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Abstract

High fidelity rendering systems rely on accurate material representations to produce a realistic visual appearance. However,
these accurate models can be slow to evaluate. This work presents an approach for approximating these high accuracy re-
flectance models with faster, less complicated functions in regions of an image which possess low visual importance. A subjec-
tive rating experiment was conducted in which thirty participants were asked to assess the similarity of scenes rendered with low
quality reflectance models, a high quality data-driven model and saliency based hybrids of those images. In two out of the three
scenes that were evaluated significant differences were not found between the hybrid and reference images. This implies that
in less visually salient regions of an image computational gains can be achieved by approximating computationally expensive
materials with simpler analytic models.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Rendering—Reflectance Modelling

1. Introduction

There is a continuing demand for increased accuracy and simula-
tion speed in virtual environments. This comes at the cost of ever
increasing demands on computational resources, especially when
using algorithms relying on ray-traced lighting, and in scenes with
multiple complicated materials. These demands can be partially
mitigated through various strategies, such as improving light trans-
port algorithms, coherence for tracing and shading, filtering, and re-
ducing computation in less visually important regions of the scene.
This paper investigates the latter approach, specifically whether
straightforward and computationally inexpensive surface reflection
models can be used in place of accurate but more detailed models
in less salient regions of the image.

Visual attention models provide a framework to predict the areas
of an image which are likely to be attended to by the Human Visual
System (HVS). These models have been applied to improving ren-
dering performance by several previous authors [CCW03] [CDM-
PdS07] [KDCM14] [GDS14], however this work has predomi-
nantly focused on decreasing the number of samples computed in
a Monte Carlo image synthesis context. Our work aims to improve
performance in an orthogonal manner; by reducing the complex-
ity of materials in less visually salient areas, computational savings
can be gained without a significant loss in perceived quality of the
resultant image.

Material models used in physically-based rendering are known
as Bidirectional Reflectance Distribution Functions (BRDFs).
These are 4D descriptions of how incident light is reflected in a

given direction. Two types of models are frequently used in render-
ing systems; analytical and data-driven. Analytical BRDFs range
from simple models of diffuse reflectance, to parametrised glossy
models, such as Phong [Pho75] and Walter [WMLT07], and multi-
lobed BRDFs [LFTG97]. These parameters can be altered to af-
fect the appearance of multiple surfaces, but can only approximate
real materials. Data-driven BRDFs consist of captured reflectance
values of real-world materials. These typically consist of a 4D
(or 3D in the case of isotropic materials) lookup table which is
queried at runtime. Uncompressed data-driven BRDFs require sig-
nificant storage, for example the MERL database [MPBM03] stores
each measured surface as a 33MB binary file, the total size of the
database of 100 materials being 3.30 GB. This requires significant
memory bandwidth during the frequent lookups from the table.

Typical rendering systems additionally use mixtures of these
BRDFs, often in a spatially varying [Mca02], layered [WW07], or
as a mixture driven by a shader. Evaluating shading on a surface
can take longer than tracing rays [ENSB13], and therefore savings
in BRDF evaluation can potentially significantly speed up the ren-
dering process. The focus of this paper is on approximating data-
driven BRDFs with analytical models in less salient regions. We
choose data-driven BRDFs as a baseline as they are expensive to
evaluate and provide accurate measured data.

In this paper, an application of visual saliency models to reduce
the computational and memory bandwidth costs for BRDF evalua-
tion is described. A series of analytic BRDF models were fitted to
the MERL dataset, and applied to several virtual scenes. A saliency
map was generated for each scene and used to evaluate whether
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users notice a difference between an expensive, but accurate, data-
driven BRDF, and a fitted analytic approximation.

The structure of this paper is as follows: Section 2 discusses re-
lated work, Section 3 outlines the methodology that was used to
prepare the scenes and reflectance models, as well as the proce-
dure and design of the perceptual experiment. The results of the
perceptual tests are given in Section 4, discussed in Section 5 and
conclusions are drawn in Section 6.

2. Related Work

This section describes related work from the domains of applica-
tions of visual attention to accelerating rendering, as well as BRDF
models.

2.1. Visual Attention and Level of Detail

Visual attention models attempt to measure Regions of Interest
(ROIs) in an image, either from a Top-Down or Bottom-up perspec-
tive. Top-down models are task focused, and estimate ROIs based
on an objective that the observer is trying to achieve. Bottom-up
models estimate ROIs based on knowledge of the Human Visual
System (HVS) and preattentive features. A good summary of preat-
tentive features can be found in Healy and Enns’ paper [HE12].

