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Abstract

The choice of a mapping from data to color should involve careful consideration in order to maximize the user understanding
of the underlying data. It is desirable for features within the data to be visually separable and identifiable. Current practice
involves selecting a mapping from predefined colormaps or coding specific colormaps using software such as MATLAB.
The purposes of this paper are to introduce interactive operations for colormaps that enable users to create more visually
distinguishable pixel based visualizations, and to describe our tool, Data Painter, that provides a fast, easy to use framework
for defining these color mappings. We demonstrate the use of the tool to create colormaps for various application areas and
compare to existing color mapping methods. We present a new objective measure to evaluate their efficacy.

CCS Concepts

eHuman-centered computing — Scientific visualization; Visual analytics, Visualization toolkits;

1. Introduction and Motivation

Colormapping is an important aspect of visualization. A transfor-
mation is created that converts each source data value into a des-
tination pixel color. The goal is to create an image that effectively
communicates those features of the data that are most salient to the
task at hand. Typical tasks are: finding the absolute value, relating
values across the image (e.g. temperature or wind speed across a
weather map), identifying features or structure (e.g. searching for
faulty electrical cables in thermal images). There may be several
possibly conflicting requirements for understanding colormapped
images, including: preserving data gradients or smoothness; fea-
tures should be visually separable and identifiable; the color image
should introduce perceptually higher dynamic range compared to
using a gray scale representation (or equivalent).

The colormapping should be presented to the user as a labeled
color scale. This enables a reading of the data where judgment may
be made about absolute or relative values. Stability of colormap
choice and familiarity with a color scale for a particular task can
increase performance in identifying or reading the underlying data
(e.g. a weather service utilizing a widely established temperature
colormap where blue is cold and red is hot). In such situations the
user is less dependent on making reference to the color scale in
order to make relative data value judgments. Colormap design has
focused on selection of colors to give a perceptual monotonic in-
creasing color scale and research has suggested that linearly per-
ceptual colormaps aid relative judgments.

Cartography is an example of an area where well-defined col-
ormaps have been developed, e.g. for topographical relief shading.
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These are now so familiar that they serve to both produce visu-
ally appealing imagery for communication, and useful visualiza-
tions for scientific purposes. Tools and approaches exist that allow
users to interact with their images using colormaps. Some of these
can introduce problems. For example, pre-defined color look up ta-
bles with typically 256 colors, map the original data source data
to a lower dynamic range. This can be countered by using control
points that define a colormap which can be used within code with
interpolation to create the colormap to any dynamic range. Environ-
ments (such as MATLAB, ParaView) provide colormaps that can
be utilized within user code. We cover some of these approaches
in section 2. Our contribution is a new interaction technique with
colormaps and an objective evaluation function. Section 3 presents
the interaction model and principles for interacting with colormaps.
Section 4 describes and demonstrates our tools. In Section 5 we de-
velop an objective function for evaluation purposes. The remainder
of the paper provides case studies and discussions.

2. Existing Literature

Zhou and Hansen [ZH16] present a comprehensive survey of col-
ormaps used in the field of visualization. The review classifies
the methods of generating colormaps into four main categories,
which are procedural methods, user-study based methods, rule-
based methods and data-driven methods. The work contribution
forms a perfect reference for researchers in terms of understand-
ing the foundation of color spaces and color appearance models as
well as it assists in determining the appropriate colormap for var-
ious data, tasks and applications. [SSM11] introduce a colormap-
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ping review with a number of guidelines and suggested tools to help
not only visualization experts but also non-expert users in the task
of finding the convenient color scales for their data or tasks.

Selecting an informative colormap is challenging even through
the existence of the standard colormaps in visualization. There
are many factors involved in making the decision of which col-
ormap to be used including the data types, tasks, and considera-
tion of personal perceptual differences (i.e. color vision deficiency
(CVD)) [Olil3, NB13]. Some of the well-known colormaps are
classified under the following types: sequential, binary, qualitative,
and diverging [Bre94]. Each colormap performs well depending on
the given goals and the nature of datasets [War88, Mor09]. Rain-
bow, diverging, grey-scale, heated body, categorical and isolumi-
nant are examples of common colormaps used widely in visualiza-
tion [ZH16,Kov15].

