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Figure 1: Detailed reconstruction from GIS data of the Champlain Bridge in Montreal, Canada. Left and middle images are for reference.

Abstract

3D models of transportation objects like a road, bridge, underpass, etc. are required in many domains including military train-
ing, land development, etc. While remote sensed images and LiDaR data can be used to create approximate 3D representations,
detailed 3D representations are difficult to create automatically. Instead, interactive tools are used with rather laborious effort.
For example, the top commercial interactive model generator we tried required 94 parameters in all for different bridge types. In
this paper, we take a different path. We automatically derive these parameter values from GIS (Geographic Information Systems)
data, which normally contains detailed information of these objects, but often only implicitly. The framework presented here
transforms GIS data into a knowledge base consisting of assertions. Spatial/numeric relations are handled through plug-ins
called property extractors whose results get added to the knowledge base, used by a reasoning engine to infer object properties.
A number of properties have to be extracted from images, and are dependent on the accuracy of computer vision methods. While
a comprehensive property extractor mechanism is work in progress, . a prototype implementation illustrates our framework for
bridges with GIS data from the real world. To the best of our knowledge, our framework is the first to integrate knowledge

inference and uncertainty for extracting landscape object properties by fusing facts from multi-modal GIS data sources.

CCS Concepts

eComputing methodologies — Computer graphics; Description logics; Reasoning about belief and knowledge ;

1. Introduction

Creating detailed 3D digital representations for land regions is of-
ten a very labor intensive process requiring a human to manually
analyze the available Geographic Information Systems (GIS) data
and estimate parameter values for use with 3D modeling tools.
Terrain, land objects and other components like texture and ma-
terials are usually extracted from geospatial databases for a real
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world region of interest (ROI). Three main components in GIS
data are elevation, imagery and geometric features. While, eleva-
tion and imagery are easily available as a result of advances in
sensing technologies, feature data (also known as vector data) and
the associated 3D models are usually not. Often, a transport ob-
ject such as road, bridge or underpass is represented as just a lin-
ear element, i.e., polyline segments with no other identification in-
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formation. In current practice, the best automated representation
which one can derive is to use elevation and imagery, and semi-
automatically generate a textured mesh of the terrain (ground sur-
face). This is what we often see in systems such as Google Earth®.
Objects like bridges will be baked into the terrain rather than show
up distinctly in the landscape. 3D detailed representations have to
be hand-crafted, typically by using interactive modeling tools, an
onerous task requiring considerable expertise and skill.

We present a new knowledge-based framework for discover-
ing object properties from GIS data, significantly extending pre-
vious work by Pedro et. al in [EMO09]. Important capabilities of
our framework are: 1) It fuses information from different GIS
data types into a single knowledge base (KB) [BLHL*01] and
the property extractors mechanism from [EM13] for handling spa-
tial/numeric relations. The KB consists of assertions with support
for associating certainty values. 2) It infers object properties based
on specialized domain ontologies. 3) It calculates resulting cer-
tainty for inferred properties using the explanation services of the
reasoning engine [HPSO8] and Fuzzy semantics [Zad65]. 4) It il-
lustrates creation of a complex 3D model of a bridge with prop-
erties extracted from the KB. Fig. 1 shows an example of such
a 3D model. A significant contribution of this work is the way
knowledge-based processes are incorporated into a pipeline frame-
work for discovering object parameters. The framework is illus-
trated for bridge objects with all their complex structures, but is
easily extensible by adding other domain knowledge.

Spatial relationships extend the Dimensionally Extended nine-
Intersection Model (DE-9IM) standard [CSE94] to 3D and get
added as assertions. A distinguishing feature is our capability to
associate a certainty value, ranging from O - 1, with the assertion. It
can be used to create choices resulting in increased reconstruction
accuracy, e.g., a 4 lane bridge with 60% certainty or a 3 lane bridge
with 40% certainty. This is described in more detail in Section 4.1.

