
EG UK Computer Graphics & Visual Computing (2014)
Rita Borgo, Wen Tang (Editors)

Variations on Image Reconstruction: Weighted Back
Projection and Fourier Expectation Maximization

A. Ryan1 and B. Mora1

1Swansea University Computer Science Department, Swansea, Wales, UK

Abstract
Expectation Maximization and Filtered Back Projection are two common techniques for Tomographic reconstruc-
tion of images and volumes. While papers often demonstrat that EM produces higher quality reconstructions,
particularly from lower numbers of projections, FBP remains popular due to its low computational complexity. In
the following work we present and analyse a modified Expectation Maximization approach which takes advantage
of the Fourier Slice Theorem to reduce the bottleneck of forward and back projection. We also investigate Weighted
Back Projection, a variation of Filtered Back Projection which uses a weighted average approach to avoid the use
of arbitrarily chosen filters.

Categories and Subject Descriptors (according to ACM CCS): I.4.5 [IMAGE PROCESSING AND COMPUTER
VISION]: Reconstruction—Transform Methods

1. Introduction

The Expectation Maximization (EM) algorithm is an itera-
tive volume reconstruction method first proposed by Demp-
ster et. al [DLR77] and was later applied to Positron Emis-
sion tomography (PET) as an alternative to the Filtered Back
Projection (FBP) algorithm by Shepp and Vardi [SV82] due
to its ability to better simulate the data acquisition process
of PET and being more robust to high levels of sensor noise
typical to PET scanning. It is also better suited for scanning
methods that use sparse or non-equidistant projection scans.
Given the low intensity counts of PET scans, and the long
scanning times required, this makes iterative methods such
as EM particularly well suited. Recently EM has reveived
exposure in other fields in order to produce volumes for
Isotropically Emissive Displays (3D display devices) which
simulate surfaces and shading [MMCE09].

While EM is shown to produce higher quality reconstruc-
tions, Filtered Back Projection (FBP) remains a popular
choice in image and volume reconstruction due to its rela-
tively low computation time compared to iterative methods
such as EM. In this paper, we also adress a weakness of the
FBP method that is the somewhat arbitrary choice of filter
function.

In this work we present modifications to the two com-

mon reconstruction techniques of FBP and EM. we propose
a method for the acceleration of the EM algorithm through
the use of Fourier-based forward and back projection in or-
der to remove the computational bottleneck of spatial do-
main projection and back projection. In doing so we reduce
the complexity of the EM algorithm from O(N2 · p · i) (where
N is the number of reconstruction pixels, p is the number of
projections and i is the number of iterations), to (NlogN)
(the computational complexity of FFT becoming the pre-
dominant contributor). While some work has been carried
out to investigate the use of Fourier methods for iterative
reconstruction techniques [MAK04], no work has explicitly
analyzed its application to EM.

We also propose a method to dynamically form a Fourier
space filter during the slice insertion step of Fourier recon-
struction by the summation of the weights of contribution to
each frequency domain pixel during the slice insertion step.
This results in a filter direction designed to counteract the
overlapping of inserted slices which causes the blurring of
back projection. Through this method we reduce the ampli-
tude of the low frequency regions without over amplification
of high frequency regions typical to the Ram-Lak filter com-
mon in FBP. We also avoid blurring of the resultant recon-
struction which can occur when using mid pass filters such
as the Hamming window.
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Figure 1: Shape of frequency domain filters commonly used
in FBP

2. Related Work

2.1. Filtered Back Projection

Filtered Back Projection (FBP) is a common and perhaps
the most widely known of the Computed Tomography al-
gorithms, often forming the basis of other derived methods.
FBP is typically associated with X-Ray tomography, where
detected data is the attenuation of X-Rays across the scanned
subject. Back projection is the process of tracing the beam
path back through the projection space, setting each sample
point to that of the projection data. Repeating for each pro-
jection angle the image function f (x,y) is equal to the sum
of intensities of all projection pixels p(θ,s) where θ is the
projection angle and s is the distance of the beam perpendic-
ular to θ to the image origin which intersects pixel (x,y).

