
CEIG - Spanish Computer Graphics Conference (2022)
J. Posada and A. Serrano (Editors)

Development of a Node-Based Material Editor

L. Suaya Leiro1 and M. Garrigó1

1Centre de la Imatge i la Tecnologia Multimèdia - Universitat Politècnica de Catalunya

Abstract
Materials systems are an important element within the development of a renderer for an application such as a video game.
Nowadays, the method to build a graphic style for a product involving a real-time engine implies a rendering system supporting
a solid and concise materials system, as those well-established in real-time engines such as Unreal or Unity.
This study presents an open-source application to serve as an editor of materials consisting of a modern real-time renderer.
The application consists of a basic OpenGL real-time rendering engine to visualise 3D geometry and its appearance through
the support of a node-based material editor to assemble materials in an intuitive and simple manner, without the use of pro-
gramming and little technical knowledge.
The culmination of the project and the achievement of its objectives was satisfactory. We concluded that this work can be used
as a reference to understand real-time material systems and renderers and its state of the art in the video games industry.

CCS Concepts
• Computing methodologies → Rendering; • Computer systems organization → Real-time system architecture; • Human-
centered computing → Accessibility; Visualization; Human computer interaction (HCI);

1. Introduction, Motivation and Justification

Nowadays, the method to build a graphic style for a video game
in three dimensions or a similar product involving a real-time en-
gine implies a rendering system supporting a solid materials sys-
tem. The real-time result of the materials created should follow an
artistic style marked by the artistic direction. Therefore, an artist
must be able to create materials that replicate a desired style with-
out involving programming or technical knowledge.

The problem arises in the difficulty of the process. In essence, a
material is a series of coded variables that define how an object
should be rendered, so – in the background – a material can be pro-
grammed and it is processed by a renderer to end up in the GPU.
In this process, there are certain considerations such as optimiza-
tions and many others, but in general, this causes an obstacle in
the creation of materials: it makes the process complex, it involves
deep knowledge in the graphics programming field and it requires
programmer to be in constant communication with artists. Besides,
the existence of little deep documentation and the fact that there
is no specific consensus on how to build a renderer with a mate-
rial system makes it more difficult, because it depends on the type
of engine operated or developed, so there are different methods to
solve this problem. For these reasons, this project proposes to build
and delineate from the beginning a renderer and a system of mate-
rials that is visual and easy to use, with the aim that anyone in the
industry can understand how it works.

The motivation behind this project was our passion for videogames
and graphics programming, as well as the curiosity to explore and
expand our knowledge limits. We aimed to develop a tool to create
and understand easily the operation and functioning of materials
in a 3D environment, what implications they have, and their usage
in real-time frameworks like videogames. At the time of beginning
this work, we were aware of the existence of widely known and
used software that already solved the problem that we addressed,
but our intention was not to expand these, make them better, or
search for new or better key findings in the area. Instead, we wanted
our contribution to consist of an open-source and instructive project
to investigate how they can be done and try to mimic them as well
as possible regardless of the evident quality, time, and budget diver-
gence, but also without any additions or features externals to this
specific area to keep it as simple and easy as possible.

2. State of the Art

There are several programs and tools in the market addressing
this problem, from applications focused on visual effects, anima-
tion, or geometry creation such as 3DS Max, Blender or Hou-
dini [Autne, Blene, Sidne] to real-time engines like Unreal, Unity
or Godot [Epinec, Unined, Linne]. Traditionally, the method to as-
semble a material in this style of application was to program a
shader and expose certain parameters that could define a material’s
characteristics. Then, through a material’s user interface, the user
could modify its attributes and assign each material to the objects

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/ceig.20221148 https://diglib.eg.orghttps://www.eg.org

This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

https://doi.org/10.2312/ceig.20221148


L. Suaya Leiro & M. Garrigó / Development of a Node-Based Material Editor

in a scene [Uninea]. Any further customization had to be made
by the user by programming new shaders and following the same
process [Unineb]. However, in the last decades, many of the men-
tioned applications implemented node-based editors in which the
material became a node instead of a plain and limited user inter-
face [Epinea, Epineb, Frene, Uninec]. In this node we could input
other nodes, thus giving the ability to make each of the material’s
characteristics be the result of a set of operations represented by the
connections of nodes in the editor, forming a graph. This abstrac-
tion removed the potential need for programming when crafting
custom materials.

