

Page 1

Computer Graphics: An Interactive Introduction with OpenGL
Dalton R. Hunkins

Computer Science Department

St. Bonaventure University

St. Bonaventure, NY 14778

hunkins@sbu.edu

Copyright © 2009 Dalton R. Hunkins

Published by Computer Graphics Materials Source (CGEMS)

Terms of Use
This suite of tutorials and examples is free software; you can redistribute them and/or modify them under

the terms of the GNU General Public License, version 2 as published by the Free Software Foundation (see

either of the files GNU GPL v2.docx or GNU GPL v2.pdf). There are many more files included in this

distribution however some are being re-distributed here for your convenience (see the Third-Party Files

section).

This suite of tutorials and examples are distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License, version 2 for more details.

Third-Party Files
The two files cygwin1.dll and glut32.dll are included with the installation of Cygwin and have been

downloaded from http://www.cygwin.com/. They are being re-distributed here under the terms of the

Cygwin license and, in particular, the GNU General Public License, version 2. Under those terms, the

cygwin source code is available at http://cgems.inesc.pt/resources/Cygwin_Source.zip.

 The three Wavefront files f-16.obj, porsche.obj and rose+vase.obj and their associated materials files (.mtl

files) that reside in the resources directory ComputerGraphicsTutorials/Resources/Wavefront can be found

with Nate Robbins’s tutorials and downloaded from http://www.xmission.com/~nate/tutors.html. There are

no stated terms of use and no license agreement given at this site.

The six clip art files target0.bmp, target1.bmp, target2.bmp, target3.bmp, target4.bmp and weapon.bmp that

reside in the directory ComputerGraphicsTutorials/Resources/ImageMaps/ShootingGarme were formed

from png files that are in the Public Domain and downloaded from http://www.pdclipart.org/.

Abstract: Computer Graphics: An Interactive Introduction with OpenGL is a suite of examples and

interactive tutorials. The software is created for the person who wants an introduction to computer

graphics using the OpenGL API. It is assumed that the reader is familiar with programming in the C++

language; knowledge of OpenGL is not a pre-requisite. Also, the tutorials and examples may be used in

conjunction with many of the mainstream books on computer graphics.

Keywords: Computer Graphics, OpenGL, Interactive Tutorials

Table of Contents
 Introduction

 Installing the Software

 Using the Launch Program

 Running a Tutorial

 Running an Example Program

 Comments on Use of Software

 References

 Appendix A: Annotated Table of Contents

 Appendix B: Sample Scripts

mailto:hunkins@sbu.edu
http://www.cygwin.com/
http://cgems.inesc.pt/resources/Cygwin_Source.zip
http://www.xmission.com/~nate/tutors.html
http://www.pdclipart.org/

Page 2

Introduction
Computer Graphics: An Interactive Introduction with OpenGL is a suite of examples and interactive

tutorials written in C++ that uses OpenGL. The software has involved over a period of time. Some of the

tutorials were first written using the Ada binding to OpenGL. This subset was introduced in a paper

presented at SIGGRAPH 2001 [Hunkins and Levine, 2001]. After some modifications including the

addition of several more tutorials, the revised Ada version was presented through another paper published

in Computer and Graphics [Hunkins and Levine, 2002]. Part of the evolution included the tutorials being

written with JOGL, the Java binding to OpenGL; this work has not been published. The current suite has

been used several semesters by computer science majors in a computer graphics course taught by the

author. Although inspired by Nate Robbins’ tutorials (http://www.xmission.com/~nate/tutors.html), the

software has been independently developed. You will find, however, three Wavefront models (obj files)

from his downloaded files are used in the tutorials. The three models are included in the download for

convenience but are not part of the author’s copyright.

In addition to the tutorials, the current suite now includes many examples with the source code displayed at

runtime with online annotations. The original goal of providing an introduction to many of the

fundamental concepts in computer graphics has been preserved with the current version. The concepts

include basic geometry and transformations, two-dimensional orthographic projections, color models,

viewing through the virtual camera, lighting and illumination models, and texture mappings. The current

version also contains a set of examples that introduce game programming.

The software suite is not only built on top of OpenGL but it also uses the GLUT and GLUI libraries. With

the work being an introduction to computer graphics, the OpenGL features covered are those of version 1.2

(and, of course, available in version 2.1). But with the publication of the standard for OpenGL, version 3.0,

one may ask why educational software built on earlier versions is still viable. One of the major differences

between the versions is the “Depreciation Model” presented in version 3.0. In particular, many features

(functions) that have been used in an introductory course such as the construction of geometries using the

glBegin-glEnd pair are marked as deprecated in 3.0. Although they have not been removed, it is stated that

deprecated items will no longer exist in future versions of OpenGL. Until then and until computer graphics

educators and authors of graphics textbooks adapt to the change, earlier versions of OpenGL are still useful.