Back projection alone results in a blurred reconstruction,
so filtering of the input projections, which can be done ef-
ficiently in the Fourier domain, is required. Common fre-
quency domain filters are shown in Figure 1. The choice of
filter leads to trade-offs in quality depending on the filter
choice. High pass filters such as the Ram-Lak filter lead to
amplification of noise in the reconstruction, while mid pass
filters such as the Hamming and cosine filters lead to blurred
images and loss of detail in the resultant reconstruction.

Attempts have been made at formalizing the choice of fil-
ter used in FBP. One such paper, [FCC∗98], attempts to form
such a function based on the signal-to-noise ratio resulting
from each filter. It concludes however that their method is
inadequate to deal with the variations in projection numbers,
count-levels, image resolutions and object shape to form an
objective selection of an optimal filter function.

Another consideration in FBP is when to apply the filter-
ing. In [ZG94] the authors investigate whether applying the
filtering on the back projected data is as accurate as perform-
ing the filtering on the input projection data. They conclude
that, due to undesirable zeroing of the DC component (where
F(0,0)) and a finite filtering array, performing the filtering
on the input data is the most desirable approach.

2.2. Fourier Slice Theorem and Fourier Reconstruction

An important property of the Fourier Transform for image
reconstruction is the Fourier Slice Theorem. This theorem
(also called the projection theorem) states that the projection
at angle θ of a 2D function is equal to the inverse FT of a
slice taken from the 2D FT of the function at angle θ. There-
fore an image can be reconstructed by the inverse 2D FT of
the 1D FT of its Radon Transform.

In discretized images the slice insertion/extraction process
is made non-trivial due to the non-equidistant polar sampling
in the slice insertion/extraction step. In order to obtain data
between Cartesian grid points, we are required to use the
continuous Fourier transform. This is not easily computable
and so research has been applied in the use of interpolation
to obtain this data for FFT instead. This is a non-trivial task
in the frequency domain, with interpolation leading to errors
in the obtained projection. Research in the minimization of
these errors has led to the development of Gridding and the
Non-Uniform Fast Fourier Transform.

The Fourier Slice Theorem is also extendable to 3D,
where the slices are planes rather than lines. This has led to
advancements in volume rendering where the theorem can
be used to accelerate the projection algorithm from O(N3)
to O(N2logN) [Lev92, Mal93].

2.3. Non-Uniform Fast Fourier Transform

A requirement of FFT algorithms is for data to be sam-
pled at equidistant points. This is necessary to allow for
the O(NlogN) complexity as opposed to O(N2) operations
of the Discrete Fourier Transform. This results in a prob-
lem for radially sampled techniques such as Fourier pro-
jection and back projection, where data is sampled on non-
equidistant polar samples. In order to still make use of effi-
cient FFT for non-equidistant data, the Non-Uniform Fast
Fourier Transform (NUFFT) was proposed by Dutt and
Rolkin [Dut95] and later expanded on in [Liu98,FS03]. The
NUFFT, which is closely related to gridding algorithms such
as that presented in [O’S85], aims to perform an accurate
2D FFT on the polar sampled data by performing inter-
polation with windowing functions which are highly local-
ized in the frequency domain. We then obtain an approxi-
mation on the sampled data by weighting by these scaled
window functions. The first step of the NUFFT is a scaling
step to pre-compensate for imperfections brought about by
the frequency domain interpolation [FCC∗98]. [O’S85] And
[FS03] both present scaling factors for the pre-computation
step. In [FS03] the authors propose a min-max approach to
optimise the interpolation coefficients to minimize the worst
case error of the reconstruction. They also compare their
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approach to the two conventional interpolation functions,
namely the Gaussian bell and the Kaiser-Bessel Window.

w j =

 I0(πα
√

1−(2 j/J−1)2

I0(πα)
if 0≤ j < J

0 if otherwise
(1)