Samsel et al. [SPG™15] implement a nested colormapping tech-
nique in order to effectively maximize the perceptual range of an
Ocean dataset. Using such a colormap significantly emphasizes the
surface temperature in high-resolution data. Moreover, it increases
the comprehension of the structure details within the area of in-
terest than that of the standard colormaps. The approach only al-
lows one additional colormap, and does not provide a user friendly
(non-coding) approach. A version interpolating multiple colormaps
was introduced by [SKP™*16]. This interactive tool allows building
customized colormap, which causes improvement in the perceptual
reach of the data. However, the tool was only applied on the Ocean
dataset, while our work demonstrates the effect on various narrow
data range such as thermal images. Moreover, the dataset they used
has a clear delineation in scale where the land is all warmer than the
ocean, which causes the result to be segmented into land and sea.
Usually, data will not contain such well-defined edges as we see
with the Jupiter data set or other examples shown in this paper. Such
case would lead to visually undesirable artifacts (although these are
correct) when mapped with complex colormaps. We solve these
problems by providing filtering techniques discussed in section 4.
We also include an evaluation procedure, which was measured us-
ing an objective function. We also introduce image space filtering
(lens view), and data space filtering (histogram selection), which
further enhance the flexibility and the learning curve of our inter-
active tool. Another novel method for generating colormaps was
implemented by Waldin et al. [WBRV16] which relies on measur-
ing the user perceptual abilities to create an appropriate colormap
specific for color vision deficiencies. The generated colormap is
adapted though a game in which the user is required to arrange the
colors from 3D color space into a line of smooth gradient. In Kindl-
mann et al. [KRCO02], the user is required to select from double face
images with luminance variations in order to measure their sensi-
tivity to the light. The evaluation includes a repetitive procedure
and each time with different color. Depending on the user selec-
tions, a new isoluminant colormap will be formed. Thompson et
al. [TBSP13] use a random sampling procedure and CDF-based in-
terpolation scheme. Although their algorithm requires a data anal-
ysis stage, it is scalable for large datasets since the sampling size
is independent of the data size. In addition, the designed colormap
highlight more features of the dataset as opposed to the ones col-
ored by standard colormaps. Optimizing generated colormaps was
presented by Fang et al. [FWD*17].

Transfer functions (TF) are an essential visualization tool used
for mapping volumetric data not only to colors but also to opacity.
Traditionally transfer functions design can be classified as being
either data driven, where optical properties are assigned to elements
in the dataset, or image driven, where transfer functions parameters
are derived from analysis of rendered images.

Data driven approaches instead often make use of histogram to
aid the analysis of a dataset scalar field and determine its properties.
Histograms represent graphically the distribution of values along
the different dimensions. Maciejewski et al. [MJW*13] showed
how overall, when presented with the extra information carried by
the histogram, both novice and expert users were able to provide
better renderings due to the abstracted histograms helping to tar-
get, search and analyse the volume dataset. Correa and Ma [CM11]
introduced the idea of visibility histograms, which represent the
contribution that a given voxel has in the final rendering. Visibility
histograms represent the distribution of a given visibility function
in relation to the domain values of the volume. The computed vis-
ibility histogram can then be used to help discover occlusion pat-
terns in the data. Ruiz et al. [RBB*11] improved on Correa’s work
by generating a transfer function automatically by minimizing the
Kullback—Leibler divergence between the observed visibility dis-
tribution and a target visibility distribution. Wang et al. [WZC*11]
extended the idea of visibility histogram to feature visibility where
the opacity of each feature is generated automatically based on a
user-defined visibility value.

Cai et al. [CTN*13] proposed a system for automatic trans-
fer function design based on visibility distribution and projective
colormapping. A preprocessing module first computes a 2D his-
togram, which is defined by the intensity and gradient magnitude
information. The opacity transfer function is automatically derived
by matching the observed visibility distribution to a target visibility
distribution, which automatically set based on the IGM histogram
of the volume. To compute the colour mapping, the histogram is
segmented into several regions, the center of each region is then
mapped to the CIELAB color space in order to assign a unique
color for each region.

Ljung et al. [LKG™16] provide an inclusive review, which covers
TF concepts, classifications, designing approaches and some valu-
able contributions. The classification covers a wide range of topics
related to TFs such as dimensionality, derived attributes, aggregated
attributes, rendering aspects, automation, and user interfaces.

