EUROGRAPHICS 2012/ G. Gallo and B. S. Santos

Education Paper

t€xvn Photons: Evolution of a Course in Data Structures

A. T. Duchowski'!

IClemson University, USA

Abstract

This paper presents the evolution of a data structures and algorithms course based on a specific computer graphics
problem, namely photon mapping, as the teaching medium. The paper reports development of the course through
several iterations and evaluations, dating back five years. The course originated as a problem-based graphics
course requiring sophomore students to implement Hoppe et al.’s algorithm for surface reconstruction from unor-
ganized points found in their SIGGRAPH ’92 paper of the same title. Although the solution to this problem lends
itself well to an exploration of data structures and code modularization, both of which are traditionally taught
in early computer science courses, the algorithm’s complexity was reflected in students’ overwhelmingly negative
evaluations. Subsequently, because implementation of the kd-tree was seen as the linchpin data structure, it was
again featured in the problem of ray tracing trees consisting of more than 250,000,000 triangles. Eventually, be-
cause the tree rendering was thought too specific a problem, the photon mapper was chosen as the semester-long
problem considered to be a suitable replacement. This paper details the resultant course description and outline,
from its now two semesters of teaching.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics Data Structures and Data Types

1. Introduction

This paper is the latest in the succession generated by the
Té)vn project, our problem-based undergraduate curriculum
which originated from our experiences in the establishment
of a cross-disciplinary Digital Production Arts (DPA) pro-
gram. The DPA master’s level degree combines elements of
computer science, art, theater, and psychology, among oth-
ers. Graduates who have completed the program pursue ca-
reers in the special effects industry for film, television, and
gaming. Studios that have hired our students include Rhythm
& Hues, Industrial Light & Magic, Pixar, Blue Sky, Elec-
tronic Arts, and Sony Imageworks.

The té€xvm project advocates problem-based learning in
teaching undergraduate courses, emphasizing development
of a semester-long project that incorporates concepts taught
in the course. Although any engaging, cogent problem is
thought to be better than popular but disparate “toy” prob-
lems, computer graphics problems are particularly suitable.
Computer graphics problems lend themselves to teaching

T duchowski@clemon.edu

(© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/education/049-056

general computer science concepts for three primary rea-
sons [DDO7]. First, the complexity of graphics problems
draws on sophisticated solutions. Second, visualization of
solutions provides visual feedback to students that provides
evaluation of correctness as well personal satisfaction. Third,
graphics problems also provide a level of artistic freedom not
as readily afforded by other problems (e.g., list sorting).

The té€yvn project specifies four pillars upon which
courses should be designed and taught [DGSW11]:

1. re-combining art and science: the word Ttéyvn is the
Greek word for art and shares its root with Texvoloyia,
the Greek word for technology. Essentially, we believe
that technical computing problems combined with a vi-
sual component engages students more than either techni-
cally challenging or visually demanding problems alone.

2. problem-based learning: this approach is well-known and
its use widespread [DGAO1], and in our té€yvn varia-
tion is extended to last the duration of the course, i.e.,
a semester in our case.

3. visual domain: problems are drawn from computer
graphics and visualization. We do this partially because

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/education/049-056

50 A. T. Duchowski / téyvn Photons

Figure 1: Result of the final programming assignment in
CS2 where a ray tracer is developed in C.

we believe that graphics are interesting to students, and
partially because of Cunningham’s [Cun02] observation
of computer graphics providing support for development
of cognitive tools for effective problem solving.

4. cognitive apprenticeship: we believe that the master-
apprentice relationship transfers to development of cog-
nitive skill in the classroom, particularly when the content
is challenging for both instructor as well as student.

The té€xvn project’s philosophical basis, as well as results
of instructional experiments with introductory courses, have
been presented in several papers [DGMWO04, MD06, DD07,
DGSW11], and in the dissertation by Matzko [Mat08].

In this paper the latest incarnation of a data structures
course is discussed which relies on the development of a
photon mapper, following both a traditional data structures
textbook [Wei06] and Jensen’s [JenO1] monograph.