Further, Nvidia states on its website (http://developer.nvidia.com/object/opengl_3_driver.html) that “Nvidia

has no plans for dropping support for OpenGL 2.1, and earlier versions, on our existing and future shipping

hardware.”

Installing the Software
The tutorials and examples were developed on a Windows XP platform and ported to Windows Vista; for

now, Windows is the only platform on which they are available. Installation of the software simply requires

unzipping the provided file. After which, you must copy the three dll files utilsWin32.dll, glut32.dll and

cygwin1.dll that are in the extracted folder Libraries\DLLs to a folder that is in the search path for

Windows. For example, you may copy the files to the Windows system directory c:\Windows\system32. Of

course, you can instead set the Path variable to include the above DLL folder.

The library utilsWin32.dll (referred to as Utils) was created by the author and provides resources needed by

the tutorials. The IDE used to create the Utils library, the tutorials and the examples is Bloodshed’s Dev-

C++ (http://www.bloodshed.net/devcpp.html) with the C++ compiler provided by Cygwin. Cygwin

(http://www.cygwin.com/) is a Linux like environment for Windows. The Cygwin software is free and as

noted above, the two dll files cygwin1.dll and glut32.dll are being redistributed here under the terms of the

GNU General Public License. The version of GLUT (glut32.dll as provided here) came as part of the

Cygwin download. Although other versions are available (see for example,

http://www.opengl.org/resources/libraries/glut/), the glut file provided here must be used.

You must also have OpenGL installed on your machine. These are provided through two dlls, opengl32.dll

and glu32.dll, which are normally installed with the Windows operating system. (Look for them in the

folder c:\Windows\system32).

The tutorials and examples use Internet Explorer for viewing the ancillary materials. It is assumed that IE is

installed in the normal Windows location, namely, c:\Program Files\Internet Explorer\iexplore.exe. Also

http://www.xmission.com/~nate/tutors.html
http://developer.nvidia.com/object/opengl_3_driver.html
http://www.bloodshed.net/devcpp.html
http://www.cygwin.com/
http://www.opengl.org/resources/libraries/glut/

Page 3

the vbs script interpreter cscript.exe is used in closing IE through a menu choice; it is assumed that it

resides in c:\Windows\system32.

Last, if you choose to copy the software to another drive or location, you must preserve the contents of the

ComputerGraphicsTutorials folder – that is, do not change any of its file structure and names.

Using the Launch Program
The program Launch.exe, which resides in the ComputerGraphicsTutorials folder at its root, is provided for

convenience. You can open (run) any of the tutorials and examples by running this program. . When it

executes, you will see a page giving brief descriptions of the tutorials and examples. The page may be

scrolled by dragging the mouse up or down with the left button down or by using the up and down arrow

keys. The program also has a popup menu that is triggered with a right mouse click. The submenus, which

are part of the popup menu, provide choices of tutorials and examples you can execute. Simply click on any

of the selections. Obviously, you can browse to a folder containing an executable and run it directly.

Running A Tutorial
The tutorials are constructed with consistency in mind. Each tutorial is an executable (.exe) file. When

executed, you will be viewing a window consisting of several sub windows. Each tutorial has at least one

sub window containing a graphics image constructed through the use of OpenGL. Other sub windows

provide interactive controls and information pertaining to the tutorial. A screen shot of one such tutorial is

shown in figure 1.

Figure 1 Virtual Camera Tutorial

A popup menu with three choices, “Show Help”, “Close Help” and “Close Tutorial”, is also part of each

tutorial. The menu is activated by right clicking the mouse in a portion of the main window that is not part

of any of the sub windows.

Selecting “Show Help” brings up Internet Explorer, which in turn allows you to view several html pages.

Figure 2 is a screen shot of the tutorial along with the Internet Explorer window that opens with the “Show

Help” menu choice.

The choice “Close Help” simply closes Internet Explorer and the display of the help pages. Of course, you

can re-open the help pages anytime with the “Show Help” menu choice.

Page 4

The “Close Tutorial” option is for closing the program versus using the standard method for closing a

window. Closing the tutorial through this menu choice facilitates any memory management built into the

tutorial. Further, this choice also closes Internet Explorer and the help pages if it is open.

