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Abstract
Deep neural networks have been successfully applied to problems such as image segmentation, image super-resolution, col-
oration and image inpainting. In this work we propose the use of convolutional neural networks (CNN) for image inpainting
of large regions in high-resolution textures. Due to limited computational resources processing high-resolution images with
neural networks is still an open problem. Existing methods separate inpainting of global structure and the transfer of details,
which leads to blurry results and loss of global coherence in the detail transfer step. Based on advances in texture synthesis
using CNNs we propose patch-based image inpainting by a CNN that is able to optimize for global as well as detail texture
statistics. Our method is capable of filling large inpainting regions, oftentimes exceeding the quality of comparable methods
for high-resolution images. For reference patch look-up we propose to use the same summary statistics that are used in the
inpainting process.

CCS Concepts
•Computing methodologies → Neural networks; Image processing;

1. Introduction

Image inpainting is the process of filling missing or corrupted re-
gions in images based on surrounding image information so that the
result looks visually plausible. Most image inpainting approaches
are based on sampling existing information surrounding the in-
painting region, wich is called exemplar-based [CPT04, WSI07,
KEBK05, EL99, BSFG09] inpainting. Recently machine learning
techniques have been applied successfully to the problem of tex-
ture synthesis and inpainting [LW16,GEB16,JAFF16,DB16]. First
introduced by Gatys et al. in [GEB15] texture synthesis CNNs have
been shown to surpass well-known methods like the one by Portilla
et al. [PS00] for many textures. Wallis et al. [WFE∗17] recently
showed that artificial images produced from a parametric texture
model closely match texture appearance for humans. Especially, the
CNN texture model of [GEB15] and the extension by Liu [LGX16]
are able to capture important aspects of material perception in hu-
mans. For many textures the synthesis results are indiscriminable
under foveal inspection. Other methods like the ones by Phatak
et al. [PKD∗16] and Yang et al. [YLL∗16] train auto-encoder-like
networks, called context-encoders, for inpainting. Inpainting meth-
ods using neural networks still suffer two main drawbacks: Due
to limited computational resources they are restricted to small in-
painting regions and results often lack details and are blurry. For
high-resolution textures the inpainting result not only needs to re-
produce texture details but also global structure. Applying details
after a first coarse inpainting step distorts global statistics. Fig. 1

shows some examples where well-known inpainting methods fail
to reproduce global and local structure. To resolve the outlined is-

(a) (b) (c)

Figure 1: Inpainting results for some of the example textures from
Fig. 5 using the methods of (a) Photoshop CS7 which is a combi-
nation of methods [BSFG09] and [WSI07], (b) the method by Yang
et al. [YLL∗16], (c) and by Criminisi et al. [CPT04].

sues we propose an inpainting approach that produces results that
reproduce global statistics and contain blur-free details. We fill the
inpainting region by synthesis of new texture patch by patch, which
enables us to process high-resolution textures. Our inpainting ap-
proach creates a smooth transition between the sampling and the
inpainting region as well as between patches. Out setup is able to
shift focus from optimizing detail to global statistics on different
levels of resolutions.
Sections of this paper are arranged as follows. The process of tex-
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ture synthesis by CNNs is then explained in Sec. 2. In Sec. 3 we
present our inpainting approach, followed by an experimental eval-
uation in Sec. 4. We conclude in Sec. 5.

2. Texture synthesis

First introduced by Gatys et al. [GEB15] CNN texture synthesis
uses summary statistics derived from filter responses of convolu-
tional layers, the feature maps, to synthesize new texture. In a first
step some vectorized texture x of size P is presented to the anal-
ysis CNN. Based on the resulting feature maps one can compute
the Gramians which are spatial summary statistics. The Gramian
of some network layer l is defined as
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input x. These inner products of filter activations of different layers
are then used to define a synthesis loss
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with Nl feature maps of size Ml at layer l. Here Ĝl i j are the Grami-
ans of a synthesis CNN. Based on this loss some randomly initial-
ized input vector x̂ of the synthesis CNN is optimized to satisfy
statistics derived from the analysis CNN. Since Gramians average
over feature map positions this leads to a loss of global texture co-
herence. Berger and Memisevic [BM16] introduce a second cross-
correlation loss by computing Gramians between feature maps Fl

and a spatial translation T of the feature maps T (Fl). By discard-
ing either rows or columns of feature maps one can now compute
correlations of features at some location k = (x,y) and a shifted
location Tx,+δ(k) = (x+δ,y) or Ty,+δ(k) = (x,y+δ). The horizon-
tally translated Gramian becomes
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and Gl
y,δ,i j analogous. The cross-correlation loss Lcc for an arbi-

trary shift δ is defined as
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y,δ,i j)

2

4N2
l M2

l
.