2. téyvn Project Overview

The first course in the t€yvn curriculum is CS1 (first-year
course introducing computer science), in which a semester-
long image processing project is used to teach the required
basics (e.g., file input/output, looping, etc.). The course cul-
minates in the implementation of an image re-coloring algo-
rithm described by Matzko and Davis [MDO06].

In the next course, CS2, students implement a ray tracer, a
topic previously exclusively taught in our graduate-level ad-
vanced graphics course. The ray tracer is pedagogically ideal
for several reasons: it covers a broad range of concepts, pro-
vides visual feedback, and naturally leads to object-oriented
program design. The course has been offered in various
forms several times with excellent results, detailed by Davis
etal. [DGMWO04]. An example of a fairly simple image read-
ily produced by students in the course is shown in Figure 1.

Duchowski and Davis [DDO7] first published experiences
from the initial problem-based version of the next course,
CS3, the data structures and algorithms course that is the
subject of this paper. Our initial choice of a semester-long
graphics problem was Hoppe et al.’s [HDD*92] surface re-
construction from unorganized points. This problem was
originally chosen partially for its complexity as well as for
its necessity for efficient algorithmic design, without which
a large data set would require significantly long periods of
computation. Unfortunately, while the latter aspect of the
problem is justifiable from the perspective of teaching al-
gorithm analysis, the former complexities were too great to
easily teach within one semester at this level of instruction.

What the CS3 course required was the motivation for ef-
ficient algorithmic design, e.g., strategies for fast search or
query, without increasing the complexity too much beyond
the ray tracer. The next evolution of the course was described
by Duchowski et al. [DGSW11], wherein a ray tracer relied
on a spatial subdivision data structure to efficiently search
through more than 250,000,000 triangles evaluated in the
ray-object intersection. At this point we taught the course
in two variants, where one section of the course employed
the graphical €y vr problem-based approach while the other
employed the traditional textbook approach. Assessment of
pre-test and final exam responses showed that the t€yvn ap-
proach led to improved exam scores, providing compelling
evidence for the effectiveness of the Téyvn method.

However, the second version of the CS3 course was also
subjectively evaluated by students as lacking in variety, pos-
sibly suffering from a singular focus. In the version of the
course discussed in this paper, a simpler version of the prob-
lem was adopted, namely the photon mapper, which still re-
lies on efficient query operations (namely as facilitated by
the kd-tree), but its implementation is somewhat simpler as
it largely relies on manipulation of points instead of trian-
gles. The course content is detailed in subsequent sections.

2.1. Pre-requisite Course Description

The CS3 data structures course builds on completion of the
CS2 pre-requisite course covering the C programming lan-
guage and providing a brief introduction to C++. The pre-
requisite C/C++ course covers advanced programming and
culminates in the development of a basic ray tracer written
in C. The course also includes basic programming concepts,
including file input and output (writing . ppm image files)
and programming tools such as the use of the Makefile.

The course teaches development of a basic vector library
to support ray-object intersection, a linked list to support
storage of scene objects and basic iteration, and a hierarchi-
cal data structure to represent the objects. Design and im-
plementation of these data structures follows object-oriented
principles. The vector library implements vector initializa-
tion and the idea of simple vector operations, e.g., vector ad-
dition, subtraction, etc. The linked list resembles a generic

(© The Eurographics Association 2012.

A. T. Duchowski / téyvn Photons 51

container in that it stores (void =) pointers. Data struc-
tures representing objects implement inheritance by deriving
specific C structures from a generic object type.

Although the data structures supporting the ray tracer are
developed using object-oriented ideas, the implementation
falls short of a complete object-oriented system, resulting in
a number of important limitations that are addressed in the
follow-on CS3 data structures course.