Figure 2 Virtual Camera with Show Help

As seen in figure 2, a list of links appears on the left of the IE window. The Discussion link returns you to

the page that is initially opened and gives you an introduction to the concept being addressed by the

tutorial. There are other links under the title Windows. Each of these links brings up a page that describes

the content of the sub window as it pertains to the tutorial along with any interactive controls associated

with the sub window. The link OpenGL Functions opens a page showing the functions that are presented

through the tutorial. Most tutorials even include a topic Quiz with links to questions that students may use

as a self-check of their understanding of the material.

Any of the ancillary materials can be easily modified locally since they are presented in html format. For

example, suppose you want to change or add to the quiz questions. One needs only open Links.html in the

appropriate “HelpFiles” folder (e.g. ComputerGraphicsTutorials/Resources/HelpFiles/VirtualCamera) and

change the links to questions. Also, since the questions are also in html format, new ones can be added with

any of the existing ones serving as a template.

The tutorials reside in Tutorials, which is a subfolder of ComputerGraphicsTutorials. Further, the

executable files are organized into chapter subfolders. For example, the executable VirtualCamera.exe is in

the folder ComputerGraphicsTutorials\Tutorials\Chapter 7.

You should run the Virtual Camera tutorial so as to become familiar with the general layout used in any of

the tutorials. What you see on the screen when running the tutorial should agree with the screen shot shown

in figure 1. It should be noted that sub windows that contain textual material are constructed through the

use of GLUT’s fixed font text and in turn are not scalable. Thus, if a portion of the text does not appear

within the sub window, then, if possible, increase your screen resolution. (The tutorials and examples were

Page 5

developed on a laptop with screen resolution 1280 by 800; the resolution of 1024 by 768 is also reasonable.

)

Every tutorial produces at least one rendered image that is displayed in a sub window. We call this type of

sub window a display window (the content of these windows do scale). For the Virtual Camera tutorial, the

display window in the upper-left corner has two parts (viewports); on the right is a rose in a vase and to its

left is the same object but shown within what is called the view volume of the virtual camera.

The tutorials will have one or more other sub windows that provide interactive controls. For the Virtual

Camera tutorial, the sub window in the bottom-right corner contains radio buttons and push buttons. We

call this type of sub window a selection panel. The controls in a tutorial’s selection panel were constructed

from the GLUI User Interface Library that was built by Paul Rademacher and is currently maintained by

Nigel Stewart and Bill Baxter (http://sourceforge.net/projects/glui).

The sub window in the bottom-left corner displays another means of interaction. The sub window, which

we call a parameter input window, shows two OpenGL functions that are particular to the tutorial. In any

parameter input window, you can change the values that are drawn in green. To change a parameter, move

the mouse over the parameter; press and hold down the left mouse button. The color of the selected

parameter changes to yellow, indicating the value is being changed. The value changes while dragging the

mouse up and down. You may also change a selected parameter through use of the up and down arrow

keys. A factor is associated with this method. The factor multiples the increment/decrement used with each

key stroke. The factor in use is shown at the top of the parameter input window. The factor may also be

increased or decreased by pressing the Page-Up or Page-Down keys. Last, a parameter input window may

be scrolled by dragging the mouse with its right button pressed.

Depending on the tutorial you are running, there may be other sub windows within the main tutorial

window. For the Virtual Camera tutorial, a C++ code snippet is shown in the upper-right sub window. The

code snippet is updated as you change values in the parameter input window. Other tutorials may have a

sub window showing mathematical computations used in the tutorial. A sub window that displays a code

snippet or mathematical computations or other types of information is called a technical content window.

Many of these information windows are scrollable. The method for scrolling is the same as for a parameter

input window.

The general structure and layout exhibited with the Virtual Camera tutorial is consistently used throughout

the tutorials.

Running an Example Program
Each chapter has at least one section containing a complete C++ program. The program builds on the

previous material and uses OpenGL, GLUT and possibly GLUI functions. The examples are contained in

the sub folder Examples under the main folder ComputerGraphicsTutorials. The executables for the

examples are also organized by chapters. Similar to running the tutorials, you can run the examples either

directly or through the launch program.

A screen shot of the Hello World example is shown in figure 3. Two windows appear on the screen. The

window on the left is the GLUT window created by the program while the window on the right is an

instance of Internet Explorer. Each of our example programs will automatically invoke IE to display html

documents. The documents include a list of bookmarks and/or links on the left. The content of the frame on

the right is either a brief description of the example, a description of the user controls for the example or a

code listing of the program (or a portion thereof) that created the window and its OpenGL content. Of

course, the particular display in the right frame is dependent on the selected link or bookmark.