The saliency map was proposed by Koch and Ullman [KU87].
Saliency maps are grayscale images, where each pixel value corre-
sponds to how likely an observer is to pay attention to that point in
the scene, the higher the pixel value the higher the saliency of that
point.

Itti and Koch [IKN98] then developed a computational model
of bottom-up visual attention by using a scale-space feature detec-
tion method on an image, that is they subsampled and smoothed
the image to emphasise prominent features or conspicuities within
the image. Their method performed well on a variety of images but
struggled in images with uniform noise. They also had no eye track-
ers or other methods available to validate their model by testing it
with human subjects.

Cater et al. [CCL02] examined whether inattentional blindness
could be used to reduce the quality of portions of a rendered im-
age, in order to reduce computation time. Their experiment verified
their model of task-based visual attention using eye tracking tech-
nology and revealed that users were not able to consistently notice
that areas in the images that were of a reduced quality. Cater et
al. [CCW03] expanded their work and combined task maps and
a contrast sensitivity function to selectively reduce the number of
samples in unimportant regions of an image and regions where er-
rors would be more noticeable. This reduced the resolution of the
image in less salient areas but occasionally stuttered when interpo-
lating between neighbouring frames.

Sundstedt et al. [SCCD04] developed task importance maps,
which allowed users to manually tag objects to be rendered at
higher quality, which would be relevant to a given task. They de-
termined that if sufficiently focused on a task observers would of-
ten fail to see reductions in image quality even if those low qual-
ity regions were within the foveal region. They later expanded this

method [SDL∗05] combining task maps with saliency maps to cre-
ate overall importance maps. Harel et al. introduced the Graph-
Based Visual Saliency (GBVS) model [HKP06], which used nor-
malized activation maps and graph cuts to identify salient regions
within an image, their method combines well with other methods.
However their method favours the centre of an image. Longhurst et
al. [LDC06] introduced a GPU-based system with live anti-aliasing
within a selective rendering framework. Chalmers et al. [CDM-
PdS07] created low quality Snapshots of scenes using rasteriza-
tion and then subdivided the image into salient regions, sampling
important sub-images more frequently to achieve a higher level of
perceived realism.

More recently Koulieris et al. [KDCM14] developed a system
based on top down visual saliency and context based object tagging
to reduce the level of detail of subsurface light transport, refraction
and bump mapping in unimportant regions.

2.2. BRDFs and Fitting

In order to reproduce the appearance of real materials digitally it
is necessary to either have stored data, which represents its appear-
ance, or determined a set of parameters for a BRDF, which will
produce a function that closely matches that data. Finding parame-
ters for representing a specific material is referred to as fitting that
BRDF to the material. This section will focus on the literature re-
lated to acquisition of reflectance data and the fitting of BRDFs to
that data.

Gonioreflectometers have been employed to capture how light
bounces off real world materials. Dana et al. [DVGNK97] gathered
sparse measurements from over 60 material samples, forming the
CUReT database, and fitted them to the Oren-Nayar [ON95] and
Koenderink [KVDS96] BRDFs.

The MERL material database [MPBM03] was the first large
database of densely sampled data-driven isotropic materials, con-
taining a variety of plastics, metals, fabrics and natural materials.
It has been used as a benchmark for comparing the flexibility and
accuracy of new BRDFs as a replacement for acquiring first-hand
data [BSH12] [LKYU12] [BLPW14] [HP15].

Two of the BRDFs used in this study are the Phong BRDF
[Pho75] and the Walter BRDF [WMLT07]. The Phong method sim-
ulates glossy reflections through the use of a cosine lobe raised to
an exponent alongside a diffuse component.

The Walter method is an adaptation of the Cook-Torrance
[CT82] model, designed to simulate reflection and refraction from
rough surfaces through the use of the GGX microfacet distribution
function and a correction to Smith’s shadowing and masking func-
tion [Smi67]. This is based on a physically plausible model of the
underlying surface, and has been used to represent a wide variety
of materials.

Lafortune et al. [LFTG97] developed a system to fit multiple
Phong lobes to measured materials, which proved more effective
than individual lobes however they found this insufficient for some
materials and found that the stability of their fitting function de-
creased as the number of reflectance lobes increased.