Completeness of representation is guaranteed by providing de-
fault values for every object parameter. Default values may be over-
ridden by extraction or inference, depending on the information
present in the input data. Inspite of the limited resolutions in pub-
lic and free GIS datasets we had access to, we are able to generate
3D models with more detail than what is currently possible, ex-
cept through human intervention. The expert knowledge that we
encoded (transportation domain ontology) as part of our prototype
is reusable as it relates to the domain rather than the specific region
of interest. The property extractors we have implemented in our
prototype use GIS data (e.g. raster, vector, and elevation). These
can be used on different resolutions. Values extracted from low res-
olution data are assigned lesser certainty. This would however be
a decision by the plug-in programmer. Inconsistencies, and the ex-
planations provided can be reviewed and decided upon by users.

2. Background and Related Work

In this section, we first summarize work which addresses the use of
semantics in GIS applications. Then we review other work which
addresses the problem of generating details by inferencing. Third,
we describe attempts to formalize object definitions through tax-
onomies and ontologies. Lastly, we describe how uncertainty has

been handled in the semantic Web domain. We end this section by
presenting our distinct method of associating certainty values based
on explanations provided by the reasoning engine.

2.1. 3D Landscape Rendering

Our closest competitor is Google Earth® and associated tools
which can be used to display custom 3D models in maps and ter-
rains. They use prepared satellite imagery and geo-referenced 3D
model databases to retrieve information for users’ queries. 3D mod-
els are created through school competitions or by marketers which
are then added to the public database. Best automatic representa-
tions usually consist of a baked overpass that seems molten over
terrain. Examples in Section 6 illustrate this point clearly.

2.2. Urban Reconstruction

Another closely related area is the field of urban reconstruction
in which there has been extensive research using computer vision
and graphics techniques applied to remote sensed images and Li-
DaR data. The primary goal is however different since these tech-
niques concentrate largely on automatic reconstruction of 3D mod-
els of buildings/building complexes, and also to some extent street
networks. For some comprehensive surveys, we refer the reader
to [MWA™*13], [BTS*17], [CPP18]. Most techniques are based on
hand-crafted features, use colour or LiDaR or both, and obtain the
model through an optimization process [KFWM17]. They often
have to make certain simplifying assumptions about the two or two
and half dimensional nature of buildings, streets and other objects.
Since the gathered data could be noisy and could also have missing
data, in the last few years, we have also begun to see methods ap-
plying deep learning. They carry out semantic labelling at the pixel
level in the first step and then do reconstruction by aggregation of
pixels into clusters representing objects [ZZ18], [HMP18]. The re-
sulting 3D object models, need considerable post processing (often
with manual effort) particularly due to the jaggedness present in ob-
ject boundaries. There is no major overlap with this work as such,
except that we could use these methods in our property extractor
mechanism or in a pre-processing step and add the results as suit-
able facts (with associated certainty) to the knowledge base.

2.3. Semantics in GIS

The Semantic Web [BLHL*01] addresses knowledge representa-
tion and interpretation. It allows the definition of formal knowledge
in the form of ontologies that cooperate with assertional data and
other components within a system. The system forms the knowl-
edge base and normally includes a reasoner engine that delivers
answers to semantic queries based on defined semantics such as
SROIQ [HKSO06]. The reasoner engine provides several services in-
cluding a knowledge base (KB) realization service, which reveals
implicit information as well as inconsistencies, if any.