Also, selected lines of code in the listing are linked to other html documents (code displayed in light blue

text indicates a link). A discussion of the code’s purpose will appear in the frame below the code listing

when you click on the link.

A popup menu that is right mouse triggered is also part of the program example. The minimum choices are

“Show Source Code”, “Close Source Code” and “Close Example.” The first choice is provided so that the

code listing and discussion may be re-opened in case you close the one that automatically opened. The third

http://sourceforge.net/projects/glui

Page 6

menu choice not only closes the program but it also closes Internet Explorer and its display of the code

listing and ancillary materials.

Figure 3 Hello World Example with Annotated Source Code

Comments on Use of Software
As noted in the introduction, the suite of tutorials and examples has evolved over the past 10 years. Also,

the current version has been used for several semesters in an introductory computer graphics course taught

by me. I am sharing herein comments on how it was used in that course.

The course, CS 256 taught at St. Bonaventure University, consists of a “lecture” portion, meeting 2.5 hours

per week, and a closed lab portion, meeting 2 hours per week. The suite is used in both components in

various ways.

It has been said that a picture is worth a thousand words but I add that it is worth even more when it is

interactive. Further, it is understood that students learn best when they are active participants in the process.

Thus, when I used the software in a “lecture”, I asked a student to be the user and “operate” the tutorial

and/or example. But, of course, the student is guided in her exploration with a script that I provide either

verbally or in written form. Appendix B contains samples of three (abbreviated) scripts. The scenarios,

which I call Discovery Activities for lack of a better term, are designed for the students, including the

designated user, to understand through exploration a specific concept and/or specific API function. For

example, activities in the Color Models script are written to discover (understand) saturation in the HSV

model and the effect occurring in the RGB model when changes are made to the color’s saturation. In turn,

it is hoped that the student develops an understanding of the relationship between the two models. The

scenarios easily extend during a “lecture” beyond the ones I initially provide since all students are

encouraged to suggest other activities.

Page 7

Assignments in the closed labs may take one of two forms. One form is a script of Discovery Activities and

the student is required to submit her recorded observations. Another form is the somewhat traditional “write

a program that ….” Lab assignments may also be a combination of the two. For example, the first closed

lab in CS 256 pertains to the Hello World program. The first sample script in Appendix B suggests part of

the assignment; the other part requires the student to submit a modified Hello World program. Obviously,

the first lab serves as an “ice breaker” and, in turn, is not overly demanding. With respect to labs that

strictly require programming, the assignments are either extensions of the examples or are programs

requiring development “from the get-go” and are based on concepts presented in the tutorials. The latter

type of lab assignment indicates why I have chosen to have example software and tutorials in the suite. The

program examples are just that with the entire source code visible to the student. On the other hand, a

tutorial focuses on a concept with its source code not being pertinent to the learning objective. I may give,

for example, a lab assignment that requires the student to incorporate the viewing transformation within her

program. Or I may ask that a program be written that produces a shadow on a plane that is not one of the

coordinate planes. For this latter example, the Projection Shadow tutorial gives the student the necessary

information on computing the projection transformation.

I hope that you find the suite of tutorials and examples useful in these and other ways when teaching an

introductory computer graphics course.

Dalton R. Hunkins

References
Hunkins, Dalton and Levine, David, “Additional Rich Resources for Computer Graphics Educators”,

Computers and Graphics, 2002, Vol. 26, No. 4, pp. 609-614.

Hunkins, Dalton and Levine, David, “Rich Resources for Computer Graphics Education”, SIGGRAPH

2001 Educators Forum, Los Angeles, June 2001, pp. 45-48.

Page 8

Appendix A: Annotated Table of Contents

Chapter 0: Our First World
Example: Hello World
This is our first example of a graphics program. It shows how to create a window using the GLUT library

and create a very simple image in that window using OpenGL functions.

Chapter 1: 2D Projection and Viewports
Tutorial: Orthographic Projections
With this tutorial you will be learning about projection windows and viewports.

Example: Viewports
We use the geometry of our Hello World example and produce two instances of it. The instances are

accomplished through the use of two view ports.

Chapter 2: Color, Geometry and Shading
Tutorial: Color Models
The tutorial is designed to help you develop intuition about the two color models RGB and HSV. The

models are depicted, respectively, with a cube and a hexcone. By giving input values for either model, you

can develop intuition for color mixing within each model along with an understanding of the relationship

between the two models.

