
EG UK Computer Graphics & Visual Computing (2016)
Cagatay Turkay and Tao R. Wan (Editors)

PED: Pedestrian Environment Designer

James McIlveen, Steve Maddock, Peter Heywood and Paul Richmond

Department of Computer Science, University of Sheffield, Sheffield, UK

Figure 1: Environment created in the PED interface being simulated.

Abstract
Pedestrian simulations have many uses, from pedestrian planning for architecture design through to games and entertainment.
However, it is still challenging to efficiently author such simulations, especially for non-technical users. Direct pedestrian
control is usually laborious, and, while indirect, environment-level control is often faster, it currently lacks the necessary tools
to create complex environments easily and without extensive prior technical knowledge. This paper describes an indirect,
environment-level control system in which pedestrians’ behaviour can be specified efficiently and then interactively tuned. With
the Pedestrian Environment Designer (PED) interface, authors can define environments using tools similar to those found in
raster graphics editing software such as PhotoshopTM. Users paint on two-dimensional bitmap layers to control the behaviour
of pedestrians in a three-dimensional simulation. The layers are then compiled to produce a live, agent-based pedestrian
simulation using the FLAME GPU framework. Entrances and exits can be inserted, collision boundaries defined, and areas
of attraction and avoidance added. The system also offers dynamic simulation updates at runtime giving immediate author
feedback and enabling authors to simulate scenarios with dynamic elements such as barriers, or dynamic circumstances such
as temporary areas of avoidance. As a result, authors are able to create complex crowd simulations more effectively and with
minimal training.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer graphics]: Methodology and Techniques—
Interaction Techniques, I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation, H.5.2 [Information
interfaces and presentation]: User Interfaces—Graphical user interfaces (GUI)

1. Introduction

Pedestrian simulations find many uses, from games and films
through to evacuation simulations and disaster planning programs.
As these simulations become more advanced, with more complex
environments and greater numbers of pedestrians and behaviours,
efficient and effective authoring approaches are required to create,

control and direct the simulations. Our focus is on creating a system
where non-technical authors can do this. For pedestrian simulation,
we use an agent-based approach combined with force-vector fields
[Rey99], both supported within the FLAME GPU framework
[RR11, fla]. Agent-based pedestrians infer their behaviour from a
defined environment, based on a behaviour model. Our Pedestrian

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/cgvc.20161304

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/cgvc.20161304


James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond / PED: Pedestrian Environment Designer

Environment Designer (PED) is an intuitive tool for the creation of
these environments.

PED uses layers of two-dimensional bitmaps, each representing
different aspects of behaviour within a three-dimensional
environment. In analogy to raster graphics editing software such as
PhotoshopTM, a user paints entrances and exits, areas of attraction
and avoidance, and collision boundaries onto layers. Another layer
might contain a reference image, e.g. a map of a train station, which
can be used as a guide for the information on subsequent layers. In
the resulting simulation, pedestrians (agents) use the information in
the layers to control their behaviour in the environment. Complex
simulations can be easily created with an approach that doesn’t
require any prior technical knowledge of crowd simulations.
In addition, using PED, authors can dynamically update the
simulation environment, producing a trial and error approach for
simulation authoring, e.g. a barrier can be added or removed, the
attraction of an area increased or the flow of pedestrians varied.

In order to demonstrate the capabilities of PED, two sets of
results will be presented. First, we demonstrate the ease with which
a range of complex environments and associated simulations can
be created. Second, we present the results of an experiment in
which an environment was created by users with no prior technical
knowledge of crowd simulations, thus demonstrating the intuitive
nature of PED.

Section 2 will first cover the related work in the field. Section
3 will then cover PED, including the features it offers and how
they have been implemented. This is followed by the results and
discussion in Section 4 and then the conclusions 5.

2. Related Work

Two separate levels of control can be identified in pedestrian
simulations, micro and macro, although both are often used in
conjunction. Micro control defines rules that affect individual
pedestrians, and parameters are set on a per pedestrian basis. In
contrast, macro control is concerned with parametrising behaviours
shared by many pedestrians.