3. Course Content and Project Description

The CS3 data structures course content and organization
generally follows Weiss” Data Structures and Algorithm
Analysis in C++ textbook [Wei06] listed below and split into
three main parts:

1. Objects and C++ 3. Implementations

e objects and classes e priority queues (heaps)
e templates o linked lists
e inheritance e stacks and queues
. . e binary search trees
2. Algorithms and Analysis e AVL trees
algorithm analysis e graphs
data structures o hash tables
L]

recurrence relations
sorting algorithms

(2D and 3D) kd-trees

e o o o

Jensen’s Realistic Image Synthesis Using Photon Mapping
[JenO1] is listed as a supplemental text, but is not required.

The course progresses with seven assignments whose de-
velopment builds toward the final implementation of the
course project, the photon mapper. The middle assignment
implementing AVL trees is the only one that does not di-
rectly contribute to the final project:

4. AVL trees

5. photon emission

6. 2D kd-tree visualization
7. photon mapper

1. basic C++ ray tracer

2. parallelized ray tracer
using OpenMP

3. ray traced transmission

The AVL tree serves as something of a break in the develop-
ment of the (approximately 16-week) semester-long project.

Project development is supported to a limited extent by
twelve laboratory exercises. Some labs are directly related
to the project, others concentrate on algorithm analysis:

1. array class 7. stack

2. timer class, bubblesort 8. binary search trees [

3. quicksort 9. binary search trees II
4. omp parallelization 10. Ot photon visualizer
5. binary heap 11. kd-tree

6. linked list class 12. Dijkstra’s shortest path

Abstract data type C++ class development gradually incor-
porates the C++ Standard Template Library (STL). For ex-
ample, students first develop their own doubly-linked list
along with their own implementation of iterators, then even-
tually are introduced to STL’s templated vector class.

(© The Eurographics Association 2012.

Figure 2: Result of the first two programming assignments
showing distance-attenuated reflection with the scene pat-
terned after the well-known Cornell box scene used by
Jensen [JenOl].

Eventually, lab 12 (Dijkstra’s shortest path) is implemented
using STL map (associative array) containers.

Select source code snippets are dissected in class and
source code solutions to each assignment are provided fol-
lowing the due date.

3.1. From Ray Tracer to Photon Mapper

The photon mapper was chosen as the semester-long prob-
lem because it puts to use the theory that is taught in a data
structures and algorithms analysis course: good data struc-
tures and efficient algorithms are required to quickly ren-
der photon mapped scenes. In particular, the photon mapper
relies on spatial localization of photons at the ray-surface
intersection, retrieved through search queries to a kd-tree
data structure which stores the photons. It is made clear to
students that, without the kd-tree, this search, repeated sev-
eral times by each ray, requires O(n) comparisons of a large
number of photons (e.g., 20,000), whereas reduction of the
number of comparisons to O(log, n) = 14 per ray speeds up
the program considerably. Natural questions of what is “big-
oh” notation and how is this speed up achieved are met with
a response indicating that that is what the course is about.

Note that the focus of development is more on data
structures than on computer graphics effects, hence inter-
reflections are not considered during photon bounces. Ef-
fects such as color bleeding may be introduced in future it-
erations of the course.

3.1.1. Assignment 0

The ray tracer developed for the first assignment is a basic
C++ implementation. An initial version is made available

52 A. T. Duchowski / téyvn Photons

Figure 3: Result of the third programming assignment show-
ing refraction when the right sphere is made transparent,
without (left) and with (right) Schlick’s approximation.

to students, and it should match what students would have
developed in the pre-requisite C programming course. The
point of the assignment is to level the playing field making
sure all students start with the same basic ray tracer imple-
mentation. One small requirement is that the previous stand-
alone ray_trace C function is now converted to a public
member function of a newly introduced C++ ray class. A
code snippet of what is meant by “ray spawning” is given.

ray = new ray_t (pos,dir); // spawn ray
ray—->trace (model, color) ; // trace ray
delete ray; // delete ray

3.1.2. Assignment 1

The basic ray tracer exposes two design flaws that appear
when, during development of the second assignment (see
Figure 2), the code is parallelized for execution on multi-
core machines via the OpenMP library (supported by recent
versions of the GNU g++ compiler). The first of the two de-
sign flaws involves per-object storage of ray-object intersec-
tion tests, i.e., an object stores a pointer to the object last hit
by aray. This works sufficiently well when there is only one
ray shot into the scene. When there are multiple rays shot
into the scene simultaneously, race conditions ensue when
the ray queries the object it hits testing for self-collisions.