Tutorial: Geometry
You see in this tutorial how to construct basic geometries in OpenGL. The geometries include lines,

triangles, quadrilaterials and polygons.

Tutorial: Smooth Shading
The focus in this tutorial is the computations used to determine the color of "interior"

points of a triangle using smooth shading (also called Gouraud shading). You are presented with a triangle

having vertex colors red, green, and blue. You select a point of interest within the triangle and the

interpolation computations for that point are then displayed. You may focus your attention on either the

final computation for the selected point or upon one of the intermediary computations.

Example: Cascading Squares
The example illustrates the creation of a geometric pattern. The pattern is a sequence of nested squares with

the squares' color saturation decreasing as the squares become smaller. The pattern is created through

recursive function calls.

Example: Circle Disk
Line strip (and loop) is a useful basic geometry for approximating curves. We can vary the smoothness of

the approximating curve by varying the distance between the points in the strip. This is illustrated here with

the construction of a circle. Also, once we have the points for the approximating circle, we can easily

construct a filled circle (i.e, a disk).

Example: GLU Disk
The OpenGL utility library glu contains a function for constructing a disk. The example illustrates how to

use the function.

Example: Line Stipple
A line is stippled when it is drawn broken and appears as a sequence of dots and dashes. Further, the length

of the visible portions and the length of spaces can be varied as illustrated with this example.

Page 9

Chapter 3: Transformations and Animation
Tutorial: 2D Transformations
By interacting with this tutorial, you can see how a 2D object is affected with the application of two-

dimensional transformations while also viewing the current transformation matrix that creates the effect.

Example: Many Instances
We saw with the example Viewports how we can use different viewports to create several instances of a

geometry. The use of transformations gives another way of creating multiple static instances of a geometry.

The example illustrates this point.

Example: Morphing Using Idle Function
Animations are of great interest. We use the basic OpenGl transformations to animate the size, orientation

and/or location of geometries. In this example we use transformations to change the shape of an object. We

also animate the color of the object. In creating the animation, we demonstrate how to the use an idle

function that we register with glut. In particular, our registered idle function calls our display method with a

change between calls to the parameters that control the transformations on the object and the color applied

to the object.

Example: Morphing Using Timer Function
The animation is the same as the one demonstrated in the previous example. Except in this example we

create the animation through the use of a timer function that we register with glut. The advantage in using a

timer function versus an idle function allows us to make the speed of the animation platform independent

by setting the frame rate of the animation.

Chapter 4: Menu, Keyboard and Mouse Interaction
Example: User Interaction through GLUT
We see with this example how to create interactive methods using glut. These include the use of the mouse

for picking an object within the world and dragging the object. We also see how to create a popup menu

and define keyboard handlers.

Chapter 5: Texture Mappings
Tutorial: Texture Coordinates
The tutorial guides you through understanding what is needed to accomplish the application of a texture

(bitmap) to a geometry in two dimensions.

Tutorial: Texture Transformations
The tutorial follows the one on texture coordinates. It is suggested that you do the Texture Coordinate

tutorial before doing this one.

Example: Image Map
The example has two image maps where either of the two can be applied to different geometries. The

geometries consist of squares, a hexagon and an octagon. The application of a map to a square is straight

forward. But the calculations of the texture coordinates corresponding to the vertices of the hexagon and

the octagon are a bit more complicated.

Chapter 6: A Little Game Programming
Example: Game with Stationary Targets
This example illustrates a simple third person shooting game. The game consists of a rotating tank that fires

projectiles and five stationary targets. Discussion is given here on how we decide when a projectile will hit

a target. This game provides one of the simplest cases of collision detection -- a moving object along a

straight line and a stationary target.

 Page
10

Example: Game with Moving Target
This is the first in a series of two in which a moving target is added to our shooting game with stationary

targets. Our method of collision detection used with stationary targets can be used with the moving target if

the moving target stops when the projectile is fired. Guess what happens in this version of the game.

Example: Shooting Game (final version)
Collision detection in this version of the game is with both objects moving. The calculations are still

relatively simple since the two motion paths are straight lines. Note that in a real situation, collision

detection requires knowing not only the motion paths but also the velocities of each object. With this

information we compute whether the two objects will arrive at the collision point at the same time. Time in

our synthetic world is measured by frames and, in turn, our question is will the two moving objects arrive at

the collision point in the same frame.