Micro-level control can be seen as a local model of a pedestrian’s
behaviour, with an agent-based approach perhaps being the most
popular. Reynolds’ [Rey87] work on modelling the interaction in
flocks and herds used micro-level controls. Helbing then adapted
Reynold’s ideas to crowd simulations to produce the Social-Force
model [HM95], Paris used velocity-space analysis to resolve the
problem of pedestrian avoidance [PPD07], and Guy proposed
the PLEdestrian model [GCC∗10] which attempts to minimise
metabolic work by pedestrians using the ‘Path of Least Effort’.

In contrast, macro level controls can affect all pedestrians at
once or particular subsets of pedestrians based on pedestrians’
states. Macro level controls are often used in conjunction with
micro controls in order to provide global simulation path finding
and configuration. Examples include Reynolds’ Force Vector Fields
(FVFs) [Rey99], where an FVF is a matrix of vectors which
represent directional velocities that define the motion of agents
within a specific area, Chenney’s Flow Tiles [Che04], which allow
users to create FVFs by combining smaller tiles of reusable FVFs,

and Banerjee’s work [BAK08] on layering of FVFs in order
to simplify the creation of complex behaviours. Another macro
level approach is the use of continuum theory. Here, Hughes
[Hug02] defines dynamic potential fields that can be used for
global navigation and local collision avoidance. This was then
improved by Treuille [TCP06] to produce continuum crowds by
tuning Hughes’ model with empirical data.

While micro and macro controls parametrise the features of
both the pedestrians and their environment, they can interact with
each other in two different ways: either directly, or by inference
(indirectly). All of the work covered so far in this section is
used in systems that utilise inferred control. Inferred pedestrian
control does not require that pedestrian trajectories are specified,
but instead requires a set of rules to be defined that pedestrians
use to calculate their actions based on their state, the state of
other pedestrians and their environment. Pedestrian movements are
a product of the simulation’s current state and the environment.
Simulations of this nature require an environment to be created in
order to produce the desired behaviours.

In contrast, direct pedestrian control is where micro and macro
controls manipulate the pedestrians in a fully authoritarian manner.
All pedestrian trajectories and actions are completely parametrised.
This form of control allows a simulation author to produce fine-
tuned simulations as all control is explicit, but at the cost of the
required time to define this fidelity. Both Kwon [KLLT08] and Kim
[KSKL14] showed that once basic pedestrian trajectories had been
made, it was possible to perform motion editing on these trajec-
tories. Takahashi showed that it is possible to create pedestrian
trajectories that collectively transform pedestrians’ positions from
one group formation to another using a spectral-based approach
[TYK∗09]. Yersin proposed Crowd Patches [YMPT09] a system
that defines a volume containing several pedestrian trajectories in
3D space. These patches can be combined together to create a larger
grid of patches and pedestrians can traverse trajectories spanning
several patches. Jordao built upon the idea of Crowd Patches with
Crowd Sculpting [JPCC14], a system which proposes a Crowd
Patch graph system where patches can be arranged and distorted
to create specified scenarios.

Finally, we focus on tools used for authoring simulations. Some
of the aforementioned studies also present simulation creation
tools alongside their control methodologies. Kim created a tool
[KSKL14] which allows for interactive manipulation of pedestrian
trajectories and Jordao’s Crowd Sculpting system [JPCC14]
showed this sort of interactive control was also possible with
Crowd Patches. Ulicny created Crowd Brush [UCT04] which
allows simulation authors to use a brush tool to create and remove
pedestrians by clicking within an environment. The brush tool
also allows authors to individually or collectively set properties
and behaviours of pedestrians by selecting them with the brush
tool. In contrast to Crowd Brush, Agent Paint [MR05] used image
mapping as a way to create behavioural environments instead of
agent properties. Behavioural traits within a 3D environment can
be specified by painting different colours onto a bitmap which is
then mapped to a 3D plane.

Our system, PED, uses the paint concept for environment
behaviour that can also be seen in Agent Paint [MR05], although

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

106



James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond / PED: Pedestrian Environment Designer

Agent Paint does not split behaviours into separate layers, nor does
it include functionality to dynamically update the simulation at run
time to provide authors with the feedback that is necessary to tune
the behaviours within the environment. PED can also be likened
to Crowd Brush [UCT04], in that brush-like tools are used to
influence behaviours within the environment. The main difference
is that Crowd Brush directly affects pedestrians, whereas PED
affects the environment of the pedestrians.