The combined loss is then defined as

Ls,cc(x, x̂) = wsLs +wccLcc,

with weight factors ws and wcc. The interested reader is referred
to [GEB15] and [BM16] for an in-depth explanation of texture syn-
thesis.

3. Patch-based texture synthesis for image inpainting

3.1. Patch-based texture synthesis

Given some image with high-resolution, uncorrupted texture Φ we
propose the application of the synthesis method introduced in Sec.
2 on different scales of resolution to fill the inpainting region Ω

(Fig. 3a). A schematic overview of our setup is given in Fig. 2. We

propose to inpaint region Ω patch by patch with each patch satisfy-
ing global as well as detail statistics. For this purpose, we define a
texture loss function that simultaneously evaluates the quality of the
synthesized patch x̂d in native resolution as well as the quality of an
embedding of x̂d into a pooled window of its surroundings x̂g cap-
turing global information. x̂g is initialized with a Q-times average-
pooled window of the image so that this window fully contains Ω

and the boundary Ψ. Q average-pooling-layers are introduced in-
between x̂d and x̂g so that x̂d can become a subtensor of x̂g at the
correct (pooled) position. Depending on the size of Ω, Q needs to
be adjusted as a parameter before inpainting. Before generating the
next patch x̂d at a new location we update Ω with the synthesis re-
sult in x̂d and reinitialize x̂g. Only x̂d is optimized in the synthesis
process. For the synthesis as described in Sec. 2, suitable reference
textures xd and xg are needed. We will describe the reference patch
look-up in Sec. 3.2. While xg needs to be initialized only once at
the beginning of the inpainting process, xd is reinitialized with a
new reference for every new position of the inpainting patch x̂d .
We further define a boundary loss, that limits the optimization of
region Ψ inside x̂d in the input domain. We define the boundary
loss as

Lb(x, x̂) =
1
P ∑(mx−mx̂)2, (3)

where the binary mask m equals 0, if mi ∈ Ω, and 1 otherwise.
The combined loss over both branches together with boundary loss
becomes

L= wdLs,cc(xd , x̂d)+wgLs,cc(xg, x̂g)+wbLb(xb, x̂d),

where wd , wg, and wb are weight terms. xb is initialized with x̂d
before optimization and does change for each new position of x̂d .

3.2. Patch distance by Gramians

For the synthesis of patch x̂d ,suitable reference patches xd , and
xg are needed. The initial x̂d is a window of the image containing
parts of Ψ as well as parts of Ω while x̂g completely contains Ψ

and Ω. One now has to find closest patches from Φ matching Ψ

inside x̂d , and x̂g as candidates for xd , and xg. Instead of the MSE,
we propose to use the distance of texture Gramians as a similarity
measure. Since values inside Ω are unknown we propose masking
Ω for each individual feature map to remove Ω-related correlations
from any of the resulting Gramians. Because the network input up
to some layer l has passed through both pooling and convolutional
layers we need to adapt the feature map masks to compensate for
these operations. In a first step, the initial binary mask m from Eq.
(3) needs to be adapted in size to account for the pooling layers.
This is done by applying each pooling step of the CNN that has
been applied up to layer l to the mask ml which is responsible for
masking feature maps Fl . In a second step, one needs to account
for the propagation of Ω into Ψ by convolutions. Masks ml also
need to account for propagation of Ω into Ψ due to convolution.
Simply discarding the affected values by setting them to zero in
ml for each convolutional layer is too restrictive and would lead to
masks with all values zero in later layers. We propose to expand Ω

by a smaller individual number of pixels el for each convolutional
layer (see Sec. 4). In our experiments this expansion has proven to
be sufficient for compensation.
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Figure 2: Scheme of our proposed inpainting setup. On the top left the inpainting image together with important image regions is shown.
Under "Analysis CNN" the generation of detail as well as reference Gramians is shown. On the top right our "Inpainting CNN" together with
the resulting loss terms is shown. The inpainting patch x̂d is input to the detail branch (top) as well as, after embedding, the global branch
(bottom). A legend of the involved image elements is given at the bottom.