Chapter 7: Virtual Camera
Tutorial: Virtual Camera
A key concept in computer graphics is to model a world and then "take a picture" of the world through a

(virtual) camera. We first establish the camera in OpenGL by setting its location, the direction it points and

its orientation, also called its roll. Next, we establish the type of projection to be applied, either

orthographic or perspective. The tutorial, in turn, is designed to help you understand this fundamental

concept of viewing and how it is accomplished in OpenGL.

Tutorial: Camera Motion
The standard camera movements include orbit, pan, truck and dolly. By interacting with this tutorial, you

can see the effect of each of these camera moves on the projected image.

Tutorial: The Viewing Transformation Matrix
The tutorial shows the computations used by OpenGL in determining the viewing transformation matrix.

This matrix is created by OpenGL when a call is made to gluLookAt.

Chapter 8: Lighting
Tutorial: Ambient Reflection
The tutorial focuses on the determination of color using the Phong Illumination Model. In particular, you

control the color of an ambient light as it illuminates four swatches of material (cyan, yellow, magenta, and

gray). The color computations for any one of the materials you choose are shown in one sub window while

the visual effect of the computation is displayed in another sub window.

Tutorial: Diffuse Reflection
The tutorial helps you understand the lighting effects of omni and directional lights on a simple scene

consisting of two planes meeting at a corner. Further, the effect involves diffuse reflectivity and is

determined by the orientation of surface normals to the lights. You can change the lighting effects by

manipulating the normals.

Tutorial: Specular Reflection
The tutorial demonstrates specular reflectivity as created by a spot light illuminating a sphere. Also, you

can change the cutoff angle and the exponent of the light and see the effect of the changes by viewing the

illumination of the light on the background.

Example: Lights
The example illustrates the use of four lights, ambient, omni, directional and spot, to illuminate our world.

 Page
11

Chapter 9: Miscellaneous
Tutorial: Bezier Spline
A spline consists of curves placed end-to-end. We consider in this tutorial Bezier curves that are part of

OpenGL. We also show how the splines obtained from these curves can be used as motion paths, to obtain

a surface through extrusion and to obtain a surface of revolution.

Tutorial: A Projected Shadow
The tutorial demonstrates how a shadow can be cast onto a plane by computing a projection matrix and

applying it to the 3D geometry. We also set the drawing color to one appropriate for the shadow and apply

it to the projected geometry.

Tutorial: Ray Traced Shadow
The tutorial applies the method used in a Ray Trace render for creating shadows. The demonstration shows

the calculations for "casting" a shadow onto a plane by one of three types of objects -- a sphere, a hollow

cylinder (one without end caps) and a solid cylinder (one with caps).

Example: Two-Sided Material
OpenGL provides the means to assign different materials to two sides, the outside and the inside, of the

geometry. In this example, you can cut away the geometry, which is of course hollow, and see both the

inside and outside of the geometry. You create the cut-away by moving the near plane of the virtual

camera.

Example: Inside a Sphere
Generally the background of our synthetic world is static. If we want the background to change as we

animate the camera, then we can place the background on the inside of a sphere and have the sphere

surround the geometry and the camera, as done in this example.

Example: Transparency
We have seen with the tutorial Texture Transformations how to make a portion of an image map

"invisible." We do this by setting the alpha component of the texel's color to zero and apply alpha bending.

This can also be accomplished when using a base color or material color for an object. The example also

illustrates how to use the GLUI library in creating an interface for user input.

Example: Texture Methods
We have seen in chapter 5 two of the OpenGL methods, namely GL_REPLACE and GL_DECAL, for

applying a image map to a geometry. A third method GL_MODULATE is demonstrated in the example.

You can also compare the effect created with this method in contrast to GL_DECAL. Also, part of the user

interface is created with the GLUI library. Note that this example is located here versus chapter 5 since the

effect of modulate is best appreciated when lighting is present.

Example: Model Viewer
The tutorial Camera Animation is a model viewer but with only one model available. The example

illustrates how to use the GLUI library to open a file browser and select a model to be viewed. Reading the

file and rendering its content is part of the Utils class ObjectModel. You can use this class and any of the

others in Utils when you construct your own programs.

 Page
12

Appendix B: Sample Scripts

Modifying Hello World

The source code for Hello World, namely HelloWorld.cpp, resides in the folder
../ExampleSourceCode/Chapter 0/.

 Open the program HelloWorld.cpp in your IDE.

