
EUROGRAPHICS 2012/ A. Fusiello, M. Wimmer Poster

Combining Texture Streaming and Run-Time Generation

Aljosha Demeulemeester1 and Charles-Frederik Hollemeersch1 and Bart Pieters1 and Peter Lambert1 and Rik Van de Walle1

1Department of Electronics and Information Systems, Multimedia Lab, Ghent University - IBBT,
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

Abstract
Virtual texturing systems have enabled gigapixel resolutions for textures used in real-time rendering. This allows
for more detail and diversity in virtual worlds at the cost of greatly increasing disc storage requirements. In this
paper, we propose a compression method that generates parts of these large textures at run-time using the original
painting primitives (brushes) from the texture production process. This way, large featureless texture areas can be
compressed to a few brush resources. A post-production analyzing phase determines those areas that should be
stored as compressed texel data to ensure real-time performance at run-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Texture mapping is widely used to enrich the quality of
real-time rendered graphics. Because of limited video mem-
ory, the textures of large surfaces (e.g., terrain) are usu-
ally procedurally generated by tiling and blending multiple
smaller textures at run-time using the GPU. However, real-
time procedural generation techniques are unable to generate
highly detailed and diverse surface textures. Virtual textur-
ing [HPLV10, Mit08, Bar08] offers a solution by enabling
gigapixel resolutions for textures used in real-time render-
ing. This is accomplished by dividing the high resolution
textures into small tiles (e.g., 128x128 texels). Tiles that are
needed by the visualization are streamed on demand from
disk to memory. However, two issues arise when using gi-
gapixel textures in synthetic virtual environments.

• New production tools are required to allow efficient paint-
ing of these huge textures by artists (generation side).

• Gigapixel textures - frequently having eight or more chan-
nels per pixel - require a large amount of disk storage
(storage and distribution side).

The Infinitex system [HPD∗10] is a texture painting tool
for artists. It provides painting primitives (brushes) that are
a combination of source images, a shader and a blend mode
(frequently called a material in modern rendering engines).
Brush instances - defined by a brush ID, a coordinate and
radius in texture space, and a set of parameters - are inter-
actively added by the artists. These brushes can use infor-

mation of the underlying terrain (e.g., slope, height, etc.) to
procedurally generate the texel data (e.g., rocky surface on
vertical slopes). By adding only a few brush instances that
together cover the entire texture space, a base layer can be
created that equals the quality of current generation of real-
time procedural terrain texturing systems. All instance data
is stored in a database so that texture tiles can be recomposed
at any time.

To tackle the storage requirements for large gigapixel tex-
tures used in a virtual texturing system, we investigate a
compression method that composites some of the tiles (i.e.,
procedural tiles) at run-time at the end-user side using the
original painting primitives from the texture production pro-
cess. Only the tiles for which this in not feasible due to
the real-time constraint are composited offline and stored as
texel data (i.e., baked tiles). We discuss the analyzing phase
that selects the tile type after the texture has been painted.
Also, we discuss the rendering at the end-user side.

2. Virtual Texture Tile Analysis for Compression

In conventional virtual texturing systems (using only baked
tiles), the tiles are compressed using image compression al-
gorithms. Still, this results in very large file sizes, even for
moderate texture dimensions (e.g., 1.7GB for a 1228802 24-
bit RGB texture). To reduce the sizes on disk, 3D scene and
game play analysis is used to aggressively throw away tiles
that are never in view. These are usually tiles from higher

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/posters/003-004

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/posters/003-004


Aljosha Demeulemeester et al. / Combining Texture Streaming and Run-Time Generation

resolution mip map levels. To even further reduce the stor-
age requirements, we introduce a second phase that finds
tiles for which the data needed for their composition re-
quires less storage then their compressed image represen-
tation. This new phase consists of the following steps which
will be discussed below. First, the data for compositing the
tiles is reduced. Second, tiles are filtered out that cannot be
composited at run-time in real-time. Finally, tiles are marked
for run-time compositing based on the resulting impact on
the total storage requirement.

