar, E. Puppo

Short Paper

Hybrid CPU/GPU KD-Tree Construction for Versatile Ray
Tracing

Jean-Patrick Roccial’z, Mathias Paulinl, Christophe Coustet?

HRIT - Université de Toulouse, France
2HPC-SA, Toulouse, France

Abstract

We propose an hybrid CPU-GPU ray-tracing implementation based on an optimal Kd-Tree as acceleration struc-
ture. The construction and traversal of this KD-tree takes benefit from both the CPU and the GPU to achieve
high-performance ray-tracing on mainstream hardware. Our approach, flexible enough to use only a single com-
puting unit (CPU or GPU), is able to efficiently distribute workload between CPUs and GPUs for fast KD-tree

construction and traversal.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

Modern ray-tracing applications require tracing a huge num-
ber of rays in the same scene. However, the coherence of rays
is rarely sufficient to allow their easy and efficient packetiza-
tion. Monte Carlo based methods, designed to numerically
solve integral equations using a high number of indepen-
dent samples, typically fall in this category. In the case of
the rendering equation, samples are rays or paths made of
rays. Such methods are widely used in radiative simulation
or high quality rendering and their accuracy is directly de-
pendent on the number of rays traced. Nevertheless, all the
applications do not require a huge number of rays to provide
an accurate result. For instance, for interactive exploration
or product design, the user just needs to evaluate an equation
involving a few rays to get a virtual measure at one point or
to select one object in the scene.

In order to fulfill constraints of both types of applications,
we propose two contributions for building an optimal KD-
Tree: a technical one, event encoding, that reduces the build-
ing cost of a KD-Tree and a system one, hybrid CPU/GPU
architecture, that efficiently balances the computations be-
tween CPU and GPU.

As demonstrated in section 2, current parallel algorithms
for building KD-Trees do not lead to optimal trees or are
memory limited. We propose in section 3.1 an encoding of
the split-events that limits the memory consumption of the

(© The Eurographics Association 2012.

DOI: 10.2312/conf/[EG2012/short/013-016

tree and in section 3.2 an efficient hybrid CPU/GPU algo-
rithm that minimizes data transfers as well as computation
time. As our KD-Tree construction is hybrid both the GPU
and the CPU can use the tree for efficient traversal (section
4). We then demonstrate the versatility of our system when
it is implemented in CUDA (section 5).

2. Previous works

While the number of computation cores available on CPU or
GPU increases, many parallel approaches for building KD-
Trees are proposed. Nevertheless, increasing parallelism and
improving load-balancing often lead to sub-optimal trees.

The construction of a KD-Tree consists in splitting a node
at a location that balances the tree according to a cost func-
tion. Surface Area Heuristic (SAH) [MB90] is known to
be very efficient for ray tracing. Due to the lack of paral-
lelism on the top-level nodes and in order to quickly gen-
erate enough nodes for subsequent parallel computations,
split heuristic is often simplified in the first steps of the con-
struction. This improves the construction time, but it has
two drawbacks: first, the KD-Tree is not optimal on the
top nodes and, second, increasing the number of comput-
ing units forces the use of a simplified split heuristic for an
increasing number of nodes.

There are two common simplifications for split finding
methods. The first one consists in using the initial bound-
ing boxes of triangles to evaluate the SAH cost of all split

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/short/013-016

J.P. Roccia, M. Paulin, C. Coustet / Hybrid CPU/GPU KD-Tree

candidates. This implies that the selected split plane is not
necessarily the best choice. The second one consists in only
testing a constant number of regularly distributed split planes
instead of using real limits of triangles. [HB02] estimates
that the use of the real limits of triangles provides a 9-35%
gain in traversal time compared to initial triangles boxes and
demonstrates that these trees are optimal.

[WHO06] proposes an improved construction algorithm for
an optimal KD-Tree that [CKL*10] partially parallelizes on
a four 8-cores Xeon computer (not a particularly mainstream
setting). While increasing construction time, both methods
improve traversal time. Recently, [WZL11] introduced a par-
allel algorithm for optimal KD-Tree construction based on
an optimized partition-and-sort algorithm and on the paral-
lel evaluation of the SAH. Even though highly efficient, the
memory consumption limits the scalability of this approach.