Taking these considerations into account we define our patch dis-
tance as

∆G(x, x̂) = ∑
l,i, j
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3.3. Inpainting

For inpainting we propose a coarse to fine inpainting process with
two steps. At each stage x̂d is optimized by applying L-BFGS-
B [ZBLN97]. We initialize each color channel in region Ω with the
corresponding color channel mean from Φ. In the coarse inpaint-
ing step we focus on optimizing global statistics by setting wd = 0,
wg = 1. This leads to x̂d satisfying global statistics but at low reso-
lution. Pooling larger input regions introduces color artifacts since
loss is shared among pooled pixels as can be seen in Fig. 3b. We
eliminate these color artifacts by converting Ω to greyscale (see Fig.
3c) with RGB weights r = 0.212, g = 0.7154, b = 0.0721. Only
this structure is used for initialization of the second stage. In the
fine inpainting step we set wd = 1 and wg to a value in the range of
[0.01,0.1]. This ensures focus on the optimization for detail statis-
tics through the detail branch while constraining the optimization
to also maintain global texture statistics.
For our approach inpainting order is not important as long as the
first patch overlaps with Ψ and consecutive patches overlap. Over-
lapping a patch by 1

4 of its own size with surrounding texture has
proven to be sufficient for smooth boundary transition. We chose to
fill Ω in a top to bottom, left to right fashion. To ensure a smooth
transition in-between patches we apply image quilting [EF01] on
overlaps. As a result of our experiments we set ws = 1e6 and
wcc = 1e7 for inpainting of 8-bit color images. Choosing wb in

the range [5,25] has shown to be sufficient. The large difference
between Gramian-based loss weights and weights related to loss in
pixel space results from different value ranges.

(a) (b) (c)

Figure 3: (a) Example image (2048x2048px) with inpainting re-
gion Ω, boundary Ψ and texture Φ. (b) First patch of the coarse
inpainting step. (c) Fine inpainting of texture detail after coarse
inpainting.

4. Experimental Evaluation

We present inpainting results of exemplar high resolution textures.
All textures have a resolution of 2048x2048px while the inpaint-
ing region Ω is of size 512x512px. We use ImageNet pre-trained
VGG-19 CNNs for analysis as well as synthesis with input size
256x256px. We use layers conv1_1, pool1, pool2, pool3 and pool4
for computing global as well as detail statistics. For very stochas-
tic textures we propose to use pool3, pool4 and pool5 to com-
pute global statistics since this leads to improved texture scale in
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the coarse inpainting step. For patch distance computation we de-
fine pixel expansions e = (1,1,2,3,2), and for shift δ of translated
Gramians Gl

x,δ and Gl
y,δ we define δ = (6,6,5,4,3). We use Q = 2

pooling layers. To find suitable reference patches xd and xg region
Φ is searched at a step size of 64px. Inpainting of the exemplar tex-
tures was done using a Nvidia GeForce 1080 Ti and took roughly
8 min strongly depending on the number of iterations of the L-
BFGS-B optimization. In Fig. 6 we present results of our inpainting
approach for inpainting Ω of the example textures in Fig. 5. While
many methods have difficulties maintaining global as well as local
texture characteristics our results look reasonable on both scales.
Using the difference of masked Gramians as a metric for patch
distance has major benefits for our inpainting approach over us-
ing simple MSE. Since we are not dependent on reference textures
xd or xg exactly matching Ψ inside x̂d or x̂g in terms of MSE, we
can reduce the number of samples taken from Φ in reference patch
look-up. Due to the averaging of feature information inside Grami-
ans, global spacial information is lost. This enables the Gramian
to represent texture invariant to rotation and translation to some
degree (see Fig. 4). Because our loss term L is based on the dif-
ference of Gramians this further ensures that Ψ inside x̂ already
satisfies target statistics to some extent. When choosing wd and wg

(a) (b) (c)

Figure 4: (a) Inpainting patch x̂d . (b) Closest reference patch from
Φ. (c) Inpainting result.

Figure 5: Examples for evaluation with inpainting region Ω.

one needs to be aware of the trade-off introduced. While higher wg
ensures persistence of global statistics it also introduces artifacts as
a result of pooling x̂d before subtensor embedding and vice versa.
Higher wd lays larger emphasis on details while possibly violating

Figure 6: Closeup on results using our method to inpaint region Ω

from Fig. 5.

global structure. This trade-off is further influenced by the number
of poolings Q.

5. Conclusion

In this work, we presented a new CNN-based method for inpaint-
ing that can be applied to large-scale, high-resolution textures. Tex-
ture analysis and inpainting are done on two scales, one for global
structure and one for details. This avoids the problems of blurry
or missing details from which previous CNN approaches suffered
while plausibly continuing global image structure. In principle, our
network architecture can be extended to include a hierarchy of more
than two interacting scales. The design of such a multi-resolution
architecture could be an interesting line of research that we plan to
pursue in the future. We would also like to apply this concept to the
inpainting of height-maps for highly detailed 3D surfaces.
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