Within the GIS domain, such concepts as ontology-driven geo-
graphic information systems and the geospatial Semantic Web have
fueled a plethora of research in semantic similarity and knowl-
edge sharing [MDHO5]. [WGO7] introduced semantic web to au-
tomate geospatial data retrieval using a task-based ontology for
immediate response personnel. Ordinance Survey, Great Britain’s
National Mapping Agency is developing an integrated system and
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ontology to share information consistently between all their sys-
tems [Goo0S]. [FEACO02] describe the use of ontologies to inte-
grate information in different sources and to determine embedded
knowledge for use by client applications. [HTL0O7] used Seman-
tic Web for detecting types of complex road intersections in im-
age sequences to define and predict movements and restrictions of
cars. [VABWO09] visualize simulated urban spaces in the future by
inferring on gathered data such as the original street network and
aerial imagery. A classification of all objects in the visual domain
was developed in 2005 [Bit05]; the author mentions that his work
has contributed to a 14,000 unique concept taxonomy in the vi-
sual objects domain and 1,100 3D models representing some of
these concepts. It is publicly available by the name of Visual Ob-
jects Taxonomy and Thesaurus (VOTT), however not formally en-
coded for use in an inference engine. The same author also in-
vestigated automatic selection of textures for road signage based
on road layouts, generation of vegetation based on statistical in-
put [Bit07], and enhancing scene generation based on the probabil-
ity of missing elements such as mailboxes next to houses or stop
signs at intersections [Bit08]. He did not formulate a process for
determining the existence of such objects and admits of a high fail-
ure rate in most realistic cases. In the above, individual methods are
used for extracting values specific to the problem at hand. We have
generalized this into a property extractor mechanism in our frame-
work. [BASR*06] suggests a methodology to develop GIS ontolo-
gies as an extension to the Semantic Web mainly for the purpose
of geo-referencing documents such as tasks and data. This same
methodology is used by us for formalizing definitions of data ob-
jects. In [YWRO09] and [KCMO06], use of ontologies for generating
3D content was mentioned. While the first addresses the generation
of building models from architectural drawings, the second uses
ontologies to generate graphics content through knowledge-driven
visualization.

A GIS to Geometry process was first described in [EM09] and
the property extractors framework in [EM13]. The basic framework
(based on SROIQ semantics) has inspired the framework presented
here. However, it differs significantly - firstly by computing object-
object relationships with the DE-9IM extensions, it enables much
more implicit spatial knowledge to be revealed. Secondly, by man-
aging and computing certainty values for inferences from explana-
tions provided by the reasoner, it can provide multiple options to
the end user. Thirdly, we illustrate a complex real world example -
a detailed 3D model of the Champlain bridge in Montreal.

2.4. Regarding Uncertainty of Data

Much of the work in the domain of possibilistic logic is described
by [StrO1]. [LukO8] attempted to use probability theory by defin-
ing a concept-concept probability interval association such as a
Bird Flies with probability between 90-95%, Bird has Wings with
probability over 99-100%, and then answering queries such as “if a
Bird does not Fly what is the probability that it has Wings”. These
systems model probabilities in the terminology and attempt to rep-
resent imprecise concepts. Reasoners such as FuzzyDL [BS11],
DeLorean [BDGR12] and Pronto [KP13] are overly complex and
inefficient to what is required by our process as they try to address
the generic problem of uncertainty in knowledge [Luk08].

In our work, we gain direct access to axioms within the knowl-
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Table 1: SROIQ description logic semantics axiom syntax.

Constructor Syntax Example
Atomic concept A Bridge
Individual a $253(Champlain)
Top T Thing
Bottom 1 Nothing
Atomic role r intersects
Conjunction cnbD Thoroughfare n Bridge
Disjunction CubD Bridge U Tunnel
Negation -C —Bridge
Existential restriction r.C dNext To.Monument
Universal restriction vr.C vover.WaterBody
Value restriction > r.{a) sunder.{S253}
Number restriction (=ZnR) >2 Next_To
(€<nR) <1 hasBoundingBox
Subsumption cchD Bridge = Thoroughfare
Concept definition C=D Bridge = 30ver.WaterBody
Concept assertion a:C S252 : WaterBody
Role assertion (a,b) : R (5253,5252) : over

edge base and define our own method of dealing with uncertainty
basing it on the work of [PSS09] who have advocated the principle
of separation of probabilities and meanings. We model uncertainty
using Zadeh semantics (described in 4.1) and not probability theory
as reasoned below. Consider the following Axiom 1 using descrip-
tion logic (DL) based on Table 1:

Tunnel = 3T hrough.(NaturalObj.\) Structure)
U AUnder.(NaturalObj. U Structure D
U Thoroughfare)

Axiom 1 above is a terminology axiom which defines an instance
of a "Tunnel" as any entity "through" a natural object or struc-
ture or any entity "under" a natural object, a structure or a thor-
oughfare. The two concepts of Through and Under are mutually
exclusive. Let us assume for instance / the probability of occur-
rence of Through with some NaturalObj. to be 0.5 and that of
Under with a different object 0.5 as well. Using probability the-
ory (Paup = P4 + Pp) we have P(I : Tunnel) = 0.5+0.5=1.0
suggesting that this instance is definitely of type Tunnel. What we
want here is a certainty of 0.5 since either Through or Under are
required to classify I as a Tunnel. For this reason, we use the Zadeh
logic based on [Zad65] (cf Table 2).