2.1. Reduce Brush Instances

Artists can easily add thousands of brush instances to a tex-
ture region the size of one tile. This could result in instances
that are completely covered. To reduce the total composit-
ing time and required brush resources for a tile, a list of
brush instances is created that actually contribute to its final
texel data. Only instances that intersect with the tile in tex-
ture space are eligible. A spatial database query filters these
out. To detect if the remaining instances really contribute to
the tile, for each instance, a list of texels is created that it
affects. The instance contributes if at least one texel value is
not completely overwritten by another brush instance. Also,
brush instances that are much smaller than a texel could po-
tentially be dropped without impacting perceivable texture
quality. Tiles from lower resolution mip map levels are usu-
ally covered by large number of these instances. However,
a noticeable discontinuity is introduced between texture mip
map levels if instances are not removed in all levels. Only if
the first phase has thrown away the tiles of all higher resolu-
tion mipmap levels in the area covered by a brush instance
can it be removed without visual impact.

2.2. Filter by Compositing Time

The time it takes to composite a tile should be under a cer-
tain threshold for a specific target platform to ensure ade-
quate real-time performance. The threshold depends on the
allocated time for tile compositing at run-time. The collec-
tive compositing time of tiles that come into view during the
same frame should not exceed the allocated time. However,
we currently use a conservative maximum threshold for each
tile: maximum collective compositing time during one frame
divided by the maximum amount of new tiles in view.

2.3. Filter by Required Resources

All brush resources (e.g., images) need to be available when
compositing a tile covered by an instance of that brush. This
adds to the overall storage requirements. By analyzing tile
coverage for each brush, a heuristic method can search for an
optimal selection of procedural tiles to minimize the storage
size.

3. Run-Time Tile Compositing

The end-user texture run-time extends our virtual texturing
system similar to [HPLV10] with a tile compositing module.
The system has a tile cache in video memory (i.e., texture)
that is managed to contain all tiles that were recently needed.
To update the cache, procedural tiles are composited by the
GPU using the brush resources and the brush instance data
for those tiles. Baked tiles are loaded from storage and up-
loaded to video memory. The nature of the system results in
cached texel data that can be reused multiple frames, as long
as the tile remains in view and in cache. For a fast rotating
(90 degrees/s) or translating (50km/h) camera rendering in
HD resolution, tiles remain in view for 15 frames on aver-
age when using 2 mm texel size for a terrain texture. Early
results indicate that the caching enables a performance ad-
vantage opposed to traditional texture compositing during
forward rendering. This compensates for the rendering over-
head added due to the deferred texturing.

4. Conclusions and Future Work

We can conclude that compositing texture tiles at run-time in
real-time is feasible for a virtual texturing system. Feature-
less areas of the texture can be compressed to the size of the
required brushes and the covering brush instances. Enabling
the combination of offline and at run-time composited tex-
ture tiles allows for specific regions in the texture to receive
unlimited detail by the artists. In the future, we will focus
on the heuristic method that searches for the tile type assig-
nation that requires the minimal amount of disk storage. To
evaluate the attained compression, gigapixel textures will be
analyzed that were painted by artists.

Acknowledgments

This research was funded by Ghent University, the Inter-
disciplinary Institute for Broadband Technology (IBBT),
the Institute for the Promotion of Innovation by Science
and Technology in Flanders (IWT), the Fund for Scien-
tific Research-Flanders (FWO-Flanders), and the European
Union.

References
[Bar08] BARRETT S.: Sparse virtual textures. In GDC 2008 pre-

sentations (February 2008). 1

[HPD∗10] HOLLEMEERSCH C.-F., PIETERS B., DEMEULE-
MEESTER A., CORNILLIE F., VAN SEMMERTIER B., MAN-
NENS E., LAMBERT P., DESMET P., VAN DE WALLE R.: In-
finitex: An interactive editing system for the production of large
texture data sets. Comput. Graph. 34 (2010), 643–654. 1

[HPLV10] HOLLEMEERSCH C.-F., PIETERS B., LAMBERT P.,
VAN DE WALLE R.: Accelerating virtual texturing using CUDA.
In GPU Pro : advanced rendering techniques, vol. 1. AK Peters,
2010, pp. 623–641. 1, 2

[Mit08] MITTRING M.: Advanced virtual texture topics. In ACM
SIGGRAPH 2008 classes (New York, NY, USA, 2008), SIG-
GRAPH ’08, ACM, pp. 23–51. 1

c© The Eurographics Association 2012.

4