The standard traversal algorithm introduced in [HKBv98]
is still the more effective on the CPU thanks to early-exit
optimization and segmented ray validity handling. The idea
is to always traverse the first intersected child to ensure that
the best valid intersection found in a visited node is nec-
essarily the final intersection. However, a dynamic stack is
required in order to come back on the last visited node when
no valid intersection is found, which is not GPU friendly.
For this reason, [FS05] introduces a stackless traversal ap-
proach for KD-Tree on GPU that modifies the validity range
of the ray to restart from the root node when no intersec-
tion is found. [PGSS07] proposes another stackless algo-
rithm that interconnects adjacent nodes by so-called ropes.
This increases performance by accessing directly the next
node to traverse instead of going back in the tree levels when
no intersection is found in the current leaf. The main disad-
vantage of this method is the memory cost of the ropes that
increases by a factor of two the memory cost of the tree.

3. Hybrid KD-Tree Construction

The aim of our building method is to leverage both the CPU
and the GPU, to obtain an optimal KD-Tree, without approx-
imation during the split plane selection. Our first contribu-
tion targets the representation of triangle limits, which are
commonly named events. The second contribution targets a
robust and efficient load balancing model between CPU and
GPU.

3.1. Event representation

Each node contains the list of all triangle limits in its space.
A triangle limit is a location value, a triangle index and an
event type (start or end of triangle). This list must be kept
ordered during the whole construction of the tree to allow
numerous optimizations for the SAH cost evaluation. It must
also be modified at each split to remove the triangles which
do not lie in child nodes and to update events of shared tri-
angles (i.e. triangles intersected by the split plane).

In [WHO6] a float is used for the event location along with

Initial value 0.0 0.1 0.1
0x00000000| Ox3dccceed | Oxbdeccced

Start event 0.0f 0.099999994f -0.1f
0x00000000| 0x3dcccece Oxbdccceed

End event 1.401e-45f 0.1f -0.099999994f
0x00000001 | Ox3dcccced Oxbdcccece

Table 1: Examples of event type encoding in the event itself.

Device | Without event- | With event- | Acceleration
type merging | type merging factor
CPU 3.588s 0.796s x4.5
GPU 0.390s 0.016s x24.4

Table 2: Events representation influence on sorting time.
CPU Intel Core i7 920, GPU NVidia GeForce GTX 560 sort-
ing of 12M events using [HB10].

a bool for the event type. All the weightiness in the process-
ing of nodes comes from this very simple choice. Ordering
predicate is complex as it must ensure that start events are
placed before end events in case of equal position and re-
quires two memory accesses. Using this encoding, 6 bools
per triangle are required in the node structure.

By finding a way to merge events with their types when
manipulating the event/type couple, we can compact this en-
coding. This compaction must preserve ordering of events
and must limit the KD-Tree sub-optimality to a bare mini-
mum. Eventually, event types only require one bit. This is
why we decided to store the event type into the least signifi-
cant bit of the float value of the event location. So, an event
is only a structure containing a modified float and its associ-
ated triangle index. The least significant bit of a start event
is set to the sign bit of the float, when an end event receives
the boolean complementation of its sign bit (see Table 1).

Depending on the float sign and event type, this can shift
the float to the previous/next IEEE representable float. This
leads to a minimal KD-tree perturbation, maintains event or-
dering, and ensures that a start event always comes before its
corresponding end event, even for aligned triangles.

This encoding allows us to directly use high performance
libraries providing key/value sort functions, with best per-
formance on floats/unsigned (see Table 2), in order to sort
events and their associated triangles indexes both on the
CPU and the GPU. The type of an event can be retrieved
by comparing its sign bit to its least significant bit, avoiding
a memory access to a bool.

3.2. CPU/GPU task repartition

The goal of our repartition is to organize the collaboration
between the CPU and the GPU in order to better take advan-
tage of most of their specificities without being forced to use
both of them.

to this end, nodes of the KD-Tree are divided into two

(© The Eurographics Association 2012.

J.P. Roccia, M. Paulin, C. Coustet / Hybrid CPU/GPU KD-Tree

categories : small nodes and large nodes. This classification
depends on their number of triangles, N7. The aim of this
classification is to process the large nodes on the GPU in
order to exploit massive parallelism on their high number
of events, whereas small nodes are processed on the CPU.
If NT is greater than a user-specified threshold, the node is
a large node. Otherwise it is a small node. This threshold
must be set according to the maximal depth of the KD-Tree
and the total number of triangles in the scene. In our tests,
we experimentally set this threshold to 100000 triangles to
obtain the best efficiency (See figure 1 in the accompanying
material).

The GPU creates the root of the kd-tree by computing and
sorting the initial events. Then, it processes the large nodes
in depth-first order to quickly generate small nodes that are
processed by the CPU. Nodes are sent one by one to the
GPU in order to reduce the maximum memory consump-
tion. The initial sort is efficiently performed by a key/value
sort on primitive types (floats/unsigned), thanks to the event
compact representation proposed in section 3.1. The CPU
processes small nodes in parallel with one thread per node.