Table 2: Popular fuzzy logics. (after [BS11])

Family t-Norma @ B t-Conorm & @ 8 Negation Sa Implication @ = S
Zadeh min{c, B} max{a, B} 1—«a max{1 —a, B}

X . 1, a=0 1, a<p
Godel min{a, B} max{a, B} { 0 a>0 [ﬁ‘ w=p
Lukasiewicz max{ax + f — 1,0} minf{a + B, 1} 11—« min{l —a + B, 1}

. . . 1, =0 1, a<p
Product a-p a+p—a-p 0 a>0 Bla, a> B
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2.5. On Extracting Object Properties from GIS Source Data

Fig. 2, based on [EM09], summarizes the various sources of GIS
data and how they are currently transformed into a 3D represen-
tation. In current practice, landscape object parameters have to be
inferred and extracted by the human expert from available digital
terrain model (DTM), images and shapefiles [ESR98]. Some com-
mercially available systems such as Presagis’ TerraVista and Dia-
mond Visionics’ GenesisRT allow a user to define rules by which
data present in shapefiles can be converted into generic 3D mod-
els chosen from a user-developed model repository. LIDAR data, if
available for specific objects, may be used to add further detail to
the 3D objects [SDO7]. The dashed arrow looping back is indicative
of the fact that the human expert may have to iterate a number of
times before finalizing the 3D representation and get it all correct.

Fig. 3 illustrates a basic example. Let the shapefile include an
area element (a polygon) and one or more records defining a lin-
ear element (a polyline) which crosses the area element. These are
shown overlayed on the left. The shapefile does not however have
information whether the linear element is a road, bridge, under-
pass, overpass, etc. and also does not have any information about
the type of the area element. Assume this area element is recog-
nized by the human expert as water. Then, knowing that the linear
element is above the water level (imagery on the right) implicitly
makes it a bridge. The widths along different sections can be calcu-
lated from the raster image. Clearly, the fact that there is a bridge
of certain type and width(s) in this region of interest has been im-
plicitly present in this multi-modal GIS data.

3. Overview

Fig. 4 shows the overall pipeline of our framework. In a pre-
processing step, the following are created: (i) A domain ontology
(transportation here, with particular attention to bridges), (ii) A
source data ontology inherited from the domain ontology to enable
mapping from source data to KB for the specific region of interest,
(iii) an output data ontology inherited from the domain ontology to
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Figure 3: Shapefile data and imagery of a bridge.

enable mapping KB to procedural models for generating 3D mod-
els of specific instances, and (iv) a 3D repository of parameterized
procedural models. These ontologies and resources are available
by contacting first author. While we have used the commercially
available Presagis Creator®, any other state of the art procedural
modeling tool would also work.

Using the source data ontology, the GIS2KB transforms all the in-
formation in the GIS data into instance assertions and properties
in the KB. For the simple example in Fig. 3, the water area poly-
gon and the thoroughfare polyline are added as instances to the
KB. Next, the reasoner engine is invoked to realize the KB and
infer information about the instances. This will reveal their spe-
cific identities. In our above example, the thoroughfare element is
automatically inferred to being a bridge due to it crossing the wa-
ter area. Using property extractors, values of specific parameters
needed are extracted and the KB is realized again. This is repeated
until no new information is revealed. For instance, the bridge is
identified as a two-lane uncovered bridge. The semantic engine pro-
vides knowledge management and reasoner services to its clients,
GIS2KB and KB2Scene. KB2Scene uses the representation capa-
bilities ontology to query all object instances and their property
values. It then invokes the corresponding procedural model gen-
erator. This 3D model is then added to the landscape terrain, an
uncovered bridge in this simple example. We will provide further
examples in Section 6. The initial setup for a GIS features domain
(like transportation) would require expert time in defining the on-
tologies and the scripting of property extractors. These are reusable
for the domain. In the remaining process, significant domain ex-
pert involvement is not required. As a fully worked out example,
Fig. 1 shows the reconstruction of the complex Champlain bridge
in Montreal. More details of the two main processes in this pipeline
are provided in the following sections.