While analytical techniques can help in determining data char-
acteristics such as intensity, frequency and distribution, choosing
the most appropriate colormaps is not an easy task: colors are not
equally distinguishable by observers and are influenced by both
task and application domain. Healey [Hea96] developed a proce-
dure for designing sets of easily distinguishable colors [25] while
Bergman et al. [BRT95] have extended his idea creating a taxon-
omy based on principles of perception, visualization tasks, and data
types. Bergman et al.’s taxonomy provides a tool to develop and
choose effective color scales for specific data types and goals.

Design of an appropriate colormap should be influenced not only
by the data that is being visualised but also by the experience of the
user to which the visualisation is aimed. Domain experts have the
capability to support and inform the design process while novice
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Figure 1: The main interface, showing the image derived from the
colormap, the histogram of the data, and current user colormap.
The currently selected colormap can be swapped using radio but-
tons on the right.

Delete All Colormap Selections

users might need different types of support to guide their own de-
sign. Borland and Huber [BH11] presents guidelines derived from
close collaboration between visual designers and domain expert to
create effective colormaps.

Akyiiz and Kaya [AK16] create a metric and user study for (High
Dynamic Range) HDR false colormaps. They study the data prepa-
ration stage, where various HDR techniques are employed, with
Histogram Equalization featuring well in each study. They compare
various colormaps in the user study and propose a metric based on
CIE color differences [SWDO05] that we augment in Section 5. Dy-
namic reduction can lead to more visually pleasing images, but if
the colormap has a linearly perceptual scale, then this relationship
is lost during the data preparation. High dynamic range reduction
is not a feature of our work, although any data preparation stages
may be integrated with our approach.

There is currently a lot of work involving coding colormaps for
visualization; single linear color, diverging [Mor09], and multi-
color and additional features such as isoluminant or linearly percep-
tually varying colormaps [Kov15]. Our work is colormap agnostic.
We seek to avoid the need for users to resort to coding to obtain
the required effects. We propose a user interface for interactive col-
ormap placement. The above effects (such as nested colormaps) can
be set up in seconds with our proposed interface. We also propose
an objective function for evaluating the results of the interaction,
i.e., the efficacy of the overall resultant colormap.

3. Design

In addition to being informed by the above literature, we are also
influenced by the design principles from working with time-series
data [WBJ16, WIL*15]. If we regard that there are similarities be-
tween interacting with the histogram of the source data range and
a time-series data set, then the functionality of working with time-
series data such as those provided by Chronolens [ZCPB11] and
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SignalLens [Kin10] readily transfer to this area. Close collabora-
tions with domain experts has also reiterated how interaction with
a visualization tool can strongly influence understanding of the data
as well as understanding and effectiveness of the tool itself [TMO04].

Based on state of the art literature and personal experience, we
identified a number of general design principles applicable for pro-
ducing colormapped images from source data:

P1 Multiple linked views. The user interface should link the
view of the resultant colormapped image with the currently user
defined colormap and the histogram of the data (Figure 1).

P2 Responsive views. These views should be responsive to user
interaction. During interaction with the colormap, feedback on the
interaction and the resultant colormapped image should be updated
dynamically.

P3 Direct manipulation. The interface should allow direct ma-
nipulation [Shn83] of the current hierarchical colormap using an
intuitive mouse control. The user should be able to modify the data
range over which a colormap spans. This can be achieved by allow-
ing a fixed range but moving the colormap (translation), or allow-
ing the range to change (resizing). The selected colormap should be
swappable for an alternative. Colormaps can be introduced to and
deleted from the current range.

P4 Histogram and histogram equalization view. Introducing a
histogram of the data allows the user to identify peaks in the data.
The user should be able to zoom to regions of interest in the data
range, and thus focus new colormaps in that area to improve the
visual dynamic range. The same plotting area should illustrate the
histogram equalization of the data when the user activate it.

P5 Interactive filtering. The system provides two filtering
methods in data space and in image space. Both filtering should
be user-friendly and improve the perceptual outcome of the data.

P6 Swappable colormaps. The system should allow a wide vari-
ety of colormaps that the user can easily swap between. Essentially
our choice for inclusion was steered by readily available colormaps
(lists of control points) that we could utilize in our code. Colormaps
additional to the ones available could be introduced. As we started
with thermal images, we selected blackbody as the initial default
colormap.

P7 Objective evaluation. We provide statistics about the
current colormapping. These were introduced for the objective
evaluation, but they may also aid the user in determination of the
colormapping.