3. The System

PED focuses on enabling authors to create environments that
pedestrians can infer their movement from within a simulation.
Authors can create environments on a single plane by creating
multiple bitmap layers that represent behaviours. There are
different types of layers that an author can add, each affecting
the pedestrians behaviour in different ways. These layers can be
painted using tools similar to those found in common raster image
editing software.

Once an author has finished creating their environment, the
environment can be compiled and loaded into the pedestrian
simulation program written using the FLAME GPU framework.
Pedestrians can be seen to move around the environment in real-
time. An author can then make changes to the environment if
desired, and the environment can then be dynamically transferred
to the running simulation. PED is based on the ideas of layered
FVFs [Rey99,BAK08], painted behaviours [MR05] and the Social-
Force model [HM95].

3.1. Interface

PED’s interface (fig. 2) is split into three distinct sections: the
Environment Workspace (bottom left), the Layer Viewer (bottom
right) and the Toolbox (top). The Environment Workspace shows
the current state of the environment, and is where the tools are
used. All of the currently visible layers can be seen here, and
can be zoomed and translated to allow authors to see the part
of the environment they are currently working on. The Layer
Viewer shows all of the layers within the current environment,
and allows for the creation of new ones. A preview for each layer
is displayed, and users can rename, reorder and configure the
layers from this menu. The layer which is currently being edited
is highlighted in blue and can be changed by clicking on another
layer. The Environment Workspace only shows the current layer
and those below it so that the view of the topmost layer is not
obscured. The Toolbox allows the user to select and configure the
current tool. The menu bar at the very top of the interface can be
used for environment management (new, save, open), environment
compilation and simulation execution.

3.2. FLAME GPU Pedestrian Simulation

Environments that are created in PED are run using a modified
version of the pedestrian simulation created by Karmakharm
[KRR10] using the FLAME GPU framework [fla]. This system
represents pedestrians using agents that are controlled by the
Social-Force model where FVFs provide global pedestrian

Figure 2: PED’s interface, highlighting the Environment
Workspace and Layer Viewer.

navigation and obstacle avoidance. Pedestrians enter environments
at a specified location and the make their way to prescribed exits.
Separate FVFs are used to navigate agents to each of the available
exits, one FVF per exit, irrespective of entrance, and another is
used for global collision avoidance . PED is specifically tailored
to creating environments that use this methodology for crowd
simulation.

3.3. Layers

A layer in PED consists of a bitmap and configuration for that layer.
Each layer represents a different behaviour within the environment
and the collection of layers represents the environment (Figures
3 and 4). Each of the layers is only effective where the user
has painted the bitmap with colour. All layers can be configured
through the Layer Viewer panel and all layers can be enabled and
disabled to allow for easy editing of environments. The following
list describes the six types of behavioural layer available to PED
authors.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

107



James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond / PED: Pedestrian Environment Designer

• Entrance/Exit layers define where pedestrians spawn and exit
the environment. When a pedestrian enters the scene, an exit (on
any entrance/exit layer) is chosen at random for the pedestrian
to head towards, and eventually exit the environment from. A
different layer is used for each unique exit and each layer is
displayed in a unique colour. Emission rates can be configured
and exit probabilities can be defined for each pair of layers
(entrance and exit) so that realistic pedestrian flows can be
imitated. Painting on this layer is discrete; pixel opacity is binary.

• Collision layers define where pedestrians are able to move
within the environment. Painted areas block pedestrians from
passing, and unpainted areas are walkable. Collision layers have
a configurable height value. This height does not effect the
obstructive nature of the layer, but is used to produce visual-
isations where the collision area is swept upwards to create
simple 3D models within the resultant simulation to provide
author feedback. While many collision layers can be created,
all layers are combined during compilation so multiple layers
are only used for organisation purposes and to define different
heights in different areas. Collision layers are displayed in
crimson within the Environment Workspace.

• Areas of Attraction layers are used to define a model of
pedestrian distribution. Painting on these layers (using different
levels of paint opacity) attracts pedestrians to move through
the painted areas while moving towards their exit. Areas of
Attraction have a strength value which can be configured to make
the area more or less attractive to pedestrians. While Areas of
Attraction can affect the path a pedestrian takes, the pedestrian is
still guaranteed to eventually reach their exit if there is a possible
path. Areas of Attraction are displayed in green.