This approach is very flexible in term of computing repar-
tition: if no suitable GPU is available, the CPU builds the
entire tree by considering that all the nodes are small nodes.
The GPU can also consider that all the nodes are large nodes
and our algorihm will run fully on GPU.

The small nodes are processed with the four steps method
of [WHO06] using our merged event representation. The CPU
threads are waiting for any small nodes pushed in a small
node buffer. They are released when the small node buffer
is empty and the large nodes thread is over. Note that if a
large node cannot be computed on the GPU, we just have to
push this large node into the small node buffer and the CPU
processes it. There are two cases where computing power is
lost: when the CPU is waiting for the first small node, and
when the GPU is idle, waiting for the CPU to finished small
nodes processing. This idle time can be filled by implement-
ing a large node process for the CPU, as in [CKL*10], and
a small node process for the GPU, taking many small nodes
and processing them in parallel.

4. Hybrid KD-Tree traversal

We have implemented two versions of the KD-Tree traver-
sal: one using a static stack [HKBv98] and another using
the stackless KD-restart method [FS05]. Both traversal al-
gorithms do not use any paquetization or coherency classifi-
cation of rays. The static stack approach is 30% faster than
the KD-restart method and all our measurements are made
using this algorithm.

We use a task manager to launch all the ray-tracing thread,
thereafter called tracers. Our task manager can be viewed
as a simple counter of remaining rays and a pointer to in-
put (rays)/output (hits) structures. Every tracer then retrieves
from the task manager the number of rays to process.

(© The Eurographics Association 2012.

Using the NVIDIA CUDA API [NVI] zero-copy mem-
ory access capabilities, ray tracing can be distributed very
simply: the same input/output pointers and an offset can be
passed to all tracers independently of their types. The GPU
tracers call directly a CUDA kernel with these parameters,
without explicitly transferring any data. In order to avoid
CPU/GPU divergence on results, the same algorithm is used
to traverse the KD-Tree on both the CPU and the GPU. Load
balancing between the CPU and the GPU is difficult for ev-
ery hybrid method. In our system, we use a simple heuristic
that first assigns rays to the CPU tracers, to avoid launching
a GPU kernel for a too little number of rays. In our tests,
giving the GPU one hundred times more rays than the CPU
lead to the best efficiency.

The main difficulty of our approach is to find the adequate
number of rays that each CPU/GPU thread requests to the
task manager. This can be solved by tracing some rays at
the initialization stage in order to calibrate the tracers, or by
using precomputed benchmarks on the system configuration.

5. CUDA implementation

All the GPU part of our hybrid raytracer is implemented
with the NVIDIA CUDA API. The KD-tree and the rays/hits
buffers are shared by the CPU and the GPU using zero-copy
memory access. The large node processing is split into a root
initialization step and four node processing steps. Each step
is totally adapted for a GPU parallelization.

Step 1: Root initialization (see Figure 1-1) consists in two
phases. First, a CUDA kernel computes the min/max limits
on each axis and fills the events value/index by axis. Second,
events are sorted on each axis, in parallel for each triangle.

Step 2: Find best split plane (see Figure 1-2) for a node.
This step takes the buffers of event values and their associ-
ated triangles index as input. For each event, the left counter
buffer is initialized with 1 for start events and O for end
events. The right counter buffer is initialized with O for start
events and 1 for end events. A parallel exclusive scan on
the left counter buffer and a reversed parallel exclusive scan
on the right counter buffer gives the number of left/right
triangles for each split plane candidate. The SAH cost for
each split plane candidate is computed in parallel. Finally,
the minimum SAH cost value is determined using a parallel
minimum finding on GPU.

Step 3: Classify triangles (see Figure 1-3) as
left/right/shared with respect to the best split plane
found in the previous step. This step treats all start events
in parallel, and classifies their corresponding triangles as
left/right triangles according to the position of the event
relatively to the best event. Triangles associated to end
events located after the best event and classified as left
triangles are then modified and re-classified as shared
triangles.