The second of the basic ray tracer’s design flaws con-
cerns the linked list used in the pre-requisite C course to
store scene objects. The linked list maintains a pointer to
the current object during iteration through the scene objects
testing for ray-object intersection. Once again this functions
well enough when there is only one ray, but race conditions
once again ensue when multiple rays concurrently query the
list for the next object when the list (scene model) is shared
among rays. Copying the model to each of the concurrent
OpenMP threads is clearly inefficient; the more appropriate
solution is to make the current object pointer private to each
thread. This naturally suggests the implementation of a list
iterator which each thread maintains during ray-object in-
tersection tests. A code snippet of the omp call is given but
private and shared arguments are left for students to fill in.

Figure 4: Result of the fifth programming assignment show-
ing a visualization of emitted photons that have “stuck” to
surfaces in the scene. The important aspect of this visual-
ization is the concentration of caustic photons below the
right sphere following emission in random directions from
the source point light source.

#pragma omp parallel for \
shared(...fill this in...) \
private(...fill this in...) \
schedule (static, chunk)

3.1.3. Assignment 2

The ray class developed in the first assignment facilitates im-
plementation of the third assignment, requiring handling of
transparent objects. Transparent rays implement refraction
through transparent objects as governed by Snell’s Law (see
Figure 3). Calculation of the transmission ray’s direction,

t= nﬁ (d—(d~n)n)—n\/1— <:)2(1—(d~n)2)

with incoming ray direction d, surface normal n, and indices
of refraction n and n;, as derived by Shirley [Shi02], is im-
plemented as a vector class refract member function. If
the term in the radical is negative, total internal reflection
is returned by calling the vector’s reflect member func-
tion. Schlick’s [Sch94] approximation is mentioned in pass-
ing and left to students as an optional implementation. Pro-
totypes for the vector class member functions are suggested.

vec_t vec_t::refract (const vec_t&, float);
vec_t vec_t::reflect (const vec_t&);

3.1.4. Assignment 3

Following the third assignment, the fourth assignment re-
quires implementation of an AVL tree. The AVL tree imple-

(© The Eurographics Association 2012.

A. T. Duchowski / téyvn Photons 53

Fle €dt mage Fle edt mage

Fle edt mage

o

Figure 5: Result of the sixth programming assignment showing a visualization of a 2D kd-tree storing a number of 2D points
manually input by the user. The two rightmost panels depict the nearest-neighbor query and the range query on the data set.

mentation prepares students for the kd-tree implementation
by getting them accustomed to tree insertion, traversal, and
public and private access to the tree’s member functions.

3.1.5. Assignment 4

The fifth assignment (see Figure 4) is closely linked to the
tenth lab in that it relies on the development of a simple
OpenGL visualizer of emitted photons that have “stuck” to
surfaces in the scene. Photon emission code is provided.

vec_t photon_t::emit (const vec_té& n)

{
double azmt=genrand(0.0,2.0+«M_PI);
double elev=genrand(0.0,2.0+«M_PI);
double sinA=sin (azmt), cosA=cos (azmt);
double sinE=sin (elev), cosE=cos(elev);

vec_t dir=vec_t (-sinA*cosE, sinE, cosAxcosE) ;
vec_t vup=vec_t (sinA*xsinE, cosE,cosAxsinE) ;
vec_t out=(dir + wvup) .norm();

return (out.dot (n) >= 0) ? out : -out;

Because the OpenGL library leaves open rendering win-
dow management, the programmer is free to choose the
windowing toolkit within which the OpenGL scene is ren-
dered. The data structures course introduces students to
event-driven programming through the use of the Ot object-
oriented C++ toolkit. Qt provides several conveniences that

simplify implementation, including a file browser dialog box
along with easy backbuffer copying and image class output
for saving screenshots of the scene.