Ngan et al. [NDM05] used Sequential Quadratic Programming
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to minimise a squared difference error metric. They evaluated the
ability of seven analytical BRDFs to represent the MERL database.
The Cook-Torrance [CT82], Ashikhmin-Shirley [AS00] and He et
al. [HTSG91] BRDFs fit the data well with minimal errors, while
simpler Blinn-Phong [Bli77] and Lafortune [LFTG97] models per-
formed poorly. The grazing angles were not included in the fitting,
as the data was extrapolated when the MERL materials were cap-
tured. They also found that it was difficult to fit many of the ma-
terials with a single reflectance lobe. The disadvantage of using an
extra reflectance lobe is the increased computation time and fitting
becomes less stable.

Recently a number of BRDFs have been designed, specifically
to fit to the MERL database, Bagher et al. [BSH12] introduced
the Shifted Gamma microfacet Distribution (SGD) function for the
Cook Torrance BRDF [CT82], replacing the traditional Beckmann
distribution. Their reflectance model has a large number of param-
eters but can fit each material in the database with a single re-
flectance lobe. They precompute the values of their shadowing and
masking function for offline rendering and use an approximation
for GPU-based rendering as the precomputed values are slow to
access in real-time applications.

Löw et al. [LKYU12] introduced the ABC BRDF which accu-
rately models glossy surfaces. Brady et al. [BLPW14] proposed
genBRDF which used genetic algorithms to generate new BRDFs
from the MERL database. Holzschuch and Pacanowski’s BRDF
[HP15] designed a physically based BRDF incorporating both re-
flectance and diffraction, which provided accurate fits to the MERL
database and outperformed the SGD distribution for the Cook-
Torrance BRDF, which had previously provided the best fits to the
MERL database.

3. Methodology

This work is motivated by the need to provide better overall per-
formance for scenes that may not require detailed material repre-
sentations at every point in the scenario. In order to demonstrate
the feasibility of such a system an experiment was conducted to
identify perceptual differences amongst analytical and data-driven
BRDFs and hybrids of the two that use the higher quality BRDF in
areas of the region considered more salient.

3.1. Design

The experiment is a subjective rating study, in which participants
were asked to rate the quality of images in comparison to a ground
truth image on a scale of 1 to 100. A hidden reference is also in-
cluded to provide a relation to the ground truth image. The rating
design permits quantification of distance between methods. The
hidden reference enables comparisons with the other stimuli to
identify perceivable differences across them.

The scale used in this experiment offers a sufficient breadth
for participants to give a wide range of ratings. Each participants’
scores are normalised when calculating results in order for effective
comparisons to be made.

The independent variables are the analytical BRDF which is used
to create the mixed images and the scenes used. Both independent

variables follow a within-participant design. The BRDF variable
consists of seven possibilities, three analytical BRDFs, a diffuse
model (D), the Phong BRDF (P) [Pho75] and the Walter BRDF
(W) [WMLT07], three mixed saliency models consisting of the
three chosen BRDFs (SD, SP, SW respectively) mixed with the
data-driven BRDF using a saliency map and a hidden reference
(R). The three scenes were of a kitchen, a conference room, and
a lounge, see Figure 2.

The camera angle, BRDF fitting procedure, sampling algorithm,
saliency model, image resolution, number of samples per pixel and
viewing time for each image were set as constant across all scenes
and reflectance models. The dependent variable is the rating given
to each stimulus.

3.2. Materials

This section describes the preparation of the materials, particularly
the stimuli used in the experiment.

3.2.1. BRDFs

The choice of the data driven BRDF used in these experiments is
primarily motivated by three factors, the number of available mate-
rials, the density of the measurements and the focus of related lit-
erature. Therefore the MERL database was chosen as the reference
BRDF. The Walter BRDF was chosen because it is heavily used
in industry, fits the MERL database well and is a good represen-
tation of micro-facet BRDFs. The Phong BRDF was also chosen
for its prevalence in rendering and its speed. It is purely specular
and is normally combined with a basic lambertian diffuse model to
provide colour.

For the purpose of this experiment a densely populated data
driven BRDF (the MERL database) was chosen as a reference, as
using an analytic model would require an extra level of fitting. For
this purpose Löw’s [LKYU12] fitting function is adapted to fit to
the methods that are used in the perceptual experiment. It was cho-
sen for its ability to fit to simple models rather than to the ABC
method for which it was designed.

