
EG UK Computer Graphics & Visual Computing (2015)
Rita Borgo, Cagatay Turkay (Editors)

GKS-94 to SVG: Some Reflections on the Evolution of
Standards for 2D Graphics

D. A. Duce1 and F.R.A. Hopgood2

1Department of Computing and Communication Technologies, Oxford Brookes University, UK
2Retired, UK

Abstract
Activities to define international standards for computer graphics, in particular through ISO/IEC, started in the
1970s. The advent of the World Wide Web has brought new requirements and opportunities for standardization
and now a variety of bodies including ISO/IEC and the World Wide Web Consortium (W3C) promulgate standards
in this space. This paper takes a historical look at one of the early ISO/IEC standards for 2D graphics, the Graph-
ical Kernel System (GKS) and compares key concepts and approaches in this standard (as revised in 1994) with
concepts and approaches in the W3C Recommendation for Scalable Vector Graphics (SVG). The paper reflects on
successes as well as lost opportunities.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Standards

1. Introduction

The Graphical Kernel System (GKS) was the first ISO/IEC
international standard for computer graphics and was pub-
lished in 1985 [GKS85]. This was followed by other stan-
dards including the Computer Graphics Metafile (CGM),
the Computer Graphics Interface (CGI), a 3D extension of
GKS (GKS-3D) and the Programmers’ Hierarchical Graph-
ics System (PHIGS). PHIGS was a 3D system providing
a modelling capability as well as a viewing capability and
was aimed at environments requiring rapid modification of
graphical data describing geometrically related objects. At
a more conceptual level, the Computer Graphics Reference
Model was published in 1992. For an overview of graph-
ics standards of this period see [AD90]. Following ISO/IEC
procedures GKS was subject to periodic review and it was
revised resulting in the publication of the second edition in
November 1994 [GKS94].

Meanwhile, the World Wide Web was launched in
1989/90. Native vector graphics support was unavailable
in the early days and plugins only worked on a subset of
browsers, so images were often used instead. This changed
somewhat with the advent of the Virtual Reality Markup
Language in November 1994 (published as an ISO/IEC stan-
dard after extensive revision in 1997 [VRM97]). Also, work
started on a WebCGM profile as early as 1995 and became

a W3C Recommendation early in 1999. The current (at the
time of writing) revision was published in 2010 [web10].

It was clear from the early days that a vector graphics for-
mat specifically for the web would be a useful addition to the
then-available set of markup languages. Chris Lilley at the
World Wide Web Consortium (W3C) wrote a requirements
document for a scalable graphics language in 1996 [svga]
and drawing on ideas from a number of input documents the
W3C Scalable Vector Graphics Working Group was set up
and produced a first draft document on 11 February 1999
[svgb]. Historically the main influences were PGML from
Adobe, IBM, Netscape and Sun Microsystems (based on the
imaging model of PostScript and PDF) and VML from Au-
todesk, Inc., Hewlett-Packard Company, Macromedia, Inc.,
Microsoft Corporation and Visio Corporation. Key features
of the first draft of SVG were the use of XML, integration
with style sheets and use of the DOM (Document Object
Model) to provide a scripting interface to manipulate doc-
ument content. SVG then went through an extensive revi-
sion process until W3C published the first SVG standard (a
W3C Recommendation in their terminology) on 4 Septem-
ber 2001 [svg01a] Since that time, SVG has been further
revised. The current W3C Recommendation is version 1.1.
and work on SVG2 is in progress. A comparison of SVG1.0
and WebCGM appeared in [DHH02].

c© The Eurographics Association 2015.

DOI: 10.2312/cgvc.20151238

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/cgvc.20151238

D.A. Duce & F.R.A. Hopgood / GKS-94 to SVG

Both ISO/IEC and W3C develop standards through con-
sensus building, the former amongst national standards mak-
ing bodies, the latter through their membership. Software
and hardware vendors were represented in both the GKS and
SVG committees, though it is fair to say that user organisa-
tions were better represented in the former than the latter.
Participation by academics was low in both cases.

Although GKS-94 and SVG have very different origins,
and indeed purposes, this paper explores some aspects of the
functionality of each and how ideas have evolved over this
period. It offers an historical perspective, but also contains
some reflections on both strengths and weaknesses of SVG
when seen in the context of GKS-94. The primary motiva-
tion for this paper is to see how ideas in 2D vector graphics
have evolved from GKS to SVG, what new insights have
been gained and also what has been lost. A secondary moti-
vation is a plea to not loose sight of the early standardization
efforts in the field and to encourage the digital preservation
of appropriate documents.