3.1.6. Assignment 5

The sixth assignment also relies on code developed in the lab
as both focus on development of the kd-tree. Besides its con-
struction, three nearest-neighbor query variants are imple-
mented (with increasing difficulty): nearest-neighbor and k-
nearest-neighbor searches, as well as the range query. Even-
tually, the k-nearest-neighbor query is the one that is used
by the photon mapper, however, the nearest-neighbor query
is easier to implement first. The only differences between
the two queries is that the former requires a list of nearest
neighbors that must be maintained in sorted order, with re-
spect to each point’s distance to the query point, and the dis-
tance to the kth nearest point must not be set until k£ candidate
points have been stored in the list. An excerpt from Andrew
Moore’s PhD thesis is provided to students in understanding
how the kd-tree query tree traversals work [Moo91].

Once again, Qt is used to interactively test the kd-tree im-
plementation (see Figure 5). The previous Qt assignment
acted mainly as a simple, static photon viewer and did not
exploit user interactivity beyond the use of a simple file di-
alog. In this assignment, more event-driven programming
concepts are introduced. The kd-tree visualizer requires that
the program respond to the user events listed in Table 1.

Table 1: Overriding Ot QGLWidget events.

initializeGL () :
resizeGL () :
paintGL () :

simply sets glClearColor.
the resize event sets up the orthographic projection via gluOrtho2D.
the main redraw event handler must be made to function in a continuous loop even when

there is nothing to draw, e.g., no input points exist, the kd-tree is empty, etc.

mousePressEvent () :

unmodified button presses add points to the input point list, SHIFT-modified presses set

up the first point of the range query rectangle.

mouseReleaseEvent () : button-modified mouse releases initiate queries: ALT-modified button releases query for
the nearest neighbor point, ALT-SHIFT-modified releases for the k nearest neighbors,
SHIFT-modified releases obtain the second point of the range query rectangle.

(© The Eurographics Association 2012.

54 A. T. Duchowski / téyvn Photons

(b) 20,000 global and 5,000 caustic photons, 100 photon samples, 5 ray and 10 photon bounces executing in about 112 seconds.

Figure 6: Results from the seventh and final assignment, executed in parallel on an 8-core Mac Pro, with images shown,

left-to-right with no filtering, cone filter, and Gaussian filter.

3.1.7. Assignment 6

The seventh and final assignment requires implementation
of the photon mapper. At this point in the semester, this is
largely a matter of assembly of previously developed code,
hence an element of code re-use is implicitly invoked. In par-
ticular, the kd-tree is now made to work with 3D photons in-
stead of 2D points. However, because photons are essentially
3D points in space, the C++ kd-tree class only changes in its
specialization, i.e., because it was designed as a templated
container, no code changes are necessary provided the pho-
ton class implements the same required member functions
that the point class did (e.g., calculation of distance between
points). Deriving the photon class from the ray class, all code
for photon reflection and transmission is already in place.

Because the final assignment is mainly a matter of code
re-use, optional considerations can be explored, such as the
use of a filter to smooth the appearance of the radiance es-
timate. Two filters, one from Jensen’s text [JenO1] and one
from his papers [Jen96] are used: the cone (w).) or Gaus-
sian (wg) filter, each of which is used to weight the power
of each of the photons used in the flux computation:

1-dy/(kr) 1B
BT T T R i R g

where o, = 1.818, B = 1.953, d,, is the distance from the ray-

surface intersection point to each photon, and k£ = 1.1 (just
a constant, not to be confused with the k-nearest neighbor
photons). Expected results are shown in Figure 6, achievable
by most students in the class.

4. Lessons Learned from the Course Implementation

As with previous Téxvn courses [DGSW11], on the one
hand, this course also requires more effort than a traditional,
textbook-directed approach. On the other hand, the effort is
motivated by a clear end goal, namely that of matching the
scenes rendered by Jensen [JenO1], whereas the textbook ap-
proach, motivated by a series of disjointed “toy problems”,
lacks this type of coherence. Indeed, a fair amount of “sweat
equity” is invested by the course instructor, but the return on
investment is substantial, particularly toward the end of the
semester when students actively participate in critical evalu-
ation of the instructor’s work. Two examples of this type of
iterative improvement are given.