This section outlines the procedure that was followed to fit the
analytical BRDFs used in this study to each entry in the MERL
database. Each model had independent parameters for each colour
channel, with the exception of roughness parameters, as surface
micro-structure is independent of the incident wavelength. In the
case of the Walter BRDF, the incident index of refraction was the
same for each colour channel as the incident medium is air and the
difference in refractive index for red, green and blue’s respective
wavelengths is negligible.

The MERL BRDFs have an angular resolution of one degree,
as the materials are isotropic, the reflectance doesn’t vary with the
incident angle, φ, therefore φ = −φ. The density of the tabulated
BRDFs is then 90×90×180 = 1,458,000 entries for each colour
channel.

In order to find parameters for the diffuse, Phong and Walter
BRDFs a nonlinear least-squares regression algorithm is used of
the form:

min
p∈Rn

g(x, p), l < p < u (1)
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(a) Diffuse (b) Phong (c) Walter

(d) Sal-Diffuse (e) Sal-Phong (f) Sal-Walter

Figure 1: The Kitchen scene, rendered with the methods used in the experiment. The zoomed area shows the dragon sculpture, represented
with the chrome MERL material

where x represents the fixed inputs to the function and p, l and u
are vectors of length m containing the parameters for the BRDF
in question and the lower and upper bounds of those parameters,
respectively. The cost function, g, is defined as:

g(ωi, pk) =
n

∑
i=1

E2
i (2)

where Ei is the squared error at the ithdata point on the kth iteration
and ωi is the vector representing the direction of incoming light. To
calculate the error a variant of the formulae described in the paper
of Löw et al. is used.

E = sinθo

√
y2

m − y2
a (3)

where θo is the elevation angle of the view vector ωo, expressed in
spherical coordinates and ym and ya are the weighted outputs of the
material and the analytical BRDF being fitted, respectively.

ym = ln(1+ cosθi fr(ωi,ωo)) (4)

ya = ln(1+ cosθi fr(ωi,ωo, p)) (5)

where θi is the elevation angle of the lighting vector ωi and p is
a vector containing the parameters for the analytical BRDF to be
fitted.

In this weighting function the MERL material and analytical
BRDF are queried and their returned RGB values are multiplied
by the cosine of the incident vector’s elevation, to reduce the effect
of the poor data near grazing angles [NDM05]. Then this result is
logged, in order to put an even weight on specular and non specu-
lar regions. The squared difference of each colour channel is then
calculated.

In order to gather a manageable set of vectors to sample the ma-
terial circles of increasing radii are projected from the unit disk onto
the hemisphere centred around the perfect specular direction. Half
of the projected circles have a small radius (approximately 0.2 on
the unit disk), in order to capture the specular colour and glossiness
and half have a larger radius, to capture the diffuse colour.

3.2.2. Scenes

The scenes chosen were all enclosed, indoor scenes. The three
scenes were of a kitchen, a conference room and a lounge, which
contained 68, 26 and 54 distinct materials, respectively. The refer-
ence images for each scene can be seen in Figure 2 and all images
for the Kitchen scene can be seen in Figure 1 .

3.2.3. Salient Mixture Model

The mixture model stimuli are produced as hybrids of the MERL
materials and analytical BRDFs. The saliency model employed
is Graph-Based Visual Saliency (GBVS) [HKP06]. However this
method is agnostic of the method and any other image-based vi-
sual saliency model could be used. An example saliency map, of
the Kitchen scene, is shown in Figure 3. The mean saliency for
the Conference, Kitchen and Lounge scenes was 0.1918, 0.2097
and 0.2165, respectively, where a value of one would represent
a pixel with 100% salieny and a value of zero would represent a
0% saliency. This means that on average the reference method was
sampled 19.18%, 20.97% and 21.65% of the time for the Confer-
ence, Kitchen and Lounge scenes respectively.

The salient mixture images are created by using the saliency of
the given pixel to weight the BRDF that is sampled. Every time a
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(a) Conference (b) Kitchen (c) Lounge

Figure 2: Reference images, materials rendered using samples from the MERL database

Figure 3: The Kitchen scene with the saliency of each pixel over-
layed in red. Brighter red values represent a higher saliency value
at that pixel.

surface is to be shaded, either the data-driven BRDF or an analytic
model is selected based on sampling the normalised saliency value:

f r =

{
f rDATA if ξ < S(i)
f rANALY T IC otherwise

(6)

where f r is the selected BRDF, f rDATA is the relevent data driven
BRDF, f rANALY T IC is the analytic BRDF (Diffuse, Phong or Wal-
ter), S(i) is the saliency normalized to [0,1] at pixel i, where the
path originated, and ξ is a uniformly distributed random number
between 0 and 1.