The next section gives some context about the standard-
ization processes of ISO/IEC and W3C. The paper then sets
out some historical context then gives brief overviews of
GKS-94 and SVG. The paper concludes with reflections on
key aspects of these.

2. Historical Context

The first edition of GKS was published in 1985 though de-
velopment of the computer graphics standards for both 2D
and 3D graphics had started in the mid 1970s. In those days
it was commonplace for applications to use multiple displays
for a single task, for displays to have a wide range of differ-
ent characteristics and a wide variety of input devices were
in use (for example light pens and tracker balls). Vector dis-
plays were widespread, raster displays were both rare and
expensive. Storage tube devices (such as the Tektronix 4010
and 4014) were popular graphical output devices, and for
the time were relatively low cost. Accumulated images could
only be moved by flashing and redrawing the whole screen.
Continuously refreshed vector displays, such as the Imlac
PDS1 were much richer in capabilities, but much more ex-
pensive.

It was not unusual for a new graphics package to be devel-
oped, or an existing package to be extended, whenever a new
device or new hardware was purchased in order to provide
convenient access to device features. Providing abstractions
to support device independence was an important issue that
the early graphics standards sought to address. The worksta-
tion concept in GKS was developed with this in mind, a way
of representing a device with certain characteristics to which
output could be tailored. It is perhaps true that engineering
and scientific applications of computer graphics were domi-
nant.

During the late 1980s and 1990s this position changed

World CoordinatesApplication

NDC picture

Picture-part store

Selection for display
NDC

Fan out

Selection view 1

View 1

View 1

Selection view 2

View 2

View 2

Device

Selection view3

View 3

View 3

Logical

LDC

DC

Realized picture

Figure 1: GKS-94 Architecture.

considerably. Computing evolved from mainframes with at-
tached peripherals to high performance individual worksta-
tions with raster graphics capability and thence to laptops
and mobile devices in the 2000s along with high-end large
scale displays and immersive environments. Operating sys-
tems evolved to support multi-window displays through win-
dow management systems. In the 1990s it was commonplace
for a single display to be used per task and for the mouse to
be the most common input device.

3. An Overview of GKS-94

An early event in the revision of the 1985 edition of the GKS
standard was a GKS Review Workshop held in September
1987 [gks87]. This explored the need to revise GKS in the
light of subsequent developments in other standards includ-
ing GKS-3D, PHIGS and work on a Computer Graphics
Reference Model initiated in July 1985 [cgr]. Particular ar-
eas of attention at that workshop were segments and storage,
primitives, and input.

An overview of GKS-94 at the end of the review process
was published by Brodlie, Damnjanovic, Duce and Hop-
good [BDDH95]. This highlighted a number of areas in-
cluding: normalized device coordinate (NDC) picture, prim-
itive classes, output attributes, viewing, windowing environ-
ments, and input.

The overall architecture of GKS-94 is shown in figure 1.

c© The Eurographics Association 2015.

28

D.A. Duce & F.R.A. Hopgood / GKS-94 to SVG

The central part of GKS-94 was the normalized device co-
ordinate (NDC) picture. Primitives defined in world coordi-
nates by the application were transformed to NDC by a nor-
malization transformation (a window to viewport transfor-
mation). Primitives could be stored at this level in a picture
part store and then assembled to form a scene in the NDC
picture. A key property of the NDC picture was that it’s con-
tents were well-defined and hence the NDC picture could be
exported to an NDC metafile (Part 2 of the standard) and an
NDC metafile could be inserted into the NDC picture. Pic-
ture parts could be archived from a picture part archive (Part
4 of the standard) and retrieved from an archive.

Workstations could then view the NDC picture through
selection criteria (determining which primitives were to be
displayed on which workstation and a coordinate transfor-
mation, the workstation transformation. This clear separa-
tion of levels, world then NDC picture, leading to the real-
ized picture, plus the concept of well-defined picture content
and storage, were consequences of the Computer Graphics
Reference Model and addressed shortcomings that had been
identified in GKS-85.

GKS-94 also provided a much richer set of output primi-
tives than GKS-85, arranged in classes, including curve (set
of polyline, set of NURB, set of conic sections), marker, area
(set of fill area, set of closed NURB, set of elliptic sector, set
of elliptic segment, set of elliptic disc), character (text), im-
age (cell array) and the design primitive. The design primi-
tive drew inspiration from PostScript and some formal mod-
elling of the GKS primitives [DF86] and was based on the
idea of extruding a tiling through a stencil, but in a recursive
way so that tilings could be constructed recursively from de-
sign primitives.