Our design principles are not bounded to the development of
a single tool but rather aim at capturing those significant qualities,
at both interaction, data processing and image generation levels,
that make the colormap production pipeline most successful.

4. Implementation details

To provide the bridge between the intuitive direct control via mouse
input and the necessary functionality (P3), we view the complete
resultant colormap as a back to front hierarchy of individual col-
ormaps. Each colormap has left and right attributes determining



72 Omniah Nagoor & Rita Borgo & Mark W. Jones / Data Painter: A Tool for Colormap Interaction

Click to select

Change colormap Delete colormap

Click to select

Click edges to select

Resize colormap

Figure 2: Direct manipulation of a selected colorpmap (left button): Left to right, changing the selected colormap to a new one, deleting the
selected colormap, translating the colormap and resizing the colormap by moving either edge.

where in the data range it starts and finishes. An initial background
colormap covers the whole data range. Each colormap also has
an id number and a colormap number (which specific colormap it
is currently instantiated as (P6)). All user interaction is converted
into actions on these attributes. Whenever any attribute is changed,
the overall colormapping is evaluated in order to produce the col-
ormapped image, which is dynamically refreshed during interac-
tion (P1, P2).

P3 Direct manipulation. In the following, we differentiate be-
tween whether the user is selecting an existing highlight to work
with, introducing a new one or interacting with the overall col-
ormap widget.

Selected colormap (P3, P6). If a colormap in the current hi-
erarchy has focus, the direct manipulation operations alter the at-
tributes for that colormap and refreshes the display. The included
operations are depicted in Figure 2. If a colormap is selected, the
user can use the radio buttons to select a different colormap, Figure
2 (left). The user may delete the currently selected colormap, Fig-
ure 2 (inner left). By clicking to select the colormap, then holding
the mouse button and moving the mouse (mousemove) the user can
directly translate the colormap along the range of the data, Figure
2 (inner right). By clicking to select one or other of the edges of
the colormap, then holding the mouse button and moving (mouse-
move) the user can change the position of that edge in the range of
the data, which effectively resizes the colormap, Figure 2 (right).
Dynamic feedback is provided at each event. (P1, P2)

New colormap. If there is no currently selected colormap, the
mouse click is interpreted as the creation of a new colormap (P3).
The user holds the mouse button down, and moves to create a col-
ormap of the desired size covering the required data range. This
new colormap is placed at the front of the hierarchy with the de-
sired data range, and uses the current colormap type determined
from the radio buttons. Dynamic feedback is provided as the user
resizes the new colormap. (P1, P2)

Colormap widget. The overall colormap is also treated as a
component (widget) that can be manipulated directly. The user
may zoom or translate the widget. After or during any number
of transforms, the user is able to employ any of the selected col-
ormap or direct manipulation techniques above to alter existing or
create new colormaps within the hierarchy. Figure 3 illustrates a
sequence of interactions to demonstrate the system functionality.
The user starts from the default colormap and introduces a new
grayscale colormap. The colormap widget is zoomed and trans-
lated. The grayscale colormap is resized to a very small range of
interest in the original data source. An additional divergent col-

Start new colormap

Zoom widget (mousewheel)

Translate widget

Resize colormap

New colormap, zoom back out

Figure 3: Interaction with the colormap widget. The user intro-
duces a new colormap, zooms and translates the widget and then
resizes that colormap to occupy a very small range of the data. Af-
ter zooming out, this small range is seen to a the left of another
introduced colormap. Black dotted lines show the subinterval for
the zoom level before and after translation.

o

Figure 4: Distance field mapped using divergent colormap (left)
and multiple linear colormap (right) from Table 1 (512 x 512)
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colormap MSE Gradient | Angle | AEczggo > 1
. 0.04 70.0% 97.9%
[ 0.08 37.8% 96.7%
[ — 0.02 80.8% 98.2%
- ] 0.06 69.0% 98.0%

F EEEE EEEEE 0.001 100.0% 99.6%

Table 1: Distance Field (Figure 4). For each corresponding col-
ormap, gradient indicates the deviation from the true gradient
(V = 1) for distance field, smaller is better), and angle indicates
the percentage of vectors that are within +10° of the ground
truth (larger is better). The percentage of pixel pairs satisfying
AEciroo > 1 is in the last column.
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Figure 5: lllustrating the effect of filtering in data space by select-
ing a range of values in the histogram view. Also, a zooming widget
will appear in the right-bottom corner to show the selected range.

iy
S

ormap is placed against the grayscale, and then the user zooms out
to the original overall colormap view.