3.3. Participants

There were 30 total participants in this experiment, 4 female and
26 male from a variety of academic backgrounds. Only one pos-
sessed expert-level graphics knowledge. All participants had nor-
mal or corrected to normal vision.

3.4. Procedure

The experiment took take place in a room with low ambient light
varying between 8.1 and 35.3 lux and the images viewed on a 55
inch HD monitor with the brightness and contrast set low to avoid

eye fatigue, as per the ITU-R recommendation [Ass03]. The view-
ing distance was 2.1 metres to avoid discomfort, as per the same
recommendations.

A sequential arrangement for the images was followed with the
ground truth image displayed first followed by the stimulus. Both
were displayed for a duration of three seconds [MTM12]. All stim-
uli were shown to all the participants.

This was followed by a five second break for the participants to
rate the image before the next image in the series was displayed.
The order of the images was randomised. Each experiment took
around ten minutes to complete.

4. Results

In this section the results of the perceptual experiment are pre-
sented, analysed and discussed; as timings for rendering both the
hybrid images and the images rendered with each method.

4.1. Timing

In order to assess the efficiency of each method, the time trials were
run on a single CPU core. Timing results were conducted on a sin-
gle thread using an Intel Xeon E5-2620 at 2.00GHz with 16gb of
RAM on the Windows 7 64-bit operating system. The images were
rendered at a resolution of 1920 × 1080 with one direct and one in-
direct lighting bounce. The timings for computing one sample per
pixel are shown in Table 1. The images were rendered for 100 sam-
ples per pixel and the timings were then averaged to give the results
below. The ratio of computation time vs. the reference is shown in
the lower half of Table 1. This illustrates that computational gains
can be expected using the saliency weighted methods.

4.2. Perceptual Tests

In order to analyse the similarity of images to the hidden reference
the ratings given by participants are converted into distances be-
tween their rating of each condition and their rating of the relevant
reference image, as recommended by Mantiuk et al. [MTM12].

di, j,k = ri,re f (k),k − ri, j,k (7)

where d is a distance score, indicating the distance between a given
participant’s raw rating, r, of an image and their rating of the re-
spective reference. Here i, j and k represent the observer, image
and scene respectively.
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Table 1: Time taken (s) for one sample per pixel in a 1920×1080
image for each BRDF in each scene. Below are speedups of time
taken to render with the reference method compared to the relevant
method.

Scene D P W SD SP SW R

Conference 16.27 16.95 18.08 16.69 17.20 17.71 18.63
Kitchen 13.11 13.96 15.00 13.8 14.20 14.69 15.62
Lounge 21.52 21.87 22.72 21.74 22.30 22.71 23.41

Conference 1.146 1.099 1.031 1.116 1.083 1.052 1.000
Kitchen 1.191 1.119 1.041 1.131 1.100 1.063 1.000
Lounge 1.088 1.070 1.030 1.076 1.050 1.030 1.000

Table 2: Mean Z-scores for each scene.

Scene D P W SD SP SW R

Conference 0.670 0.404 0.281 0.009 0.319 0.270 -0.550
Kitchen 1.121 -0.127 -0.012 -0.328 -0.288 -0.440 -0.550
Lounge 1.039 -0.047 0.231 -0.590 -0.501 -0.364 -0.550

Overall 0.943 0.077 0.167 -0.303 -0.157 -0.178 -0.550

The scale used in this study, 1 to 100, is broad and different par-
ticipants have different standards for what a low similarity score is.
Therefore in order to more effectively compare results from differ-
ent participants, Z-scores are calculated, see equation 8. This gives
a measure of the extent to which participants thought a given image
differed from the relevant reference image and sets the mean and
standard deviation of each participant’s ratings across all scenes to
0 and 1, respectively.

zi, j,k =
di, j,k − ¯(di)

σi
(8)

where σi is the standard deviation of the ith observer’s ratings
across all images.

Table 3: Contrast comparisons between BRDFs in each scene.
Coloured groupins indicate no significant differences across meth-
ods. *significant at p < 0.01

Scene BRDF Kendall(W)

Kitchen D W P SP SD SW R 0.227*
Lounge D W P SW SP SD R 0.267*
Conference D P W SP SW SD R 0.213*

All D W P SP SW SD R 0.397*

Figure 4 displays the mean scores for each method across all
scenes. An average negative z-score reveals that a method was
deemed to be above average by the participants, where zero is the
average rating. The scores for the hidden reference are also in-
cluded as participants could have rated the other images as more
similar to the reference than itself. The reference images have
scores of −d̄i

σ
for the ith participant, by definition.