Equation 1 shows the Modified Kaiser-Bessel (KB) win-
dow, where I0 is the Modified Bessel Function of the first
kind of order 0, J is the window width, and α is an arbi-
trary real number > 0 used to determine the shape of the
KB window. In [FS03] the author also uses the min-max ap-
proach to optimize the parameters of the Kaiser-Bessel Win-
dow. In order to reduce interpolation induced errors an over
sampling factor of K/N = 2 is used. While it is preferable to
use as large an interpolation window as possible, the authors
show that J = 6 is an adequate trade-off between compu-
tational complexity and reconstruction quality. It is shown
that α = 2.34J provides the best worst case minimum er-
ror [FS03], and so this is the value we have used in our tests.

2.4. Expectation Maximization

EM is an iterative reconstruction technique first applied to
the reconstruction of PET scan images by Shepp and Vardi
in [SV82] due to its ability to integrate physical properties of
the projection model and its robustness to sparse projection
data, noise and low emission counts. Despite this its uptake
has been slow while FBP remains a prominent technique due
to favourable complexity and computation time. An iteration
of EM is defined formally as [SV82]

f ∗k+1(b) = f ∗k(b)
D

∑
d=1

n∗(d)p(b,d)

∑
B
b′=1 f ∗k(b′)p(b′,d)

, b = 1, · · · ,B

(2)

where f ∗k(b) is the reconstructed intensity of pixel/voxel
b after k iterations for all b = 1, · · · ,B. p(b,d) is the prob-
ability of an emission in pixel b being detected at detector
tube d for d = 1, · · · ,D given by a known sparse transi-
tion matrix (projection matrix). n∗(d) is the total number of
emissions detected by d, thus the projection intensity.

In order to reduce the high numbers of iterations re-
quired to produce a high quality reconstruction, the Ordered
Subset Expectation Maximization (OSEM) was proposed
in [HL94]. In this approach, the input projections are divided
into smaller subsets. Each subset is operated on in each itera-
tion, with the result from one subset used as the initialization
of the next. This results in a significantly higher convergence
rate, though does not reduce the complexity of the algorithm.

Convergence in EM is non-uniform [LTIoTO∗99]. That
is, low frequency regions converge faster than high fre-
quency. This property is taken advantage of in [PY91] where

a multi-grid EM (MGEM) implementation is used to accel-
erate early convergence.

A number of attempts, discussed in [Joh94], have been
proposed to stop the EM reconstruction at its “optimal”
point. [RMC12] proposes a method for stopping EM when
error in the reconstruction is at its lowest or when quality
gain per iteration is outweighed by iteration time by compar-
ing the Root Mean Squared Error (RMSE) of the intermedi-
ate projections with the input data. When error-reduction per
iteration falls below a given threshold, or RMSE increases
from one iteration to the next, the process is stopped. In
the case of the multi-grid OSEM approach also proposed
in [RMC12] this approach is used to control the progression
from one resolution to the next, ensuring no time is wasted
at lower resolutions when little or no benefit is achieved.

Other applications of EM have recently been explored in
[MMCE09] where the author presents it as a solution to the
problem of surface visualization in Isotropically Emissive
displays. By using EM to produce a light-field that simulates
the eyes perception of the surface, a volume is created that
can be viewed with both surfaces and shading.

2.5. Fourier Iterative Methods

Little work appears in the literature with regards to the adap-
tation of Fourier methods for iterative reconstruction algo-
rithms, and to our knowledge no analysis has been done
into Fourier methods and the EM algorithm. A key work in
this field is presented by Metaj et. al [MAK04] where the
authors present an analysis of QPWLS reconstruction with
Fourier-based forward and back projectors taking the opti-
mized Kaiser-Bessel interpolation function previously men-
tioned from [FS03], carrying out an in depth investigation
into resultant error based on KB window shape and window
size. In this paper it is mentioned that ordered subset ap-
proaches do not benefit from Fourier-based methods. This
is due to the number of Fourier transforms for each sub-
set. In FEM for example, 4 FFTs are required per iteration
(2 foward, 2 inverse). In the case of ordered subsets, this
becomes 4 FFTs per subset. This aditional compute time
negates the benifits of using Fourier based methods for large
numbers of subsets. The paper also acknowledges that while
the Fourier Slice theorem is based on parallel beam projec-
tion, it can be extended for application to other acquisition
methods such as fan and cone beam scanning.