Histogram and histogram equalization widget. (P4) We keep
the histogram widget updated with the same view transform as the
colormap widget. The user can use the peaks in the histogram to
quickly locate colormaps for highlighting that data. We enable the
ability to pan and zoom the histogram because in the case of ther-
mal images there is a wide range of data with high numbers of
samples in narrow thermal ranges of interest, and also long tails of
data values outside those ranges. The user is able to zoom right into
the histogram, and have very precise control over the placement of
a colormap over the range of data of interest, or can sweep a col-
ormap back and forth over the histogram, to explore and highlight
different sample peaks as it is illustrated in Figure 5.

Interactive filtering. (P5) We present two filtering methods that
further improve the flexibility and the perception of the underly-
ing data without any prior knowledge of its distribution. The first
filtering procedure is in data space filtering. The user is allowed
to select a proportion of the data by selecting part of the data his-
togram. With such selection, the user can identify where data values
are located and what they represent such as the example illustrated
in figure 5 (the human body and the dog). The second filtering fea-
ture is in the image space, where the customized colormap will be
applied on part of the rendering result (lens view) illustrated in fig-
ure 6. The size of the lens can easily be adjusted to the desired size.
Such method allows the user to distinguish the narrow ranges with
high depth perception as well as to compare the rendered result with
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Figure 6: [llustrating the effect of filtering in image space. The
result of the customized colormap is shown within an adjustable
lens.

and without the effect of the dense colormap. Adding these two fea-
tures help in building the appropriate colormap. Moreover, it helps
in gaining more knowledge about the dataset as well as optimizing
the learning process.

Swappable colormaps. (P6) The overall system may be seen in
Figure 1. The colormapped image of the data source is seen at the
top. Below this are the histogram and colormap hierarchy widgets.
The user directly interacts with these components as above. On the
right hand side we currently have a small selection of colormaps
categorized according to the various types [Kov15]. The user can
select any of the colormaps using the radio buttons. If a colormap
is selected in the hierarchy, then clicking on a different radio button
changes the type. If nothing is selected, then the radio button indi-
cates the type of colormap that will be created if the user introduces
a new colormap to the hierarchy.

Objective evaluation. (P7) To evaluate the discriminating
power of user controlled hierarchical colormaps we develop an ob-
jective function in Section 5. This has a slight impact on the speed
of interaction. During interaction with the colormaps, it is interest-
ing to get dynamic feedback from these measures, and to manipu-
late the colormaps to optimize the values. It would require further
study (a formal user study) to determine if by using these measures
the user is able to effectively and usefully increase the discriminat-
ing power of the colormaps from a user perspective.

5. Objective Evaluation

In this section, we construct an objective function for measuring
the effectiveness of a colormapping. First, we model the following
constraints: data that is locally smooth in the source data set should
result in a locally smooth area in the colormapped image. The color
image should attempt to minimize or enhance the dynamic range
from the source data. The former constraint penalizes colormaps
that introduce new features or noise to the image. The latter con-
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colormap MSE Gradient | Angle | AEczggo > 1
. 33 85.7% 85.8%
[ 10.9 71.8% 71.7%
[ — 1.6 92.0% 91.9%
- | 1.9 90.6% 94.8%
= = 0.88 95.19% 93.9%

Table 2: Man in water (Figure 7). For each corresponding col-
ormap, MSE is the MSE of the estimated gradient from the col-
ormap to the gradient estimated from the data, smaller is better),
and angle indicates the percentage of vectors that are within +10°
of the estimated gradient from the original data (larger is better).
The percentage of pixel pairs satisfying AEciroo > 1 is in the last
column.

straint penalizes colormaps that reduce the dynamic range of the
data relative to others. We also model a constraint that the direction
of the derivative of the colormapped image should be consistent
with that of the source data, also to avoid the introduction of fea-
tures into the image that are not present in the data.

Given the data source fp(x,y), the gradient is Vfp(x,y) =

( fl= %7 fy/ — aa{l?), and the gradient magnitude is
IV fp(x,y)| = \/f>+ fy?, where, using central differences,

Afp _ folx+d)—fo(x—d)
- 2d

X
image fc(x,y).