• Areas of Avoidance layers are like Areas of Attraction, but
instead of attracting pedestrians to move through them, they
discourage movement through their specified areas. Similarly,
Areas of Avoidance also have a configurable strength value to
adjust their influence. Areas of Avoidance are displayed in red.

• Areas of Interest layers enable authors to create waypoints
within environments. Normally pedestrians move from their
point of emission to their exit, but pedestrians can switch to
moving towards an Area of Interest on their way to their exit.
Probabilities can be defined that specify a pedestrian’s chances
of switching to navigating towards an Area of Interest and back
again. Areas of Interest are displayed in fuchsia and currently
only one such layer can be added.

• Reference layers are the only layers that do not influence
behaviour within the system. They allow the author to load
a reference image, e.g. a map of a railway station, into their
environment that can then be used as a guide for environment
creation. Reference layers are also visualised within final
simulations to provide spacial context.

3.4. Layer Editing Tools

To edit layers within PED, users are provided with three tools:
the Block tool, the Brush tool and the Eraser tool. All three of
these tools can be selected as the current tool and configured from
within the Toolbox at the top of the system interface (fig. 2). Once
selected a tool can be used to manipulate the current layer within
the Environment Workspace.

Figure 3: Layered FVFs within the pedestrian simulation
program.

Figure 4: Layered behaviours represented as bitmaps.

All tools are similar to those found in common raster graphics
software packages. The Block tool allows the user to click and drag
to create rectangle shapes. The brush tool paints within a circle of
influence wherever a user clicks or drags. The Eraser tool removes
painted behaviours within layers wherever it is dragged. The brush
and eraser tool have settings to change properties such as their size
and step, but the block tool does not.

3.5. Environment Compilation

After a collection of layers has been produced, a compilation
process is used that converts the layers into an XML model
input format for FLAME GPU. PED represents behavioural
environments using bitmaps, and the pedestrian simulation requires
environments to be represented using a set of agents known as
navmap agents. Navmap agents represent the entire environment
and are organised into a grid. They specify: their coordinates within
the environment, whether or not they are an entrance/exit and also
vectors for each of the navigation, collision and Area of Interest
FVFs for that position.

Navigation FVFs guide the pedestrians to their respective exit.
They are calculated for each exit in the environment so pedestrians
can navigate towards them in the simulation. To calculate each
Navigation FVF, an iterative Djikstra floodfill algorithm is used.
All collision layer bitmaps are flattened and converted into a 2D
boolean array that defines collision areas. All Entrance/Exit layers
are also converted into a boolean array like this as specified by their
respective bitmaps. The algorithm then uses these arrays to create
a distance map, which marks the distance from every cell in the
environment to the current exit (fig. 5). The resultant distance map
is then used to create FVF vectors that guide pedestrians to the exit

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

108



James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond / PED: Pedestrian Environment Designer

Figure 5: Distance map and FVF creation.

(fig. 5). If a cell is part of the collision area, or exit area, or was not
reachable by the flood fill algorithm, it is not given a vector.

To create the Collision FVF used by the simulation, a similar
process to the one used to create the Navigation FVF is used. All
space that is not marked as a collision area is given a distance of 0
when creating the distance map and the environment is then flood-
filled from those cells. The resultant Collision FVF will then always
direct pedestrians outwards from the collision zone to the nearest
non-collision area.

Area of Avoidance layers are accounted for by converting all
Area of Avoidance layer bitmaps into a single cost mask that is used
as an overlay when calculating the distance map for each exit. The
alpha values for the pixels in each layer are multiplied by the layer
strength and combined to create the cost mask. The result of this
is a weighted array of cost values that represents all of the layers
of avoidance. When calculating navigation layers, distance values
are augmented by the corresponding cost value. The result is that
the navigation FVFs avoid guiding pedestrians through avoidance
areas where possible, but the strength of the deterrent is determined
by the strength of the layer.

Area of Attraction layers are similar to Area of Avoidance layers.
The only difference is that attraction layers add a cost for wherever
the layer has not been painted instead of where it has been painted.
The change in the algorithm is simple – the transparency value is
inverted. The produced cost mask then works in the same way as
the one produced by the Area of Avoidance layers.