As mentioned in the introduction, the IDE used in developing the tutorials is Bloodshed’s Dev-C++

with the Cygwin C++ compiler. However, it does not matter which one you use as long as it is
setup to compile programs that make calls to OpenGL and GLUT. The particulars on setting up a
specific IDE will not be discussed here since there are many differences between them.

There are a number of changes that we can make to Hello World, each producing a different
visual affect. In addition to changing the parameter passed to glLineWidth, try the following.

Discovery Activity: What colors do we obtain?

 Using only 0’s and 1’s, vary the parameters passed to glColor3f. Try each of the eight
possible combinations (1, 1, 1), (0, 1, 1), etc. Compile and run your modified program.
Note that color mixing is covered with the tutorial in chapter 2.

Discovery Activity: Assigning colors to each vertex

 Place a copy of the call to glColor3f before each of the four calls to glVertex2d. Assign
different color values to the four calls to glColor3f. Compile and run the modified
program and observe how these changes affect the rendered image.

Discovery Activity: What happens if we use a coordinate larger than 1.0 or smaller than
0.0?

 Change one or more of the vertices so that at least one of its coordinates
(x or y or both) is bigger than 1.0 and/or less than 0.0. How does this change the
rendered image? Keep in mind the boundaries of the projection window are defined in
the call to gluOrtho2D,.

Discovery Activity: Does the call to glFlush really matter?

 Comment out the call to glFlush and compile and run the modified program. Is the call
to glFlush necessary? Why?

 Page
13

Exploring with the Orthographic Projection Tutorial

Run the Orthographic Projection tutorial that is in chapter 1.

Discovery Activity: Setting the Projection Window

We are going to change the boundaries of the projection window so as to select certain portions of
the world for rendering. You accomplish this by changing the boundary parameters appearing in
the parameter input window on the bottom-left side. Also, the technical content window
appearing on the bottom-right side shows the coordinates of the rectangles.

 Set the boundaries of the projection window so that only the red rectangle appears in
the actual display window with a black border around it.

Obviously you can carry out this activity by simply changing the boundaries while watching the
projection window in the road-map window. But keep in mind that this visual is not available
when writing your graphics programs; you will be setting the projection window boundaries based
on the coordinates of the geometries within your world. Uncheck the box “Show Projection
Window” in the selection panel and carry out the next activity.

 With the projection window not visible in the road-map window, set the boundaries of
the projection window so that only the red and green rectangles appear in the actual
display window with a black border around them.

Did you pick the left boundary smaller than -30 (e.g. -31) and the right boundary bigger than 15
(e.g., 16)? Also did you pick the bottom boundary smaller than -40 (e.g., -41) and the top
boundary larger than 15 (e.g., 16)? How can we determine these boundary values from the
coordinates of the rectangles?

 Looking at the coordinates of the rectangles, can you pick the boundaries of the projection
window so that the red, green, blue and yellow rectangles are displayed AND no portion
of any other rectangle? Why or why not?

Discovery Activity: Setting the Viewport

Observe that the shape of the cyan rectangle is tall and skinny. Let us see how it is displayed when
we make it the only object in the projection window.

 With the projection window not visible in the road-map window, set the boundaries of the
projection window so that only the cyan rectangle appears in the actual display window
with a black border around them.

Depending on the amount of border you leave around the rectangle, the rectangle appears almost
as a square when rendered to the display window. Remember that the projection window is
mapped (rendered) to the entire viewport. So, if the projection window is tall and skinny and the
viewport is square, the contents of the projection window will be stretched and distorted. In order
to avoid the distortion, we have to set the dimensions of the viewport so that it has the same
aspect ratio as the projection window. We define the aspect ratio of a rectangle as the quotient

width of rectangle / height of rectangle

A call to glViewport is shown in the parameter input window. The changeable values displayed
here are percentages of the width and height; as mentioned, this is a convenient way of setting the
boundaries of the viewport.

 Keeping the projection window set so as to contain only the cyan rectangle and leaving
the left and bottom boundaries of the viewport at 0, change the dimensions of the
viewport so that its aspect ratio is the same as that of the projection window.

Did you observe that since the desired aspect ratio is less than one, we need only decrease the
width of the viewport to achieve that ratio? Also, the rendered image appears on the left side of
the actual display window.

 Page
14

 Keeping the aspect ratio you set, change a boundary (or boundaries) of the viewport so
that the displayed image of the cyan rectangle appears centered in the actual display
window.

Did you change only the left boundary of the viewport to achieve the desired affect?

We close this section with the following suggestion.

Use a piece of graph paper when designing your virtual world and label the coordinates of all the
vertices within your world.