Additionally, there are applications with powerful renderers specif-
ically designed to artistically craft materials or to modify geome-
try according to the material’s traits. Some examples are Substance
Designer and Substance Painter or Marmoset [Adoneb, Adonea,
Marne], which provide tools thought to optimize the creation pro-
cess, such as painting materials to texture and shape them.

3. Our Approach

Our approach consisted of building a real-time game engine named
Kaimos focused on a renderer with a tool embedded for materials
assembly. It was programmed with C++ and we used OpenGL and
GLSL as a graphics API and shading language respectively.

We referenced this approach on the popular game engine Unreal
Engine 4, bridging the differences. The objective was to develop
the prototype of a real-time engine running at a minimum of 30fps
that allowed to load 3D geometry and visualize it in a scene editor.
These geometry would use materials to shape appearance, and these
materials would be created with a node-based editor. Finally but not
less important, the implementation of a lighting system was also
required, as it is an important pillar of appearance.

3.1. System Architecture

First, we developed base systems for the engine (elemental life-
support, cameras, input, scene, entities-components, serialization,
files management, time, mathematics...). We required the usage of
external libraries which, simultaneously with the mentioned sys-
tems, formed a first engine prototype with which to work.

Afterwards, we built a basic batched renderer to draw simple shapes
on the screen. Jointly with it, we defined how Kaimos compiled
shaders and managed geometry, with which we could draw more
complex meshes with a few draw calls. Then we went further and
implemented a materials structure and the possibility for each piece
of geometry in the scene to have a material attached. The material
would transmit its properties to a shader (its surface appearance
data) and therefore the shader would know how to render each mesh
according to its surface properties. This gave a different appearance
to each mesh in the scene with a different material.

With the renderer pillars in place, we implemented mesh files load-
ing, a lighting system based on the Blinn-Phong [dVneb, dVnea,
Bli77] model with different types of light sources. By means of
this, we could improve the renderer a little by adding some tech-
niques like normal or specular mapping [dVned, dVnee].

Figure 1: Images of a primitive Kaimos Editor. On top, a view of
the editor with some of its panels (tools, scene hierarchy, entity ed-
itor, console and performance), at the bottom, examples of models’
loading, basic lighting, normal and specular mapping.

3.2. Modern Rendering

To modernize the renderer, we expanded it with the techniques
of Physically Based Rendering (PBR) and Image-Based Lighting
(IBL) as they significantly increase the visual quality. Previously,
we used Blinn-Phong [dVneb, dVnea, Bli77] to illuminate and ren-
der objects.

PBR is a rendering technique in which the lighting and materials
are based on a physical theory that matches closely the real world
ones [dVneg] to simulate them in a physically-plausible or realistic
approach. The materials and lighting rely on physical parameters
that make them look realistically correct. It takes into consideration
three concepts:

• The microfacet surface theory: describes surfaces as formed
by tiny and reflective microfacets whose alignment defines the
material’s reaction to light.

• The energy conservation law: makes the light leaving the ma-
terial not to be higher than the light entering.

• The employment of physically-based reflections based on a
physically-realistic equation named the Reflectance Equation.

The Reflectance Equation combines these concepts. It is a special-
ized version of the Render Equation [dVneg, Kaj86, ICG86] used
in computer graphics to simulate physically-plausible lighting:

L0(p,ω0) =
∫

Ω

fr(p,ωi,ω0) Li(p,ωi) n ·ωi dωi

This equation is solved for each light source in the scene. We
will omit the mathematical details for synthesis and readability
purposes, as it is a widely known technique, but it is notable
the fr term, known as the Bidirectional Reflectance Distribution
Function (BRDF). It calculates the light reflection considering the

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

60



L. Suaya Leiro & M. Garrigó / Development of a Node-Based Material Editor

material characteristics, its microfacets, the metalness or rough-
ness of the surface, etc. There are many models to define it, but
we based it on the Unreal Engine 4 implementation, published
in 2013 [KEne, dVneg, dVnef]. It uses the Cook-Torrance BRDF
[Karne, CT82], which has a diffuse and a specular term represent-
ing respectively the light reflected after its refraction — or scattered
among the material’s surface particles — and the light directly re-
flected (that defines the specular lobe of the light impacting on the
surface).