Areas of Interest also require their own navigation FVF layers.
During the simulation, pedestrians that are currently moving
towards an Area of Attraction use this FVF to guide them to the
area. These navigation layers are calculated in the same way that
the entrance/exit navigation FVF layers are calculated except they
guide the pedestrians towards the Area of Attraction instead of
towards their exit. Area of Attraction and Area of Avoidance layers
are all also applied to these layers.

Once all of the navigation FVFs have been created, taking into
account both Areas of Attraction and Areas of Avoidance, they are
then smoothed. Smoothing is used to avoid diagonal convergence
of pedestrians due to harshly formed FVFs that guide pedestrians
using the absolute minimum distance to their exit. Smoothing is

done by using a nearest neighbour average, where each cell is an
average of all its non-zero vectors neighbours within a particular
radius. This is one of the more computationally demanding parts of
the algorithm so summed area tables are used to compute averages
efficiently.

Once all FVFs have been calculated, all fields are then converted
to the pedestrian simulation’s navmap data structure. Information
about whether each navmap agent is an entrance/exit is also added,
and also its height if it is part of the collision area. These navmap
agents are then encoded into a binary format and saved. This binary
also includes global configuration including emission rates, Area of
Interest layer probabilities and the reference image bitmap.

3.6. Final Simulations

Once an environment has been compiled and saved it can then
be used to initialise a simulation. In PED, authors are provided
functionality to compile and start a simulation with a single button
click. The simulation program then loads the environment, and
displays the visualisation of the simulation to the user (Figure
1). Pedestrians can be seen to walk around in accordance with
the environment, collision area models are swept upwards to their
configured height, and the reference image can be seen underneath
the pedestrians.

When a simulation is started, the simulation program continually
watches the binary file that the environment was loaded from. If it is
overwritten, the new environment is loaded into the simulation. All
of the current pedestrians remain, but the environment is updated.
From within the PED interface, the user only need press a button to
update the simulation with the current version of the environment
seen in the editor. This allows for dynamic environment update at
runtime.

4. Results and Discussion

4.1. Sample Environments

Six sample environments were created to exercise the system: a
train station, a university student union, a supermarket, a simple
environment with doors, a festival, and a swirling path. Table
1 details how many layers each environment used, the average
number of pedestrians and the time required for an experienced user
to create the environment. While the number of layers may seem
high, most are simple layers (e,g, an entrance/exit), and the number
was also increased by splitting collision layers into multiple
collision pieces, both for organisation purposes (i.e. focussing on
different areas of collision in the environment) and to create a
visualisation of different 3D heights in the simulation.

The creation of these sample environments showed that the
system is capable of creating specific scenarios. Entrance and exits
could be created to define the flow of pedestrians in a controlled
fashion. Collision layers could be used to create buildings, fences
or other obstacles within the environment. Areas of Attraction
were particularly useful for defining paths and in some cases, such
as tight corners, proved useful in making pedestrian flows look
more organic (Figure 6). While Areas of Avoidance acted in much
the same way to Areas of Attraction, they were useful for easily

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

109



James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond / PED: Pedestrian Environment Designer

Environment Layer count Peds. Time

Train station 28 540 50 mins
Student’s Union 31 560 60 mins
Supermarket 25 220 60 mins
Festival 15 52000 10 mins
Doors 12 2400 10 mins
Swirl 11 18500 10 mins

Table 1: Sample environment metrics

defining concepts such as roads. Environments including roads that
used Areas of Avoidance to mark them would see pedestrians either
use a crossing if provided, or otherwise minimise their time spent
in the road by crossing orthogonally rather than diagonally.

Figure 6: Pedestrians navigating a street corner.

Figure 7: Birds-eye view of Student’s Union sample environment.

Areas of Interest were effective at filling buildings with people
(Figure 7). The train station (Figure 8) environment used them to
populate a main lobby where pedestrians would view arrival boards
and the student union environment used them to populate inside
the union building. Reference layers proved useful in providing
spatial context for the created environments, especially when used
in conjunction with the swept Collision layer models. Dynamic
update provided the means to create environments that included
doors, and also vary pedestrian distribution models. Dynamic
update was also used extensively while creating the sample
environments to iteratively improve the environment based on a
short feedback loop of editing, compiling and viewing.