The attributes of primitives in GKS-94 were organized in
four classes: identification, NDC, source, logical. Another
key idea in GKS-94 was the idea that the attributes of prim-
itives could be determined by a binding process operating
over the different levels in the model. For example, the ge-
ometry of a primitive would be bound at the NDC picture
level as would various text attributes such as TEXT HEIGHT
and TEXT ALIGNMENT. The colour of a primitive might
be bound at the NDC level (indicating that the primitive
should be rendered in the same colour on different devices,
or in other words that colour had some specific meaning for
the primitive), or alternatively binding might be deferred to
the workstation (or logical picture level) in which case a bun-
dle index bound at the NDC level would determine attribute
values at the logical picture level by lookup in a workstation-
specific bundle table. Taking the curve primitive as an ex-
ample, the source attributes consisted of the bundle index
(CURVE INDEX) and a set of attribute source flags (ASFs)
which specified whether the logical attributes of the prim-
itive (CURVE TYPE, CURVEWIDTH SCALE FACTOR,
CURVE COLOUR SPECIFIER) were to be determined by
a logical attribute bound to the primitive at NDC level or

by the CURVE INDEX bound at NDC level. This approach
provided a flexible mechanism for defining, on a primitive
by primitive basis, which attributes were to be workstation
dependent (through the bundle index mechanism) or work-
station independent (through logical attributes bound at the
NDC level). In other words this provided control over at-
tributes that were used to differentiate one set of primitives
of the same class from another, in a workstation dependent
way, perhaps using colour on a workstation capable of colour
output, or curve type (solid, dashed, etc.) on a workstation
with only a monochrome capability.

Another significant enhancement to GKS-85 was the
functionality to support clipping. In GKS-85 a clipping indi-
cator was associated with each normalization transformation
and the application could choose whether or not to clip prim-
itives to the rectangular boundary defined by the transforma-
tion’s viewport. This was generalised considerably in GKS-
94, perhaps as a consequence of advances in both clipping
algorithms and hardware performance and the functionality
in systems such as PostScript (which permitted clipping to a
clip path constructed from line and curve segments [Ado88].
In GKS-94 all primitives had an associated SCISSOR SET
attribute, consisting of a set of named scissors. A scissor con-
sisted of a clipping indicator, clipping rectangle set, shield-
ing indicator and shielding rectangle set. Clipping rectangles
and shielding rectangles were defined in NDC space. Func-
tionality was also included to add and remove sets of scissors
from the NDC picture. A scissor mode determined whether
scissoring took place after the global and local transforma-
tions had been applied but before the primitive was dis-
patched to workstations, or was deferred until after the work-
station transformation had been applied. In some respects
this was more general than the PostScript model (shielding),
but in others less general (description of boundaries).

A set of names (rather than a single name) could be
associated with a primitive at NDC level and this set of
names could be used, together with application-specified se-
lection criteria, to determine which primitives should be dis-
played on which workstations, which primitives were to be
highlighted or pickable by a given input device, etc. Selec-
tion criteria were constructed from boolean operators (not,
and, or) and set-theoretic operators (contains(NameSet),
isin(NameSet), equals(NameSet), Selectall and Rejectall).
Thus application-defined names played a central role in con-
trolling GKS-94.

The input functionality was based on the notion of logical
input devices, devices that could return values of particular
types (LOCATOR, VALUATOR, CHOICE, PICK, STRING
and COMPOSITE) and could operate in one of three modes
(REQUEST, SAMPLE and EVENT). However, since the in-
put model in SVG is very different to this model, this aspect
of the GKS-94 functionality will not be considered further
in this paper.

c© The Eurographics Association 2015.

29

D.A. Duce & F.R.A. Hopgood / GKS-94 to SVG

4. An Overview of SVG

4.1. Markup language

This description is based on the current W3C Recommen-
dation, SVG version 1.1 (Second edition) [SVG01b]. Work
is in progress to define SVG version 2, but this is still very
much a work in progress at the time of writing and is not a
stable basis for comparison.

The SVG document describes five basic concepts: graphi-
cal objects, symbols, raster effects, fonts and animation. This
section is structured slightly differently, starting with the un-
derlying model and coordinate systems and focuses on those
aspects of SVG that have a natural counterparts in GKS-94.

SVG is expressed as a markup language conforming to
the rules of XML. Nowadays SVG can either be used as
a stand-alone markup language, perhaps linked from doc-
uments in other markup languages or as a set of element
tags within an HTML5 document for embedded graphical
content. Being based on XML, an SVG document is natu-
rally tree-structured. Full advantage is taken of this in SVG
through the group element (g) which can contain graphical
content and be nested to arbitrary depth. Rendering in SVG
is based on the painter’s model and the tree-structure of an
SVG document defines a rendering order (though groups are
first rendered to an offscreen canvas to which group-level
effects are applied).