J.P. Roccia, M. Paulin, C. Coustet / Hybrid CPU/GPU KD-Tree

[CKL*10] Our builder Model [ALO9] | Our tracer | Acceleration
Model | 1-core|32-cores | 1-core | 4-cores Dragon (871K) 34.5 108.5 x3.15
cpu? | cpu? |cpu®| cpu? | GPU| hybrid Happy (1M) 325 1123 X3.45
Dragon| 5.5 0.65 1.55 | 0.77 |2.67| 043 Soda (2M) 32 56.0 x1.75

Happy | 6.8 | 0.83 | 1.86 | 092 |2.88| 0.50
Soda / / 45 | 268 |224] 1.03

Table 3: Construction times (in seconds) on some well-
known Stanford Computer Graphics Laboratory models,
maximum tree depth = 8 for all measures. CPU”: Intel Xeon
X7550%4 sockets, CPUB: Intel Core i7 920, GPU: NVidia
GeForce GTX 560.

Step 4: Filter geometry (see Figure 1-4) and compute new
events. This step takes triangle flags generated by the pre-
vious step as input, and classifies events according to their
associated triangle flag. Left and right triangles and events
are just kept sorted for the next step. For shared triangles,
for the split axis, a kernel is launched to clamp event to the
split plane. For other axes, shared triangles are intersected
with the split plane to generate new events. At this point,
shared event lists for the left and the right side are available.

Step 5: Finalize lists (see Figure 1-5) and merge shared
events with the left/right side lists. This step consists
in merging the left/right events with the sorted shared
left/shared right events computed in the step 4.

@

Figure 1: GPU large node processing implementation de-
tails, step by step. Blue cells for CUDA kernels, black cells
for data. L=left, R=right, S=shared, F=final.

6. Results

Event/type merging is the central point of our KD-Tree
construction algorithm. It makes the processing on main-
stream hardware simpler and faster (see Table 3). The hy-
brid CPU/GPU organization provides a gain of 51-65% on
the construction times, and outperforms the previously avail-
able HPC-class hardware performance.

Table 4: Traversal performances for four diffuse rays per
pixels (in Mrays.s-1). Results obtained on NVidia GeForce
GTX 560.

We confront results with [AL09], a BVH based high per-
formance raytracer. We use the Fermi implementation of the
author, available at [KAL]. Only diffuse rays are measured
to avoid coherent rays effect. Our ray tracer effectively out-
performs [ALO9] on this kind of rays (see table 4).

The hybrid part of the traversal allows us to launch iso-
lated rays on the CPU, without CUDA kernel call extra cost,
and obtains high performance (2 Mrays per second per core)
when GPU can not be efficiently used.

References

[ALO9] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on GPUs. In Proceedings of the Conference on High
Performance Graphics (2009), HPG 09, ACM, pp. 145-149. 4

[CKL*10] CHol B., KOMURAVELLI R., LU V., SUNG H.,
BoccHINO R. L., ADVE S. V., HART J. C.: Parallel SAH KD-
Trees construction. In Proceedings of the Conference on High
Performance Graphics (2010), HPG ’10, Eurographics Associa-
tion, pp. 77-86. 2,3, 4

[FS05] FOLEY T., SUGERMAN J.: KD-Tree acceleration struc-
tures for a GPU raytracer. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2005), HWWS °05, ACM, pp. 15-22. 2,3

[HBO2] HAVRAN V., BITTNER J.: On improving KD-Trees for
ray shooting. Journal of WSCG 10, 1 (2002), 209-216. 2

[HB10] HOBEROCK J., BELL N.: Thrust: A parallel template
library, 2010. Version 1.3.0. 2

[HKBv98] HAVRAN V., KOPAL T., BITTNER J., ZARA J.: Fast
robust BSP tree traversal algorithm for ray tracing. Journal of
Graphics Tools 2 (January 1998), 15-23. 2,3

[KAL] KARRAS T., AILA T., LAINE S.: Source code -
"Understanding the efficiency of ray traversal on GPUs".
http://code.google.com/p/understanding-the-efficiency-of-ray-
traversal-on-gpus/. 4

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Vis. Comput. 6 (May 1990),
153-166. 1

[NVI] NVIDIA: CUDA Zone - NVIDIA Developer Zone.
http://developer.nvidia.com/category/zone/cuda-zone. 3

[PGSS07] Popov S., GAUNTHER J., SEIDEL H.-P.,
SLUSALLEK P.: Stackless KD-Tree traversal for high per-
formance GPU ray tracing. Computer Graphics Forum 26, 3
(2007), 415-424. 2

[WHO06] WALD I., HAVRAN V.: On building fast KD-Trees for
ray tracing, and on doing that in O(N log N). In Proceedings
of the 2006 IEEE Symposium on Interactive Ray Tracing (2006),
pp. 61-69. 2,3

[WZL11] Wu Z., ZHAO F., L1u X.: SAH KD-Tree construction
on gpu. In Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics (2011), HPG *11, ACM, pp. 71-78.
2

(© The Eurographics Association 2012.