The sample environments also highlighted that there are still
improvements that can be made within the system. The behaviours

Figure 8: Train station sample environment.

available in the system were shown to have limitations in certain
situations. The Areas of Attraction and Avoidance were shown to
not be able to model pedestrian heterogeneity adequately in all
situations. Pedestrians moving to a single exit tend to all move in
the same direction, and creating environments where pedestrians
would take multiple routes proved difficult. Areas of Interest were
good at easily being able to change pedestrian goals within the
environment, but exhibited a lack of pedestrian control when
pedestrians reached the defined area as they no longer had a goal to
infer navigation from (Figure 9).

Figure 9: Supermarket sample environment.

The lack of support for multiple environment heights was also
problematic. Several sample environments are spread over multiple
levels (e.g. the train station environment which has stairways
and corridors over train tracks, see Figure 8) and the single
plane that PED offers is insufficient to model these. In cases
requiring multiple heights, compromises needed to be made to
model areas on a 2D plane. Also, the FVF system used within
the simulation does not account for pedestrian congestion, which

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

110



James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond / PED: Pedestrian Environment Designer

means pedestrians do not alter their navigation to try and avoid
build ups.

4.2. User Testing

To assess the system’s usability and to check whether it is usable
by non-technical authors, eight users were asked to use the tool
to create a prescribed environment. Participants were first given
written instructions that guided them through making a sample
environment using the tool, and then were asked to make one of
their own. Participants then filled in a survey that detailed what
they thought about the system and their experience creating the
prescribed environment. The environment they were asked to make
was the area around a church in the middle of a city (Figure 10).
All participants knew the area well in real life. They were given a
satellite image as a reference image and a maximum of an hour to
create a visually-convincing pedestrian simulation of the area.

The eight participants almost unanimously agreed that the
system was intuitive, and that pedestrian simulations were easy to
create using the system. They thought that the system provided
tools that were simple to use even with no prior technical
knowledge and it could be used to adequately control pedestrians
within an environment to produce pedestrian flows that the felt
mimicked real life. The results also show that the participants
valued the ability to dynamically update the environment and the
immediate feedback directly aided their creation process.

All participants were able to create the church environment
(Figures 10 and 11) and were convinced that what they had created
was accurate. The average time that participants used to make the
environment was 44 minutes. Table 2 details how many layers
each participant used, the average number of pedestrians in the
church environment and the creation time required. Participants
created the environment using varying numbers of layers. This
was due to personal participant preference to the level of layer
organisation and collision visualisation creation. The most used
layers were collision layers which made up 36% of the layers used
followed by Entrance/Exit layers that contributed 32% of the used
layers. It is possible to condense all of the collision layers for
a PED environment into a single layer, but these statistics show
that users value the organisational and visualisation benefits gained
from using separate layers.

Participant Layer count Peds. Time

A 14 140 54 mins
B 22 150 47 mins
C 23 200 43 mins
D 18 190 30 mins
E 15 90 40 mins
F 18 150 42 mins
G 19 210 51 mins
H 17 134 40 mins

Table 2: Church environment metrics

Figure 10: Evaluation church environment 1.

Figure 11: Evaluation church environment 2.

5. Conclusions

We have shown that PED can be used to create complex
environments and can be used by non-technical authors to
create pedestrian simulations quickly and efficiently. Simulation
environment update has been shown to make dynamic scenarios
possible while also providing a mechanism that authors can use
as an interactive feedback loop to help easily fine-tune their
environments.