In the general case, SVG output is rendered by an SVG
user agent into a viewport which is determined by negotation
with a parent user agent. In a simple case, width and height
attributes of the root svg element determine the width and
height of this window and an initial user coordinate system
in which one unit in the user coordinate system is one pixel
in the viewport. More complex usage allows a viewBox to
be defined (as min x, min y and width and height attributes)
which establishes a coordinate system that is mapped to the
viewport and also allows for nested SVG elements and con-
trol over the mapping when the aspect ratio of viewBox and
viewport differ. A feature of SVG is that the origin of the co-
ordinate system is the top left hand corner of the viewport, x
increases left-to-right and y increases top-to-bottom.

2D coordinate transformations can be applied to groups
of objects as well as individual objects and include the usual
set of translation, scaling, rotation and skew as well as spec-
ification by a 3× 2 matrix. Nested g elements are one way
to specify a sequence of transformations.

Graphical objects in SVG fall into three classes, shapes,
text and images. The shapes class provides elements to de-
fine basic shapes such as rectangles, circles, ellipses and gen-
eral shapes using a path element. The text primitive provides
a rich set of functionality for rendering text content, but the
details will not be elaborated further. The image primitive
indicates that the contents of a complete file are to be ren-
dered into a given rectangle within the current user coordi-
nate system. Conforming SVG viewers are required to sup-

Figure 2: Output from path element.

port at least JPEG, PNG and SVG format files. Thus SVG
files can be nested through the image element.

The path primitive is the most general way of specifying
geometry. An attribute of the primitive, the ‘d’ attribute, is a
string defining the outline of the shape. The string can con-
tain moveto, lineto, curve, elliptical arcs and closepath spec-
ifiers. Each specifier is denoted by a single letter (M, L, etc.)
followed by coordinate parameters. There are shorthands for
horizontal and vertical lines and corresponding upper and
lower case letters denote absolute and relative coordinate
positions. Quadratic and cubic Bezier curves may be spec-
ified (Q, C) and there is a shorthand for piecewise continu-
ous curves (T, S). The interior of a shape may be filled and
the boundary stroked, in a variety of ways. Some function-
ality in SVG requires distance-along-a-path to be computed.
User-agents are advised to use approximation algorithms for
this in complex cases (e.g. elliptical arcs), though an attribute
is provided to enable the author to specify a precise path
length. An example path is shown below. The corresponding
scene is shown in figure 2. This shape was used as a run-
ning example in [HDGS83], with an outline represented by
a polyline.

<path fill="red"
d="M 0 312c40 48 120-32 160-6
c0 0 5 4 10-3c10-103 50-83 90-42
c0 0 20 12 30 7c-2 12-18 17-40 17
c-55-2-40 25-20 35c30 20 35 65-30 71
c-50 4-170 4-200-79 z"/>

Collections of shapes may be reused through the defs,
symbol, use mechanism. Elements within a defs element or
a symbol element are treated as definitions and are not ren-
dered. Group (g) elements may also be used within a defs
element to create a similar effect to symbol. The use ele-
ment instantiates a symbol at a given position and with an
optional transformation.

Clip paths can be specified by the clipPath element and
may include shape as well as text elements and use elements.
The example below, figure 3, shows a red duck, clipped to
the outline of the text ‘GKS’ displayed on top of the same
duck path element filled in green. The path definitions are
abbreviated to ’...’.

<clipPath id="myClip">
<text x="0" y="400" style="font-size:220px;

font-family:Calibri;

c© The Eurographics Association 2015.

30

D.A. Duce & F.R.A. Hopgood / GKS-94 to SVG

Figure 3: Clipping to a text element.

font-weight:bold">GKS</text></clipPath>
<path fill="green" d="..."/>
<path style="clip-path:url(#myClip)" fill="red"

d="..."/>

All graphical output elements may have an id attribute
which assigns a unique name to the element (within the
scope of the document) and a class attribute which assigns a
name or set of names to an element. The appearance of SVG
primitives is determined by a rich set of properties that deter-
mine the appearance of interior filling (e.g. by solid colour,
gradient colour, patterns) and boundary strokes (e.g. stroke
width, colour, shape to be used at end of open subpaths).
Determining the values of these properties for a given prim-
itive uses Cascading Style Sheets (CSS) as well as a set of
presentation attributes (XML attributes, such as color, of the
elements that represent graphical objects such as path, circle
and text).