3. Proposed Methods

3.1. Weighted Fourier Reconstruction

Weighted Back Projection is here proposed as an alternative
to FBP. An uncontrolled aspect of FFT is in the arbitrary
choice of filtering function. The purpose of filtering is to re-
duce the effect of overlapping back projections, reducing the
prevalence of low frequency regions and over blurring of the
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Figure 2: Weighted Back Projection Process. The input sinogram undergoes super-sampled 1D FFT. The slices of the sinogram
FFT are inserted onto a Cartesian grid using |sinc| ∗KB window interpolation. The sum of interpolation ratios at each pixel
is also stored. Inserted slices undergo pixel-wise division by the sum of the interpolation rations. 2D FFT and subsequent
unpadding produces our final reconstruction.

image. In FBP an idealized filter curve such as the Ram-Lak
or Shepp-Logan filter is used to approximate the correction
curve required to counteract the overlapping of projections.

WBP was inspired by EM where the overlapping of pro-
jection data is counteracted by applying weighted averaging
to the back projected data as seen by the denominator of the
division in Equation 2, the sum of intersections between re-
construction pixel i and projection rays j.

As in FBP, our aim in WBP is to reconstruct the image sig-
nal f (x) from input projection sinogram p(s,θ). Given the
input projection sinogram p(s,θ) and its 1D FFT p̂(ω,θ), p̂
is typically multiplied with a frequency domain filter ϕ(ω,θ)
before undergoing inverse 1D FFT and being back projected.
Since ϕ is radially symmetric we define ϕ(s) = ϕ(s,0). The
back projection operator R is defined formally as

(Rp)(x) =
∫ π

θ=0
g(θ,x ·θ)dθ (3)

Given that p is the projection of function f then this de-
fines back projection as the average of all line integrals over
f which intersects pixel x.

Given the filtering function ϕ(s) the filtered back projec-
tion function is defined as:

(R∗p)(x) =
∫ π

θ=0
F−1(p̂(θ,x ·θ)ϕ(x ·θ))dθ (4)

where F−1 is the inverse Fourier transform and p̂ is the
1D Fourier transform of p. In Fourier reconstruction, by the

Fourier Slice theorem we have

(R∗p)(x) = F−1((2π)(p̂(θ,x ·θ)w(θ,s∆x)dθ) (5)

where for each pixel x in the reconstruction, we take
the nearest projection pixel p(s,θ) where x · θ = s. This is
the most basic form of Fourier reconstruction with nearest
neighbor back projection. Other methods have used bilinear
or cubic interpolation between the nearest cluster of projec-
tion pixels, while methods such as Gridding and NUFFT rely
on more complex methods.

In Weighted Back Projection, we remove the need for the
filtering function ϕ and replace it with a summation of the
interpolated contributions of the slice insertion such that

φ(x) =
(N−1)/2

∑
s=−(N−1)/2

2π

∑
θ=0

w(θ,s∆x) (6)

where w is the chosen interpolation window, and θ,s∆x,y
is the distance between points (θ,s) and pixel x after polar
to Cartesian coordinate conversion. Since interpolation win-
dows typically have a set width J and are assumed 0 for all
distances beyond this, we only calculate w where θ,s∆x is
less than (J−1)/2)

We therefore define WBP the reconstruction of the esti-
mation f ∗ of f

f ∗(x) = F−1((R∗p)(s,θ)φ(x)) (7)

Previous papers in NUFFT based reconstruction such as
[FS03, MAK04] have proposed the use of the Modified
Kaiser-Bessel Window (seen in (Figure 3)) as the basis func-
tion for the Cartesian-to-polar interpolation . While this pro-
duces accurate approximations of the polar sampled Fourier
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Figure 3: Interpolation Windows. KB is the Kaiser-Bessel
Window where J = 6 and α = 2.34J

transform a pre-compensation scaling by a windowed sinc
function is required.