. We derive similarly, for the colormapped

Two alternate colormappings C; and C; can be compared,
such that C; fulfills the requirements better than C, if: (i)
MSE(C)<MSE(C;) (MSE(C)=1 ¥.(IV fc(x.y)| = [V fp(x,y)])%.
the Mean Squared Error of C; is less than (). (ii)
Vip(x,y) - Vic (x,y) < Vp(x,y) - Ve, (x,y) (the gradient
direction produced by C is closer to the original data gradient). d
is the interval chosen for central differences. Larger d weakens the

locality constraint, therefore we use d = 1 (pixel neighbors).

Akyiiz and Kaya [AK16] propose that the best mapping for false
color images should have the highest perceivable color differences
between pixel values measured in CIEDE2000 color differences
(they denote AEcigqp). They measure the number of pixel pairs
where AEcigoo > 1 and rank algorithms accordingly on a test suite.
This metric favors colormaps with varying colors which may intro-
duce perceptual features in the image that are not present in the
data. The work is supported by a psychophysical study in which
stimuli are pairs of patches from images, and participants must de-
termine which of the pair has the highest luminance.

The CIEDE2000 metric [AK16] favors images with high color
differences, which may not be representative of the original data
set. Therefore we propose that a good objective measure can be
made by combining the goals of matching the direction of the orig-
inal data, and enhancing or maintaining the gradient as closely as
possible in a local area, along with a global goal of color differ-
ences measured as above using AEcroo. This is supported by the
user study of Akyiiz and Kaya [AK16], and our goals about accu-
racy and enhanced perception from source data.

We demonstrate this with a case study of a distance field gen-
erated from a point source at the origin, O, such that fp(x,y) =
|(x,y)|. Since it is generated under the Euclidean distance norm,

-

Figure 7: Thermal image data (640 x 480): (Left) Man in water
with Inferno colormap. Note the histogram shows much of the data
(water) towards the left. (Right) The user has replaced the lower
data with a grayscale colormap giving more detail in the water.

The logarithmic histogram helped to determine that higher values
were present across the data range.

|V p(x,y)] = 1and V fp(x,y) = (x,y) is the ground truth. We cre-
ate a 256 entry vector, V, and as each RGB color triple is gen-
erated during mapping, we set the corresponding position (pos =
r << 16|g << 8|b) in this vector to be the minimum value that gen-
erated that color so far (V[pos] = v). This provides a fast LUT to
obtain data value v, from color, which simulates the viewer’s inter-
pretation of value from color. Even for double precision data, this
is only 128MB.

For a set of 50,000 random points without replacement the gra-
dient direction and magnitude for different colormaps is compared
against the ground truth. The colormaps used are black body, gray,
divergent colormap from Color Brewer [Bre94], rainbow_bgyr_35-
85_¢72_n256 [Kov15] and a colormap comprising 10 contiguous
single color linear colormaps. Figure 4 (left) shows the divergent
colormap test with the test points colored blue. Table 1 presents
the results with column AE¢rgg > 1 giving the percentage of pixel
pairs that satisfy that test (40,000 pairs randomly chosen from the
test image).

Of the colormaps used, the one with the least colors is the
grayscale (two fixed control points - start and end). Unsurprisingly
it produces images which least discriminate the data. The real val-
ued data is quantized into 256 different (gray) colors. This is shown
in Table 1. Only 38% of the gradients derived from the grayscale
colormapped image are within +10° when compared to the ground
truth gradient. The AEcigo0 > 1 test also has lowest value for the
grayscale, but we observe that this measure is not so discriminat-
ing. The final color scale was chosen because it is very suitable for
visualizing distances (Figure 4 (right)), and provides lower degree
of quantization compared to the other colormaps. Correspondingly
the derived gradient is more accurate, achieving 100% of gradients
within +10° of the ground truth. If we increase the CIE delta test
to be AEciEo0 > 3 the final column becomes slightly more discrim-
inating at respectively 93.8%, 90.1%, 94.6%, 93.6% and 98.7%.