CSS styling of SVG documents is very similar to CSS
styling of HTML documents. Appearance properties are
specified by declarations (name: value pairs). A CSS rule
takes the form selector {declarations} where the selector
may operate over document structure (e.g. g>path mean-
ing all path elements with a g element parent), class val-
ues (path.cpu meaning all path elements with class at-
tributes containing the class name cpu), attribute values (cir-
cle[r=5] all circles with radius 5) and identification attribute
(path#workstation, the path element with an id attribute
whose value is workstation). CSS rules may be grouped
into stylesheets and style may cascade from stylesheet to
stylesheet starting with browser defaults, then internal and
external stylesheets and finally inline style (specified by a
style attribute on an SVG element).

A simple example of CSS styling is shown below. The
values of the class attributes on the two path primitives de-
termine which style is to be applied. Again path definitions
have been omitted. This example also illustrates the g ele-
ment and the transformation attribute. The output is shown
in figure 4

<style>
path.pi1 {stroke:black; stroke-width:5;

fill:green}
path.pi2 {stroke:blue; stroke-width:5;

fill:orange; opacity:0.5}
</style>
<path class="pi1" d="..."/>

Figure 4: Simple CSS Styling.

Figure 5: Simple CSS Media Queries.

<g transform="translate(50,362) rotate(-45)
translate(0,-312)">

<path class="pi2" d="..."/>
</g>

CSS supports so-called media queries [CSS12]. For ex-
ample one can write selectors such as media screen and
(max-width: 300px) meaning that the rule will only be ap-
plied if the media type is screen and the maximum width
feature has value 300 pixels. A wide range of media types
and media features are recognised. To illustrate this with a
simple example, if the style element in the example above is
changed to that shown below, if the screen width is initially
less than 400px, the two ducks will be shown in grey as in
figure 5. If the screen width is more than 400px the appear-
ance is the same as for the previous example (figure 4). If the
scene is displayed in a web browser, expanding and shrink-
ing the browser window results in a transition from one to
the other.

@media screen and (min-width:401px) {
path.pi1 {stroke:black; stroke-width:5;

fill:green}
path.pi2 {stroke:blue; stroke-width:5;

fill:orange; opacity:0.5}
}
@media screen and (max-width:400px) {
path.pi1 {stroke:none; fill:gray}
path.pi2 {stroke:none; fill:black;

opacity:0.2}
}

To have a working implementation quickly, a major mis-

c© The Eurographics Association 2015.

31

D.A. Duce & F.R.A. Hopgood / GKS-94 to SVG

take was the way in which presentation attributes and CSS
styling interact. Styling always takes precedence over pre-
sentation attributes. Hence mixing the two forms of property
control can produce unexpected results and the W3C Rec-
ommendation warns against doing this. This has caused sig-
nificant problems ever since.

An important feature of SVG is the declarative animation
functionality. Relatively simple XML markup can be used to
animate a wide range of properties including attributes such
as transformations, object sizes and start positions, appear-
ance properties such as colour, opacity, and geometry (the d
attribute of the path primitive). Animations can be chained
so that one starts when another ends, and can be initiated
by user generated events such as clicking on a graphical ob-
ject. The animation functionality being represented by XML
markup, it can be readily generated by programme or XSLT
stylesheet.

Another consequence of XML markup is that SVG con-
tent can be dynamically created and modified by script-
ing (e.g. in JavaScript) using the Document Object Model
(DOM) interface, which provides the ability to modify ele-
ment content, element attributes, styling properties and the
structure of the scene tree (e.g. adding, removing elements,
moving content from place to place) together with an SVG
specific DOM.

4.2. DOM API and SVG applications

The Document Object Model (DOM) provides a set of inter-
faces to enable programming languages such as JavaScript
and Java to create and modify the content of an SVG docu-
ment. The DOM can be thought of as presenting a view of
the document as a tree-structured collection of objects each
presenting an interface dependent on the object type, for ex-
ample be it an object representing an element or an attribute.
There are also methods to traverse a tree and to locate con-
tent within a tree (e.g. selecting objects by the type of ele-
ment they represent (e.g. path element), or by the value of an
ID attribute which is unique with a document. Some DOM
interfaces are shared across all XML documents (e.g. to ob-
tain the type of a node, or a node’s parent or child nodes),
others are specific to SVG (e.g. the interface to path data).
The SVG specific interfaces are defined in the SVG 1.1 W3C
Recommendation, the generic XML DOM interfaces are de-
fined in a different W3C Recommendation.