Results were analysed via two-way repeated measures analysis
of variance (ANOVA) in a 7 (method) × 3 (scenes) factorial de-
sign. The main effect of scenes did not violate the assumption of

Figure 4: Aggregate scores and standard deviation for each BRDF
across all participants and scenes

sphericity (Mauchly’s Test of Sphericity, p > 0.05). The main ef-
fect of the scene did not produce significant differences, F(2, 384)
= 3.018, p > 0.05, indicating no significant differences were found
between scenes.

The main effect of method did not violate the assumption of
sphericity (Mauchly’s Test of Sphericity, P > 0.05) and was signif-
icant F(6, 384) = 29.445, p < 0.01. This suggests that the method
used had a significant effect on the participants’ ratings.

Kendall’s co-efficient of agreement [KS39] was computed on the
three scenes and on the collapsed overall scores to identify agree-
ment across participants. Kendall’s co-efficient gives a value of
0 when participants are in complete disagreement and 1 when in
complete agreement. The results are shown in Table 3. The results
are all considered significant (p < 0.01) indicating relative agree-
ment in judging by the participants.

Pairwise comparisons with Bonferroni corrections were con-
ducted to identify significant differences amongst the individual
methods.

The results of these tests can be seen in Table 3. Coloured group-
ings represent methods between which a significant difference was
not found. Results demonstrate groupings of the saliency meth-
ods and the other methods. As expected diffuse by itself performs
poorer than all other methods, the Phong and Walter methods are
grouped together as are all the mixed model methods. These group-
ings represent the lack of a discovered significant difference be-
tween how similar images created using different methods were to
the reference image. Finally the reference scored better than the rest
of the methods, though this difference was not found to be signifi-
cant in some of the scenes, as seen in Table 3.

5. Discussion

The aggregate scores of all participants for each method are dis-
played in Figure 4. Here large negative results indicate a higher rat-
ing was given to the method. The pink bars on the right hand side of
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the figures represent the average ratings of the reference methods,
for the relevant scene. The salient methods are significantly better
than their counterparts, overall, but there was no significant differ-
ence to discriminate amongst them with the current set of captured
data.

An examination of Table 2 shows the results for the Conference
scene differ heavily from the Kitchen and Lounge scenes. In the
conference scene all methods were rated lower than the reference
and pairwise comparisons found a significant difference in the sim-
ilarity ratings of the reference image and the hybrid images and
between the hybrid images and their analytical counterparts, as can
be seen in Table 3. In this experiment the saliency based methods
did not exhibit significant difference in every scene and the overall
average, suggesting they are of a similar quality. In addition Phong
and Walter exhibited no significant difference while Diffuse has no
correlation with any other method except in the conference scene.

The timings in Table 1 show that a decrease in computation cost
can be expected across all methods. As can be seen in Table 2 the
salient diffuse method achieved the greatest speed ups of the hybrid
methods with savings of 7.6%, 11.6% and 13.1% for an average
speed up of 10.8%. The Phong and Walter methods also outper-
formed the reference with average speed ups of 7.8% and 4.8%
respectively. As Table 3 shows, visual perception of the scene is
not significantly affected.

6. Conclusion and Future Work

This work has investigated whether analytical BRDFs can be sub-
stituted for data-driven models in a rendering pipeline without a
noticeable effect to an observer. Three scenes and seven methods
for representing materials were compared through the utilisation
of a subjective study and statistical analysis, in two of the three
scenes examined, significant differences were not found between
the reference image and in all scenes the hybrids outperformed their
non-salient counterparts. All three salient methods provided an im-
provement in computational performance with salient diffuse pro-
viding the largest mean computational saving (10.8%). This pro-
vides an indication that visual saliency can be used to improve
computational performance by replacing expensive materials with
cheaper analytic models in less visually important regions of the
image.

This work could be expanded to approximate high qual-
ity BRDFs that incorporate physical approximations of diffrac-
tion [LKYU12] [HP15] and the polarisation of incident light
[HTSG91]. These functions are more mathematically complicated
and in some cases [HP15] require precomputation of the geometric
shadowing and masking functions.
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