There is still room for improvement. Currently different levels
within a 3D simulation cannot be modelled, e.g. the stairs and
passages over train tracks. One way to address this may be
to introduce a teleportation layer type which could be used to
transport pedestrians from one level or area of the environment
to another. Other functionality could also be considered, such
as Guidance Fields [PVdBC∗11], which define areas in which
pedestrians can only move in one direction, and continuum
dynamics [TCP06] to address issues such as congestion avoidance.
Further work could also be done on the software system itself so
that users could specify and compile new layer types themselves.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

111



James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond / PED: Pedestrian Environment Designer

References
[BAK08] BANERJEE B., ABUKMAIL A., KRAEMER L.: Advancing the

layered approach to agent-based crowd simulation. In Principles of
Advanced and Distributed Simulation, 2008. PADS’08. 22nd Workshop
on (2008), IEEE, pp. 185–192. 2, 3

[Che04] CHENNEY S.: Flow tiles. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation (2004),
Eurographics Association, pp. 233–242. 2

[fla] FLAME GPU, http://www.flamegpu.com/. 1, 3

[GCC∗10] GUY S. J., CHHUGANI J., CURTIS S., DUBEY P., LIN
M., MANOCHA D.: Pledestrians: a least-effort approach to crowd
simulation. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
symposium on computer animation (2010), Eurographics Association,
pp. 119–128. 2

[HM95] HELBING D., MOLNAR P.: Social force model for pedestrian
dynamics. Physical review E 51, 5 (1995), 4282. 2, 3

[Hug02] HUGHES R. L.: A continuum theory for the flow of pedestrians.
Transportation Research Part B: Methodological 36, 6 (2002), 507–535.
2

[JPCC14] JORDAO K., PETTRÉ J., CHRISTIE M., CANI M.-P.:
Crowd sculpting: A space-time sculpting method for populating virtual
environments. In Computer Graphics Forum (2014), vol. 33, Wiley
Online Library, pp. 351–360. 2

[KLLT08] KWON T., LEE K. H., LEE J., TAKAHASHI S.: Group motion
editing. In ACM Transactions on Graphics (TOG) (2008), vol. 27, ACM,
p. 80. 2

[KRR10] KARMAKHARM T., RICHMOND P., ROMANO D. M.: Agent-
based large scale simulation of pedestrians with adaptive realistic
navigation vector fields. TPCG 10 (2010), 67–74. 3

[KSKL14] KIM J., SEOL Y., KWON T., LEE J.: Interactive manipulation
of large-scale crowd animation. ACM Transactions on Graphics (TOG)
33, 4 (2014), 83. 2

[MR05] MILLÁN E., RUDOMIN I.: Agent paint: Intuitive specification
and control of multiagent animations. In Proceedings International
Conference in Computer Animation and Social Agents (CASA) (2005).
2, 3

[PPD07] PARIS S., PETTRÉ J., DONIKIAN S.: Pedestrian reactive
navigation for crowd simulation: a predictive approach. In Computer
Graphics Forum (2007), vol. 26, Wiley Online Library, pp. 665–674. 2

[PVdBC∗11] PATIL S., VAN DEN BERG J., CURTIS S., LIN M. C.,
MANOCHA D.: Directing crowd simulations using navigation fields.
Visualization and Computer Graphics, IEEE Transactions on 17, 2
(2011), 244–254. 7

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A distributed
behavioral model. In ACM SIGGRAPH computer graphics (1987),
vol. 21, ACM, pp. 25–34. 2

[Rey99] REYNOLDS C. W.: Steering behaviors for autonomous
characters. In Game developers conference (1999), vol. 1999, pp. 763–
782. 1, 2, 3

[RR11] RICHMOND P., ROMANO D.: Template-driven agent-based
modeling and simulation with cuda. GPU Computing Gems Emerald
Edition (2011), 313. 1

[TCP06] TREUILLE A., COOPER S., POPOVIĆ Z.: Continuum crowds.
ACM Transactions on Graphics (TOG) 25, 3 (2006), 1160–1168. 2, 7

[TYK∗09] TAKAHASHI S., YOSHIDA K., KWON T., LEE K. H., LEE
J., SHIN S. Y.: Spectral-based group formation control. In Computer
Graphics Forum (2009), vol. 28, Wiley Online Library, pp. 639–648. 2

[UCT04] ULICNY B., CIECHOMSKI P. D. H., THALMANN D.:
Crowdbrush: interactive authoring of real-time crowd scenes. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2004), Eurographics Association, pp. 243–252. 2,
3

[YMPT09] YERSIN B., MAÏM J., PETTRÉ J., THALMANN D.: Crowd
patches: populating large-scale virtual environments for real-time
applications. In Proceedings of the 2009 symposium on Interactive 3D
graphics and games (2009), ACM, pp. 207–214. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

112