1. During the first iteration of the course, students pointed
out the lack of caustics missing beyond the transparent
sphere in the scene. Indeed, on inspection, it was found
that the ray object’s overloaded t race routine failed to
call the appropriate version of itself when spawning re-
fracted rays. That is, two overloaded trace functions
are developed, one that includes photon gathering, effect-
ing the photon mapped synthetic scene, and one that does

(© The Eurographics Association 2012.

A. T. Duchowski / téxvn Photons 55

(a) 20,000 photons, 50 photon samples, 5 ray and 10 photon bounces executing in about 56-93 seconds.

Figure 7: Results from the first iteration of the photon mapper with spherical instead of hemispherical photon emission, executed
in parallel on a 4-core MacBook Pro, with images shown, left-to-right with no filtering, cone filter, and Gaussian filter.

not, producing the normal ray traced scene. The function
prototypes differ in that one takes the kd-tree as an ar-
gument, the other one does not. The simple mistake in-
volved the new t race calling the old one.

2. During the second iteration of the course, a student
pointed out that the suggested code for photon emission
sent photons in random directions within a sphere. Im-
ages from this iteration are shown in Figure 7 (c.f. Fig-
ure 6). The correct solution emits photons in random di-
rections within a hemisphere about the ray-surface inter-
section point. The solution is straightforward requiring
the testing of the dot product of the emission vector with
the surface normal—if negative, the emission vector is
negated. This fix was particularly rewarding because it
led to scenes matching those of Jensen’s, which in turn
was hopefully perceived as instructor enthusiasm.

Various other small bugs were revisited by the instructor
throughout both semesters in an effort to improve the code
so that rendered images matched what was found in Jensen’s
book and web pages, and to facilitate teaching. Solution code
is provided following completion of each programming as-
signment. One particular source of frustration was correct
ray transmission calculation, which had eluded the instruc-
tor during the first iteration of the course. This nagging prob-
lem was finally resolved through consultation of Shirley’s
book [Shi00] along with his on-line notes, contrasted against
what is found in Glassner’s text [Gla89].

Finally, with an increased understanding of the photon
mapper came the opportunity for divergence of the solution,
namely, we used one photon map that was populated by two
different types of photons, caustic and global. Jensen [Jen96]
suggests the use of two separate photon maps, but it appears
that one is sufficient to generate comparable results.

5. Student Feedback and Performance

Student responses (12 of 36) from the first semester’s class
indicated that the course was perceived as more difficult than

(© The Eurographics Association 2012.

other classes at the same level (mean response 4.167 vs.
3.736 on a 5-point response scale) while requiring a compa-
rable amount of work (mean response 4.083 vs. 4.125 at the
same level). The course does indeed require a good deal of
programming, with the final assignment consisting of about
3,000 lines of code (counting C++ interface and implemen-
tation files). Unprepared students are likely to complain.

It is not clear which cross-section of the class submitted
student evaluations, but only one third did so. Similarly, only
one third of the class submitted an optional, “creative” im-
age. It is likely that these were not the same students who
provided student evaluations. However, of the 12 who sub-
mitted creative images (three are shown in Figure 8(a)), com-
ments they provided to the instructor suggested that the final
assignment was easier than initially perceived, and that they
derived satisfaction from its completion.

Student responses from the second semester have not yet
been distilled, but are likely to be similar. Of the cross-
section of the class that is expected to submit creative im-
ages, it appears that these students relish the challenge given
to them and enjoy not only learning data structures and al-
gorithms, but they also derive a measure of satisfaction from
the visual nature of the task. Several of them pursued im-
plementing Schlick’s approximation to the Fresnel equations
that was only discussed briefly, and at least one student has
expressed interest in pursuing a computer science honors
project involving further exploration of the photon mapper.
This particular student independently implemented ray-cast
shadows as well as a model of wavelength-based refraction
following Cauchy’s equation, using it to simulate thin-film
interference in soap bubbles (see Figure 8(b)).