In the case of the distance field, we have the analytical ground
truth (x,y). For general data sources, we do not have access to the
analytical ground truth. To obtain a ground truth for those data
sources, we compute the gradient using central differences. In the
case of the distance field, we computed the objective measure in

(© 2017 The Author(s)
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Figure 8: Building images (Left) Original data. (Right) the user
customized colormap
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Figure 9: Juno spacecraft imagery (1600 x 1600): (Left) Origi-
nal data. (Middle) The user has introduced the inferno colormap
to highlight the great red spot. (Right) Other colormaps are intro-
duced to increase the visible dynamic range of otherwise saturated
features (The rightmost colormap has been zoomed and translated).

two situations. The first used the analytical gradient ground truth.
The second used the gradient calculated using central differences
from the source data. There was very little variation in the results.
Therefore, we conclude, that for data sets where the precise ground
truth gradient is unknown, the gradient calculated according to cen-
tral differences from the original data set is a good surrogate.

We also perform the same experiment on the Man in Water ther-
mal image which demonstrates similar results (Table 2). This time
we replace the last colormap with a user defined colormap from
our tool where the water has been set to grayscale, and the per-
son in the water (and dog and second person’s leg) are set to the
rainbow_bgyr_35-85_c72_n256 colormap. The user defined col-
ormap has the lowest MSE on the gradient, and the highest agree-
ment between colormap derived gradient (V f¢(x,y)) and data gra-
dient (V fp(x,y)) which is an indication of the usefulness of our
approach.

6. Case Studies

Thermal image data has a larger dynamic range. They are becoming
more useful as a diagnostic tool for building issues, e.g., detecting
faulty cables (hot), water leaks (cool), problems with air permeabil-
ity or other insulation issues. In these cases fault detection requires
good contrast to surrounding background temperature (cables, wa-
ter), or good detection of gradients (insulation issues).

Man in water (figure 7). First we include one typical example

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

of using thermal images to detect people against the cooler back-
ground. The original data with a default inferno colormap produces
the best highlighting of the person, but the details in the water
(which are not really relevant to the task) are largely undefined.
From the histogram in (figure 7 (left)), we can see that most of
the data values are to the darker part of the colormap, and because
there are so few samples at the higher thermal values, these are lost
in the histogram. Switching to the log histogram allows us to see
those sample values are spread higher through the histogram. With
a few seconds of interaction, the user is able to place a grayscale
colormap which better highlights the water, where we can now see
the details (if these were indeed interesting). The hot objects remain
on the original inferno colormap where they are now more visible.
Table 2 presents the results of running the objective evaluation on
the image. The user defined colormap produces a more accurate
representation of the gradients in the image.

Building (figure 8). For the blackbody colormap, the im-
age produces AEciro0 > 1 = 90.1%, MSE= 0.92 and gradients
within +10° = 88.9%. For the user colormap, the image pro-
duces AEcigoo > 1 = 95.8%, MSE= 0.28 and gradients within
+10° = 95.5% which is better in every measure. This is also visible
in the image. The user has created a false color image using mul-
tiple colormaps. Each has been positioned to highlight a different
color range, and in this case it visibly separates building materials.
Within each material, better gradients are observable (which is also
confirmed by the gradient measures). The image has a larger distin-
guishable color range (also confirmed by the ACIE measure). Heat
loss temperature gradients are now visible across window panes
and joists in the ceiling, and could be used to inform further insu-
lation decisions.

Jupiter. The Jupiter image (Figure 9) presents a different chal-
lenge. The original data has a high variation in light towards the
sun. Large areas of the image have low gradient magnitude on the
blackbody colormap. By creating a more focused colormap over
a smaller range of data, the user can sweep this back and forth
across the data range, using it like a data lens across the image.
The middle image shows the inferno colormap being swept across,
and highlighting the great red spot. In the right image, the user has
introduced further colormaps to enhance the difficult to distinguish
areas.

7. Conclusions

Colormaps are used ubiquitously to provide a scale from which
the viewer is able to deduce certain information about absolute or
relative data values from the colored data. Previous work has stud-
ied the importance of perception from colormaps with regard pre-
serving linear relationships within the data. High dynamic range
data provides challenges, since the colormapping reduces the orig-
inal dynamic range. Usual measures involve transforming the data.
Previous work [AK16] studies several approaches for transforming
HDR images, along with false color coding. In this approach we re-
tain the original source data but transform the colormap with user
interaction. Our tool allows the interactive placement and transfor-
mations of colormaps within the data range with real-time visual
feedback. The user is able to sweep colormaps across the image in
order to detect features of interest. The resulting overall colormap is
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regarded as a front to back hierarchy of individual colormaps. The
method is shown to have higher dynamic range than standard col-
ormap images and is able to highlight more features and structural
details.
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