Interestingly, the SVG DOM in SVG1.1 is defined in a
scripting/programming language neutral way, using the In-
terface Definition Language (IDL) from the Object Manage-
ment Group (OMG). The SVG1.1. Recommendation also
contains bindings to Java and ECMAScript (JavaScript). The
language specific bindings follow the language-independent
interface definition in IDL, making best use of the features
and styles of the programming language concered. This mir-
rors the separation of the language-independent definition of

the API in GKS and the separate language binding standards
that provided bindings to specific programming languages.

There are a variety of tools and toolkits that depend on the
DOM API. Inkscape is a professional quality vector graph-
ics editor which provides a user interface for creating and
modifying SVG content. Illustration tools such as Adobe Il-
lustrator can import and export content in SVG documents.
Raphael.js is a small JavaScript library to facilitate the cre-
ation and modification of SVG content. There is also an SVG
plugin for the popular jQuery JavaScript library that serves
a similar purpose. The Apache Batik toolkit is a Java toolkit
for applications to use SVG in applications or applets.

Finally, the JavaScript visualization toolkit, D3 [BOH11],
uses SVG as a rendering engine and depends on the ability
to dynamically create and modify SVG content through the
DOM API.

5. HTML 5 Canvas

Although beyond the scope of this paper, brief mention
will be made of the HTML5 canvas element and the 2D
API which is a popular way to create 2D web graphics for
amongst some users. HTML states that‘The canvas element
provides scripts with a resolution-dependent bitmap canvas,
which can be used for rendering graphs, game graphics, art,
or other visual images on the fly’. W3C is in the process of
standardizing an API providing objects, methods and prop-
erties to draw and manipulate graphics on a canvas drawing
surface, called HTML Canvas 2D Context. At the time of
writing this was at Candidate Recommendation stage though
the main browsers have supported earlier versions for some
time [can15]. Canvas can draw rectangles, text, paths and
images. Canvas path specification bears a resemblance to the
SVG element, though the attribute set in canvas is much less
rich. Canvas can be thought of as a pixel level API rather
than a vector graphics API such as the SVG DOM provides.

6. Reflections

6.1. Picture structure

Taken overall, there are similiarities between the architec-
tures of GKS-94 and SVG. The terminology is different,
SVG doesn’t use the terminology of a workstation, but it
does allow appearance to be tailored to device capabilities
and, unlike GKS-94, to user preferences. SVG through the
CSS styling mechanism supports the idea that appearance
may need to be tailored to device capabilities, through the
use of CSS Media Queries, though the range of media fea-
tures in SVG isn’t and would not be expected to be, the same
as the set of workstation capabilities recognised in the GKS-
94 workstation description table. Also in SVG, scripting can
be used to control the content of stylesheets. CSS also pro-
vides, through the cascade, mechanisms for users to tailor
appearance to their preferences (for example for accessibil-
ity purposes).

c© The Eurographics Association 2015.

32

D.A. Duce & F.R.A. Hopgood / GKS-94 to SVG

The SVG designers were not consciously trying to re-
late SVG to the Computer Graphics Reference Model as the
GKS-94 designers were. However, SVG does have a well-
defined scene structure, being a tree of primitives with a
well-defined ordering (the SVG painter’s model). In GKS-
94 the scene structure was the NDC picture which was a se-
quence of primitives. The SVG scene structure can be modi-
fied through scripting using the DOM interface in very flex-
ible ways, but the scene structure cannot be modified by
declarative animation. In GKS-94 the API provided a RE-
ORDER NDC PICTURE function to move a subsequence
of primitives from one position in the sequence to another.
In the authors’ experience moving a sequence of primitives
from one part of the tree to another is a frequent require-
ment in the SVG animations he has developed. Being able
to change the order on the fly in a declarative way would be
a valuable addition to SVG.

Another important feature of GKS-94 was the picture part
store. In SVG the symbol element and the defs element cou-
pled with g elements provide a very flexible storage capabil-
ity with similar functionality and intent. Symbols and g ele-
ments can be named using id attributes (which gives a unique
name within a document) and can be referenced from other
documents using hyperlinking. Animations that the authors
have created make extensive use of stores, though these may
be held in an XSLT transformation used to generate an SVG
document rather than in the document itself.

GKS-94 distinguished a local transformation and a global
transformation. This distinction is not present in SVG,
though the tree-structured nature of the SVG scene does en-
able hierarchical scene modelling with different transforma-
tions applied and composed at each level. In this respect,
SVG is closer to PHIGS.