6. Acknowledgments

This work was supported in part by the US National Science
Foundation under Award #0722313.

56 A. T. Duchowski / téyvn Photons

(a) Example images from Spring 2011 students: left-to-right, Brenden Roberts, Carrie Eisengrein, and Jacob Adelberg.

(b) Example images from Fall 2011 students: left-to-right, Ryan Geary, and Jason Anderson’s Cauchy-based refraction and simulation of thin-

film interference in soap bubbles.

Figure 8: Results from two semesters of teaching the course.

References

[Cun02] CUNNINGHAM S.: Graphical problem solving and vi-
sual communication in the beginning computer graphics course.
In SIGCSE °02: Proceedings of the 33rd SIGCSE technical sym-
posium on Computer Science education (New York, NY, 2002),
ACM Press, pp. 181-185.

[DD07] DucHOWSKI A. T., DAVIS T. A.: Teaching Algorithms
and Data Structures through Graphics. In Proceedings of Euro-
Graphics 2007 (Education Papers) (New York, NY, USA, 2007),
ACM Press.

[DGAO1] DucH B., GRON S., ALLEN D.: The power of
problem-based learning. Stylus Publishing, LLC, Sterling, VA,
2001.

[DGMWO04] Davis T., GEIST R., MATZKO S., WESTALL J.:
éyvn: a first step. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer Science education
(New York, NY, 2004), ACM Press, pp. 125-129.

[DGSWI11] DucHOwSKI A. T., GEIST R., SCHALKOFF R.,
WESTALL J.: téyvn Trees: A New Course in Data Structures.
In Proceedings of the 42nd ACM Technical Symposium on Com-
puter Science Education (New York, NY, 2011), SIGCSE 11,
ACM, pp. 341-346.

[Gla89] GLASSNER A. S. (Ed.): An Introduction to Ray Tracing.
Academic Press, San Diego, CA, 1989.

[HDD*92] HorpPE H., DEROSE T., DUCHAMP T., MCDONALD
J., STUETZLE W.: Surfrace Reconstruction from Unorganized
Points. In Computer Graphics (SIGGRAPH ’92) (New York, NY,
1992), ACM, pp. 71-78.

[Jen96] JENSEN H. W.: Global Illumination using Photon Maps.
In Rendering Techniques *96 (Proceedings of the Seventh Euro-
Graphics Workshop on Rendering) (1996), Pueyo X., Schroder,
(Eds.), Springer-Verlag, pp. 21-30.

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon
Mapping. A K Peters, Ltd., Natick, MA, 2001.

[Mat08] MATZKO S.: €y vn and Quest-Oriented Learning. PhD
thesis, Clemson University, Clemson, SC, 2008.

[MD06] MATZKO S., DAVIS T.: Using graphics research to teach
freshman computer science. In SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Educators program (New York, NY, 2006), ACM
Press, p. 9.

[Mo0o91] MOORE A. W.: Efficient Memory-based Learning for
Robot Control. PhD thesis, University of Cambridge, Cambridge,
UK, October 1991. Technical Report No. 209, URL: http:
//www.autonlab.org/autonweb/14712 .html.

[Sch94] ScHLIcK C.: An Inexpensive BRDF Model for
Physically-based Rendering. Computer Graphics Forum 13, 3
(1994), 233-246.

[Shi00] SHIRLEY P.: Realistic Ray Tracing. A K Peters, Ltd.,
Natick, MA, 2000.

[Shi02] SHIRLEY P.: Fundamentals of Computer Graphics. A K
Peters, Ltd., Natick, MA, 2002.

[Wei06] WEISS M. A.: Data Structures and Algorithm Analysis
in C++, 3rd ed. Pearson Education (Addison-Wesley), Boston,
MA, 2006.

(© The Eurographics Association 2012.

http://www.autonlab.org/autonweb/14712.html
http://www.autonlab.org/autonweb/14712.html