4. Transforming GIS Data into Knowledge

The ontologies we define are based on knowledge bases imple-
menting the OWL language [BVHH*05] and the latest OWL 2
specification [W3C12]. Bitters’ VOTT [Bit05] organizes elements
in the domain of natural and man-made objects. Our domain ontol-
ogy is also inspired by Bitters’ work as a classification basis and
implements a subset of VOTT concepts enriched with rules for the
purposes of inference. Bitters defines concepts in a plain text tax-
onomy, like:

o Street:
e Boulevard:

Is a Road in a BuiltUpRegion.

Is a broad divided Street in a city often
with a wide median, especially a Street
laid out with trees and gardens, etc.
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Figure 4: Schematic of our knowledge-based approach for creating detailed landscapes from GIS data.
e Bridge: Is the subclass of LandTransitways that 9IM [CSE94] is an Open Geospatial Consortium standard. It is in

are artifacts used for crossing water or
air-filled gaps that could not be
transited over a natural surface.

We define such concepts as Terminology axioms shown below:

Street = Thoroughfare 1 AWithin.BuiltU pArea
Avenue = T horoughfare
M INumber_Of_Lanes.(xsd : int :> 2)
M 3> Touches.(Monument Ll Park)
Boulevard = Avenue
M3Midsection.{“WideSep” xsd : ID}
Bridge = Thoroughfare 1 30verImpassableArea

We use these axioms where an instance of type T horoughfare,
based on the above definitions, could be re-classified as Avenue
if it has 2 or more lanes and is next to at least 1 monument
or park. It should also be noted that Bridge inherits proper-
ties from Thoroughfare such as its width, type, lane numbers
and pavement type and adds new data properties such as
Deck T hickness related to this specialization. Domain concepts are
encoded once. The input GIS source data however changes for dif-
ferent regions of interest. As required (Fig. 4), three ontologies
were created: (1) TD ontology — transportation domain ontology,
(done once and reusable for transportation domain in multiple re-
gions of interest) (2) SD ontology — defines mapping between GIS
feature data and domain concepts in TD, and (3) RC ontology —
performs a mapping between object classes and procedural models
in Presagis Creator~'.

GIS2KB (based on [EMO09]) first maps shapefiles using the SD
ontology into KB assertions. Certainty values are associated with
these assertions. The KB is realized for the first time using the
KB Realization service. If there is an ambiguity or an inconsis-
tency in the input information, the user has to correct this problem.
Next, spatial relationships between objects are computed based on
the DE-9IM model (See Fig. 5) and the KB is realized again. DE-
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the form of a matrix which defines topological relationships be-
tween two spatial objects in R?. We extend this in our framework
by adding new 3D relations, allowing. relationships such as Over,
Under, and Touches to enrich the knowledge base further.

Property values may also be defined via rules specific to the do-
main. For example, the height of an overpass has to be a minimum
of 4 Meters. Extractors may associate a certainty value with an in-
stance property. All new property values which are extracted are
added to the KB, KB realization is repeated, new inferences are ob-
tained and object instances get specialized possibly requiring val-
ues for new properties. This KB update loop ends when there are
no more changes to KB. Certainties are set to 100% by default.

4.1. Uncertainty Computations

Referring to extractors defined in [EMI13], many could
be associated with some uncertainty or thresholds such as
PrecedenceBylmagery, Next_to, Impassable_T hrough, Between,
T hickness, Separators, Road_Directionality, Number_of_Lanes,
etc. Some other extractors such as Position (extracts an origin
location for an element), Altitude (extracts the altitude at a certain
location), OL (extracts the orientation and length given a linear
segment), n (extracts the ground normal at a certain location), N
(extracts the average normal given an areal shape), and D (uses
OL and N to calculate the 3D orientation for an object) as well as
spatial relationship extractors which can be defined by formulae
are associated with 100% certainty in our implementation. In
a conventional knowledge base, if a roadwidth extractor for an
instance [ returns a value 3.2(meters) then we can only assert
((1,°3.2”) : roadwidth) (TRUE). We extend our KB by storing the
certainty value ¢ (denoted as (axiom)(c)) as part of the knowledge
base in the form of an annotation (serving as storage-only for the
reasoner). This annotation could in principle be used by proba-
bilistic description logic reasoners such as Pronto (pellet-based).
However, these reasoners are computationally prohibitive and our
needs are much simpler. We have therefore extended the default
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Figure 5: Object-object relations.