In our practical implementation of WBP we experiment
with alternate basis functions shown in Figure 3. In order
to satisfy the condition that ψ(0) = 1 and ψ(k) = 0 where
k ∈ Z [FS03], we multiply the KB window by the sinc func-
tion. This maintains a high quality of reconstruction as evi-
dent in our results, and does not require pre-compensation.
However, we found that at low projection numbers ratio
summations were resulting in negative or very low values,
resulting in undesirable artifacts due to the weighting step.
In trying to maintain reconstruction quality we implemented
a |KB · sinc| interpolation kernel. The results of the two ap-
proaches are compared in Section 4.

As previously stated in Section 2.1, it has been shown
that performing the filtering step on the post-back-projected
data results in undesirable zeroing of the Null Frequency
and artifacts as a result of the finite extent Fourier Trans-
form [ZG94]. However, our dynamic filter does not cause
the undesirable zeroing of the DC component, and we over-
sample in the frequency domain to counteract the artifacts
caused by a finite extent as detailed in many NUFFT based
papers [Dut95, FS03, MAK04].

3.2. Fourier Expectation Maximization

A bottleneck in many iterative reconstruction algorithms is
the forward and back projections operations. To try and re-
duce the computation complexity of the EM algorithm we
apply a practical application of the Fourier Slice theorem to
these stages of the pipeline. We name this process Fourier
Expectation Maximization (FEM).

As detailed in NUFFT literature such as [MAK04, FS03],
we over sample in the frequency domain by K/N = 2 in
order to further reduce the artifacts introduced by interpo-
lation. When using Fourier projection and back-projection
memory demands of the algorithm increase, as additional
buffers of 2N and 2P elements are required to store the com-
plex frequency domain data as opposed to the real spatial
data. This can be reduced by in-line application of the FFT.

During the EM process, the error calculation and recon-
struction update steps are pixel-wise multiplications. This
would require convolution in the frequency domain. Instead
we carry out an inverse FFT to operate in the spatial domain
for these steps. Therefore each iteration of the FEM requires
two FFTs (before projection and before back projection) and
two inverse FFTs (post projection and post back projection).

4. Results

4.1. Implementation and Methodology

In order to test our approaches against the existing meth-
ods, four different test cases are used, with the ground truth
images shown in Figure 7. A color earth image at 10242, a
grey-scale version 5122 Lena, a 2562 simulated CT slice of
the head, and the Shepp-Logan Chest phantom at 2562. We
perform tests using inputs of 32, 64, 128 and 256 projections.

We compare our results to FBP with two different fil-
ter choices, the Ram-Lak filter, and the Shepp-Logan filter
which can both be seen in Figure 1. We compare the use
of KB · sinc and |KB · sinc| interpolation windows in both
FBP and WBP. In order to quantitatively assess the perfor-
mance of each method we compare the Root Mean Squared
Error (RMSE) error of the intermediate reconstruction with
ground truth images at each iteration and plot against time.
We show RMSE results of WBP with both KB · sinc and
|KB · sinc| windows, as well as showing results of FBP with
both Ram-Lak and Shepp-Logan filters.

Tests are carried out on a single thread on an Intel i7 2.93
GHz. The implementation was developed using C++ and for
the implementation of the FFT we use the FFTW 3.0 library

Figure 5: Input Test cases. Top Left: Earth 1024×1024, Top
Right: Lena 512× 512, Bottom Left: CT Head 256× 256,
Bottom RIght: Shepp Logan Chest Phantom 256×256
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Figure 6: Minimum achieved RMSE of tested reconstruction
techniques for 32, 64, 128 and 256 input projections gener-
ated from corresponding ground truths.