More will be said about attribute binding in a moment but
it is interesting to note here that GKS-94 allowed delayed
binding of appearance attributes to the workstation level, but
did not allow delayed binding of geometry. There has been
work on Constraint SVG by Meyer et al. [MMM04] which
allowed parametrised geometry and constraints on the pa-
rameters to be defined and then used a constraint solver to
instantiate the parameter values. In a sense though late bind-
ing is possible with SVG scripting, a primitive can be defined
with dummy values and then a script can provide the actual
values. This cannot, however, be done in a declarative way.
One might wish for a stronger form of script/declarative an-
imation duality. SVG animation does allow a form of late
binding through the value indefinite, meaning not yet bound.
A value could, for example, be bound using a DOM method.

6.2. Primitives

SVG has a much richer text primitive than GKS-94. A par-
ticularly nice feature in SVG1.1 was the ability to provide
user-defined fonts in which glyphs were just SVG fragments.

Hopgood constructed an animation of Australian road trains
which were essentially represented by strings of characters,
each character denoting a particular kind of truck with the
associated glyph being a graphical representation (which
could be animated). Using the SVG animate text along path
capability to move the trains around gave a very compact
representation of the animation.

The primitive set in SVG has less structure than the GKS-
94 set and in some ways is less rich. There are however sim-
ilarities, given the origins of both the GKS-94 design prim-
itive and the SVG1.1 path primitive in PostScript and PDF.
GKS-94 went further than SVG in the types of curves al-
lowed, including NURB curves.

The GKS-94 design primitive had associated stencil and
tiling stores. SVG does not have a sub-path store, equivalent
to the stencil store. Such a feature would be a useful addition
to SVG to permit the re-use of complex geometry.

6.3. Attributes

In GKS-94 appearance attributes could be specified at NDC
picture level or could be resolved at workstation level
through the use of an attribute index and a workstation de-
pendent bundle table. Which mechanism to use could be
specified for each attribute of a particular primitive through
attribute source flags. SVG although it has CSS style con-
trol and individual presentation attributes, does not use them
in this way. That said, CSS can be used to mimic NDC
and workstation control, by regarding a media specific style
sheet as workstation control and a general stylesheet (ap-
plying to all media) as NDC control. In this sense class at-
tributes in CSS encompass both GKS namesets and table
bundle indices.

There is no control of the kind present in GKS-94 and fun-
damentally there is no recognition that properties controlled
by attributes might be an intrinsic property of the primitive
itself or a property that can be bound later, in a variety of
ways, to differentiate one group of primitives from another.

There is an interesting parallel between namesets as used
in GKS-94 and class attributes as used in SVG. Both enable
applications to associate a set of names with a primitive. De-
velopments in the semantic web have identified one use of
class attributes to capture concepts that are meaningful at an
application level - one example of this is the use of microfor-
mats as class names. Damnjanovic et al. [DDR93] did some
proof-of-concept work with namesets and filters in GKS-94
which used namesets in this kind of way.

Filters in GKS-94 were constructed from set-theoretic and
boolean operators over sets of names. CSS selectors allow
selectors of the form path.class1.class2 (selecting a path el-
ement whose class attribute contains both class1 and class2)
and path.class1, path.class2 (selecting a path element whose
class attribute contains either class1 or class2 (or both)). CSS
version 3 also supports a :not(selector) operator.

c© The Eurographics Association 2015.

33

D.A. Duce & F.R.A. Hopgood / GKS-94 to SVG

6.4. Final thoughts

The needs of graphics standards change dramatically over
time due to the changing environment. In the early days of
graphics standardization, the environment was more stand-
alone and the graphics system could assume more control
of the environment. A graphics system might well have had
exclusive use of a graphical output device. The capabilities
of the most common devices were limited and it was impor-
tant to minimize factors such as the number of times a screen
should be rewritten. Nowadays devices have much richer ca-
pabilities but at the same time the environment is now con-
strained by other agents such as the operating system, win-
dow manager, capabilities of graphics cards etc. SVG is most
commonly displayed inside a web browser and in that envi-
ronment it has to co-exist with other standards, which may
well have overlapping concerns and competing demands. As
a consequence standards nowadays seem to have shorter life-
times and are subject to many constraints, the interface to the
user and accessibility concerns being but two at the current
time.

Separating style and content is a contentious issue. It ap-
pears relatively clear for textual content (e.g. HTML/CSS),
but the separation works less well for graphical content, es-
pecially in a mixed environment including text, multimedia
and graphics aimed at styling content in general (incuding
animation effects). A new road map is needed for this area.
In the case of graphics, ISO/IEC standards did endeavour to
define a clear separation between cases where the same ap-
pearance property is used for differentiation (and the choice
of value is to an extent arbitrary) and where it is an intrin-
sic part of the primitive (and the choice of value should be
immutable). It could be argued that authors of web graphics
need to distinguish similar cases through separate markup
constructs. In SVG if presentation attributes always had
higher priority than CSS defined values this would have been
achievable, but that was not the approach incorporated in the
W3C Recommendation. Another area that remains concep-
tually problematical, though not one that is explored here,
is the markup for the mathematical content. The MathML
W3C Recommendation is now Version 3.0 Second Edition,
yet it seems that the content/style issue applies here too, es-
pecially when mathematical content is mixed with textual
and graphical content.