KB Realization service with a procedure to compute all resulting
certainty values using the KB explanation service. To the best of
our knowledge, this method of certainty evaluation from inference
explanations is new.

According to [HPSO08], an explanation for an entailment (E) is
a minimum list of axioms that directly results in the entailment.
An entailment is the final inferred assertion, say for example, the
sequence of assertions which lead us to conclude that a linear ele-
ment is a tunnel or bridge, etc. For every explanation, the least cer-
tain axiom represents the entailment’s certainty value under Zadeh
semantics. The function u(x) represents the certainty value ¢ of an
explicit axiom x in E. inf is a function that takes a set of certainty
values and returns the minimum value in the set.

Vx € E,u(x) €V

W(E) = inf (V) (Equation I)

If two or more explanations exist for a certain entailment, then
by Zadeh semantics, the entailment’s certainty value is the most
certain of the results from each explanation. Consider the following
assertions in addition to the definition of Tunnel given in Axiom 1
from Section 2.4 and where (i1 : Thoroughfare) is initialized:

(i2 : NaturalObj.)(c1) (2)
(i3 : Structure)(c2) (3)
(i4 : Throughfare)(c3) (4)

((i1,i2) : Under)(c4) (5)
((i1,i3) : Through)(c5) (6)
((i1,i4) : Under)(c6) (7)

After knowledge base realization however, KB entails
{(i1 : Tunnel)(c7)} and 3 explanations given as follows:

A (5.2, 1) B.(6).3).0) C. (D&, 1)

Explanation A for example, shows that, since instance i1 is (spa-
tially) Under instance i2 and i2 is of type NaturalOb ject, then

under 1, i1 is entailed to be of type Tunnel. Explanations B and
C were produced similarly. We discard Axiom 1 from all explana-
tions as we are only interested in assertions concerning the instance
il (separation between probabilities and meanings). If we consider
that (2) (3) and (4) are 100% certain facts, then by Equation I
the relevant axioms associated with each explanation are simpli-
fied to: ((i1,i2) : Under)(c4) for (A), ((i1,i3) : Through)(c5) for
(B), and ((i1,i4) : Under)(c6) for (C). The final certainty value is
calculated by the disjunction (t-Conorm) of results from each ex-
planation. Therefore, the certainty value for (il : Tunnel) is given
by ¢7 = max(c4,c5,c6).

5. Implementation

In this second step, SPARQL queries are used to retrieve in-
stance definitions and property values. Table 3 shows an ex-
ample of a simple property taxonomy defining three basic
classes: Generic Transport, Bridge, and Covered Bridge. Presagis
Creator® uses these classes and the listed properties as part of
the Bridge Wizard utility. The system fetches each value, produced
by property extractors, for every property of Bridge as well as its
GenericTransport super class.

We use the OWL Link specification [LLN*08] and OWL API
3.4.5 as the common API to communicate between the different
sub-processes through the reasoner infrastructure and framework.
Our system needs the flexibility to be able to add knowledge and
extract knowledge from different systems written in different pro-
gramming languages. It was a challenge to find a feasible solution
to allow this. The current systems we use are MapWindow GIS,
implemented in C#, the Semantic Web Framework, with most in-
terfaces available only in Java, and our 3D scene generator, im-
plemented in C++. In order to be able to communicate and share
knowledge between the different systems for the purposes of proto-
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(a) Google Earth® image (South view)

(c) 10m resolution elevation data.
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(b) 1-foot resolution partial imagery data.
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Figure 6: Example reconstruction of a bridge in Honolulu.

typing and validation, we have created an OWL Link .Net compat-
ible framework based on the original OWL Link Java framework.
OWL Link .Net can be used in both C# and C++ programming lan-
guages. We have tested the process using Pellet 2.3.1 and Hermit
1.3.8 Semantic Web reasoners. Our ontologies extend public stan-
dards from the Open Geospatial Consortium and we obtained data
sets from the U.S. Geological Survey’s National Elevation Dataset,
U.K. Ordnance Survey resources, and Natural Resources Canada
GeoQratis system.