4.2. Analysis

Figure 6 shows the minimum RMSE achieved through each
reconstruction method tested for the various test cases and
input sizes used. The improvements in RMSE between
FBP and WBP is most significant when dealing with large
datasets with low numbers of input projections. In these
cases it is also the case that FEM shows similar benefits over
FBP as EM, with the RMSE being substantially lower.

Figure 7 shows the speed-up per iteration of FEM over
EM. Figure 6 shows that minimum RMSE is lower for EM
reconstructions, the speed per iteration should be considered
in the comparison of results. Even with low numbers of pro-
jections (32), we observe at least a 5x speed-up per iteration.
This speed-up is even greater for larger datasets and a greater
number of input projections.

A visual comparison of results can be found in Figures 9,
10, 11 and 12 of the supplementary material. These figures
provide a visual comparison of a number of test cases per-
formed. The top two images in each Figure show the best
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Figure 7: Multiplicative increase in speed per ieteration be-
tween FEM and EM

case reconstructions for FBP and WBP on the left and right
respectively. That is, the Shepp-Logan filter with filtered
back projection, and the |KB · sinc| interpolation method
for WBP. It can be seen in all demonstrated test cases that
streaking artifacts are significantly reduced through the use
of WBP, without introducing significant blurring of the re-
sultant image typical to filters such as the Hamming window
in FBP. Figures 9 and 10 do show blurring, however this is
due to the low numbers of projections demonstrated in these
test cases, a weakness inherent to many transform method
reconstructions such as this.

The extent of artifact reduction is demonstrated in Figure
8. Here the reconstruction is shown with a high number of
projections (256) with a close up view at a highly contrast-
ing area of the image. A significant reduction in streaking
artifacts can be observed in the case of WBP, while the edge
of the earth and cloud formations retain clarity and detail.

The bottom two images in each figure represent the recon-
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Figure 8: Close up view of Earth reconstruction, left: FBP
with Shepp-Logan Filtering, right: WBP

struction result representing the lowest RMSE error during
the EM and FEM tests. In the case of EM, tests were run for
500 iterations, though it could be continued indefinitely. In
the case of FEM, the lowest RMSE occurs around the 90-
100th iteration. Visually we observe little difference in the
reconstruction between EM and FEM. There is a slight blur-
ring evident in the image, and a slight loss of contrast. The
reason for the upward trend in RMSE beyond this point, is
that interpolation in Fourier projection introduces error com-
pared to spatial projection. This means that, even close to the
ground truth, FEM will not converge beyond a certain point.
This error can be reduced through further improvements in
NUFFT and Fourier Space interpolation.

5. Conclusion

In this work, two alternative methods to image reconstruc-
tion have been proposed. We apply Fourier-based forward
and back-projection to remove the bottleneck of the for-
ward and back projectors in the Expectation Maximization
method. We have demonstrated a significant speed-up per
iteration through the use of Fourier Based techniques. Due
to the complexity of FEM, speed-up will be even greater for
large datasets allowing for higher resolution reconstructions.
Final RMSE is higher than EM and WBP but is lower than
FBP especially at low numbers of input projections.

We also introduce Weighted Back Projection as an alter-
native to the popular Filtered Back Projection method. We
show that by correcting back projected data according to
the sum of interpolation weights at each pixel, we are able
to produce consistently higher quality reconstructions than
FBP with common filter functions. Importantly, the recon-
struction quality with WBP is considerably higher at low
numbers of input projections where FBP typically provides
poor quality reconstruction. WBP removes the streaking ar-
tifacts typical to FBP while not resulting in subsequent blur-
ring of the image from the use of mid-pass filters such as the
Cosine filter or Hamming Window.

In our application of WBP we investigated the use of the

modified Kaiser-Bessel window applied to the sinc function.
We found that this procedure negates the need for correc-
tional scaling required by NUFFT.
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6. Appendix
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Figure 9: Phantom Reconstruction Results, 32 projections
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Figure 10: Head Reconstruction Results, 32 projections
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Figure 11: Lena Reconstruction Results, 128 projections
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Figure 12: Earth Reconstruction Results, 256 projections
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