In many respects the level at which SVG operates is much
closer to the device than was the case for some of the earlier
standards. Constraint SVG [MMM04] has been mentioned
earlier in this paper. A higher-level constraint standard (2D
and 3D) with a clear separation between the CGRM layers,
might help to clarity how SVG and CSS should develop.

References

[AD90] ARNOLD D., DUCE D.: ISO Standards for Computer
Graphics. Butterworths, 1990. ISBN 0408040173. 1

[Ado88] ADOBE SYSTEMS: PostScript Language Program De-
sign. Addison-Wesley, 1988. 3

[BDDH95] BRODLIE K. W., DAMNJANOVIC L. B., DUCE

D. A., HOPGOOD F. R. A.: Gks-94: An overview. IEEE Com-
puter Graphics and Applications 15 (1995), 64–71. 2

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-
driven documents. IEEE Transactions on Visualization and Com-
puter Graphics (Proc. InfoVis) 17, 12 (2011), 2301–2309. 6

[can15] W3C: HTML Canvas 2d Context (W3C Candidate Rec-
ommendation), July 2015. 6

[cgr] Introduction to the computer graphics reference model.
http://www.gscassociates.com/pubs/cgrmintr.html.
Contains dates of significant CGRM papers. 2

[CSS12] WORLD WIDE WEB CONSORTIUM (W3C): Media
Queries, June 2012. 5

[DDR93] DAMNJANOVIC L., DUCE D., ROBINSON S.: GKS-
9x: Some Implementation Considerations. Computer Graphics
Forum 12, 3 (1993), C–295 – C–313. 7

[DF86] DUCE D., FIELDING E.: Towards a Formal Specifica-
tion of the GKS Output Primitives. In Eurographics ’86 (1986),
Requicha A., (Ed.), North-Holland, pp. 307–323. 3

[DHH02] DUCE D., HERMAN I., HOPGOOD B.: Web 2D Graph-
ics File Formats. Computer Graphics Forum 21, 1 (2002), 43–64.
1

[GKS85] ISO/IEC 7942-1:1985(EN): Information technology
- Computer graphics and image processing - Graphical Kernel
System (GKS) - Part 1: Functional description, 1985. 1

[gks87] GKS Review Workshop. Computer Graphics Forum 6
(1987), 367–369. 2

[GKS94] ISO/IEC 7942-1:1994(EN): Information technology
- Computer graphics and image processing - Graphical Kernel
System (GKS) - Part 1: Functional description, 1994. 1

[HDGS83] HOPGOOD F., DUCE D., GALLOP J., SUTCLIFFE

D.: Introduction to the Graphical Kernel System, GKS. Aca-
demic Press, 1983. Second Edition 1986. Translated into French,
Japanese and Italian. 4

[MMM04] MCCORMACK C. L., MARRIOTT K., MEYER B.:
Constraint svg. In Proceedings of the 13th International World
Wide Web Conference (New York, NY, USA, 2004), WWW Alt.
’04, ACM, pp. 310–311. 7, 8

[svga] The secret origin of svg. http://www.w3.org/
Graphics/SVG/WG/wiki/Secret_Origin_of_SVG. Ac-
cessed 8 June 2015. 1

[svgb] The world wide web consortium releases first working
draft of scalable vector graphics (svg) specification (press re-
lease). http://www.w3.org/Press/1999/SVG-WD.html. Ac-
cessed 8 June 2015. 1

[svg01a] W3C: Scalable Vector Graphics (SVG) 1.0 Specifica-
tion, September 2001. 1

[SVG01b] W3C: Scalable Vector Graphics (SVG) 1.1 Specifica-
tion, September 2001. 4

[VRM97] ISO/IEC: Information technology - Computer graph-
ics and image processing - The Virtual Reality Modeling Lan-
guage - Part 1: Functional specification and UTF-8 encoding,
1997. 1

[web10] W3C/OASIS: W3C Recommendation WebCGM 2.1,
March 2010. 1

c© The Eurographics Association 2015.

34

http://www.gscassociates.com/pubs/cgrmintr.html
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/Press/1999/SVG-WD.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