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

6. Results and discussion
6.1. Example 1: A Bridge in Honolulu

e The image shown in Fig. 6 (a) is taken from Google Earth®
looking South at (21.348452, -157.896959) geographic coordi-
nates on January 23, 2014. Although a comprehensive visual
scene seems to be present, the lack of a 3D model for the bridge
is noticeable.

Elevation raster data, geo-referenced imagery, and linear feature

information (from USGS website) are shown in Fig. 6 (b-d), de-
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Table 3: Generic Transport, Bridge and Covered Bridge taxonomy.

Generic Transport Properties | Bridge Properties Covered Bridge
Start vertex position SubClassOf: Properties
Start Angle Generic Transport | SubClassOf:
Start width Bridge

End vertex position Span Dividers

End Angle Deck Thickness Width dividers
End width Starting vertical angle | Cover Height

Number of segments
Left overhang size
Right overhang size
Overhang height

Ending vertical angle
Support width
Support depth

Wallangle
Entrance angle

tailed reconstruction in Fig. 6 (i), and results from two state-of-
the-art tools, DVC GenesisRT and Presagis TerraVista in Fig. 6
(e-g). They clearly show the absence of the 3D modeled bridge..

e Based on the elevation profile extractor (results of elevations in
meters shown in Fig. 6 (h)), our system inferred that this is a
basic uncovered bridge (girder beam bridge between locations A
and B of the linear element).

(a) Overpass GIS feature data.

(d) 3D model of the reconstructed overpass.

Figure 7: Overpass in the Honolulu region.

6.2. Example 2: An Overpass with Multiple Outcomes

e In this example, also in Honolulu, Fig. 7 (a-b), the spatial rela-
tionship extractors, based on DE-9IM, define a Crosses relation-
ship between the two linear objects.

e Also, the PrecedenceBylmagery extractor is executed by the
Over spatial relationship extractor when a Crosses relationship
exists and no altitude values are available. In this case, the hori-
zontal segment is found to be Over the vertical one and therefore
an overpass is inferred.

e Based on the results of property extractors, two possible out-
comes with widths of 30 and 65 meters with scaled supports are
presented. Fig. 7 (b-c) show overlays of the overpass wireframes
of the two possible outcomes.

e The extractors fill the necessary property values and the recon-
structed overpass object for 30M is shown in Fig. 7 (d).

6.3. Example 3: The Champlain Bridge in Montreal with
Multiple Outcomes

Google

Figure 8: Linear overlaid on Google Earth® Champlain bridge
image.

The Montreal Champlain Bridge is a 1957 construction of type
steel truss cantilever made from pre-stressed concrete beams and
deck. This bridge is an iconic landmark of Montreal and is interest-
ing due to the complexity of its representation and its art.

e The linear shape definition (a sequence of edges) in the GIS
shapefile representing the spans of this bridge is overlaid on top
of the aerial imagery (in red in Fig. 8 with four noted locations
(cross edges).

e Earlier in Fig. 1 we had already shown this reconstruction with
cantilever, support structures, deck and truss of the steel super-
structure along with a couple of photographs of the real bridge
for comparison. It should be noted that given the unique nature
of this bridge, standard repositories in commercial systems do
not include the procedural model for accurate reconstruction.

7. Concluding Remarks

The knowledge-based framework presented in this work enables
us to create landscape objects with properties discovered from GIS
data yielding more automation as compared to purely interactive
tools in practice today. It allows customization and can extend
legacy processes. Manual work in recurrent tasks is automated by
defining domain knowledge and property extractors that are re-
usable across different datasets. Our method of computing uncer-
tainty of inferences using explanations provided by the reasoner
and providing options based on possibilities is innovative and dis-
tinct from all earlier work. We have demonstrated our approach by
creating models of streets, overpasses and bridges, including the
heritage Champlain bridge in Montreal. Other transportation ob-
jects can be easily modelled. The framework can take advantage
of more accurate extractor algorithms, say, using state of the art
computer vision techniques that continue to be developed.

© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.
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