 Page
15

Exploring with the Color Models Tutorial

Run the Color Models tutorial that is in chapter 2.

Discovery Activity: What is Hue?

 Click on the second value of rgb[], which sets the green value in RGB, and
drag the mouse upward, changing the parameter value from 0.0 to 1.0.
Observe the changes in the color models with changes to this green value.

Observe how the color changes from red to yellow. Also note how the ball moves
in the RGB model and the HSV model. You will also see the value for hue
changing from 0.0 to 60.0.

 Click on the first value in rgb[], which sets the red value, and drag the
mouse downward, changing the value from 1.0 to 0.0.

Observe that the ball moves along the edge of the hexcone base and the edge of
the cube that connects yellow to green. Also the hue parameter changes value
from 60.0 to 120.0.

 Use the mouse to change the blue value from 0.0 to 1.0

What color changes take place and how does the value for hue change? You
should observe that the color changes from green to cyan and hue changes from
120.0 to 180.0.

 Use the mouse to change the green value back to 0.0.

 After which, increase the red value to 1.0.

 Last, decrease the blue value to 0.0, taking us back to full red.

Note that the ball continues to move along the base of the hexcone in a
counterclockwise fashion and the value of hue continues to increase through the
values 240, 300 and then back to 0. Also observe how the ball moves in the RGB
cube, namely along the edges connecting the primary (red, green and blue) and
secondary (yellow, cyan and magenta) colors.

Hue is generally what people refer to when talking about color; it is similar to the
colors of the rainbow. Hue in the HSV model is represented by the angle in
degrees measured counterclockwise around the center of the base of the hexcone.
The range of hues is [0, 360) with red = 0, yellow = 60, green = 120, etc. Let us
confirm our observations with the following.

 Click on the hue value and drag the mouse upward, changing the value
from 0.0 through the values 60.0, 120.0, 180.0, 240.0, 300.0 and then
back to 0.0.

Yes, the ball moves along the edges of the base of the hexcone in the HSV model
and along the edges of the RGB cube connecting the primary and secondary
colors.

 Page
16

We have been observing color thus far at its full purity and brightness. The values
in the HSV model that control these properties are respectfully saturation and
value. The two can both be set with numbers in the range [0.0, 1.0].

Discovery Activity: What is Saturation?

 Click on the saturation component for the array hsv[] and drag the
mouse up and down, changing it between the numbers 0.0 to 1.0.

Observe that when hue = 0, the color goes between red and white through
variations of pink. Thus, saturation measures the purity of the color where
maximum purity is when saturation = 1.0. When saturation = 0.0 (and value =
1.0), the color is white. Observe also the changes that take place in the RGB
model. As the color red decreases in purity, the green and blue components
increase equally to 1.0 resulting in the color white and the ball at the vertex (1.0,
1.0, 1.0). Similar changes occur for any of the primary and secondary colors.

 Set red and green to 1.0 and blue to 0.0 in the RGB model and, in turn,
make the color yellow. Now change saturation from 1.0 to 0.0.

Observe how the color changes to a pale shade of yellow and finally to white. Note
also the blue component in the RGB model increases to 1.0.

Discovery Activity: What is Value?

Value, sometimes called brightness, measures the total energy of the color (light)
where maximum brightness occurs when value = 1.0. When value is 0.0, the color
is black.

 Set saturation to 0.0 and value to 1.0 in the HSV model. (Or equivalently,
set each of the parameters in the RGB model to 1.0.) Now change the
value component of hsv[] from 1.0 to 0.0.

Observe that the ball in each of the models moves along the gray-scale from white
to black through shades of gray. In the RGB model, a shade of gray is when the
parameters (red, green and blue) are set to the same number.

In summary, saturation in the HSV model measures the relative distance of a
point to its axis (gray scale) while value measures the relative height of the point
from the apex of the hexcone. We can also think of saturation and value in the
RGB model, although it is not as intuitive as in the HSV model. Since saturation
is the purity of the color and corresponds to the difference between the color and
white, we can reduce the saturation in the RGB model by moving the color from
its current location towards the gray scale. We can also change a color's value in
the RGB model by moving along the line going from the color's current position
to black. For example, to reduce the value of magenta, which is at the point (1.0,
0.0, 1.0), the point moves along the diagonal line in the red-blue face of the cube
from the magenta vertex to the black vertex (0.0, 0.0, 0.0). What happens to
saturation when the color reaches black? (Hint: any point on the gray scale has
zero saturation). Try it!