To conclude the PBR implementation, we also modified the light at-
tenuation of Blinn-Phong to use a more physically accurate version,
the inverse-square law [KEne]. The result can be seen in Figure 2.

IBL illuminates the objects in a scene in a physically-plausible
manner too, but with the light of the environment. Our implemen-
tation was also based on Unreal Engine 4 [KEne, dVnec, dVneh].
It uses an environment map (a cubemap) as the background envi-
ronment from which we extract the source of light. With the texture
texels, we obtain a global illumination to apply it to the scene ob-
jects by resolving the same Reflectance Equation used for PBR.
Since the IBL light sources are too large to compute them in real-
time (potentially every texel), we pre-process the calculations to
use them in real-time. The idea consists of producing two maps
from the original environment map by convolution. In these, we
respectively store the resulting general diffuse and specular irradi-
ance. Then they are accessed in real-time to sample and calculate
the ambient irradiance to make it part of the illumination process.
The diffuse map (or Irradiance Map) is obtained by applying the
diffuse term of the Reflectance Equation to a sample of texels of
the original map. The specular map (or Pre-filtered Environment
Map) is obtained by applying the specular term of the equation to a
sample of directions from the original map, biased to be within the
specular reflection lobe. On each mipmap of it, a result for a dif-
ferent roughness value is stored. We also store the possible BRDF
values in a LUT 2D texture (as it varies), used in conjuntion with
the other maps in real-time to sample the total BRDF of the envi-
ronment according to the surface lightened.

There are some quality compromises comparing the pre-
computation with the real-time calculation, some reflections dis-
appear or may not be the most realistic. However, the real-time
processing of IBL is not possible due to the potential number of
light sources and the fact of performing a heavy calculation like an
integral for each of them. This makes the result an approximation,
but it is realistic enough, as it can be seen in Figure 2.

3.3. Kaimos Material Editor

A node editor works based on the connections of nodes that have
a specific individual purpose. Programming is not involved and,
in this case, there is no static edition of the material variables in
the interface. We built a structured inheritance of classes for the
different nodes, where each pin of a node stores its atomic data,
whilst the node knows what to do with that data. Upon compilation,
the calculation of the main node parameters begins on each of its
input pins, checking the outputs connected. These make their nodes
to process the input data, and this process continues until reaching
the final nodes without inputs connected. The result is kept in the

Figure 2: Rendering outcome in Kaimos Engine.

material which is attached to meshes in the scene, but the materials
dependent on variable vertex attributes need to be re-calculated for
each mesh. In summary, the material editor structure has four parts:

• Graph: Connected group of nodes, represent the whole mate-
rial appearance. Operates at a higher level, managing node usage
(creation, deletion, linkage. . . ).

• Nodes: Graph atomic structure with specific functionality. Rep-
resents a defined data type that can result from a constant, an
operation. . .

• Main Node: Node that represents the material properties with its
inputs and has no output. All graph connections end here.

• Pins: Connection points of a node, they can be connected to a
compatible data-type pin and holds the atomic data of the node.
The outputs represent the node result and the inputs the data
needed to compute it.

The Kaimos Material Editor is aware of whether a material is PBR
or non-PBR to decide which parameters displays in the main node.
Both have vertex attributes and color as well as albedo and nor-
mal textures to shape appearance. PBR materials require textures
for roughness, metallic and ambient occlusion parameters while
non-PBR requires a specular map. The textures have a 0-1 numeric
value to control their impact/influence.

Regarding the interface, there is a panel in the Kaimos Editor in
which to operate the graph. We used the ImNodes library to have
nodes’ UI functionalities. Designed from the point of view of the
user, the ease of its usage had to be granted (the user focus must
be on the important tasks of the material edition) and it had to be
as graphic as possible. This was given by the nature of the editor
itself, nodes converging through connections into the main node.
Thus, we shaped the usage to be as fast and as simple so all the ac-
tions were at a maximum distance of two clicks. We also wanted the
nodes-selector pop-up to display the nodes’ categorization while
keeping the fast and easy characteristic, so it is a simply structured
menu easy to read. We also decided not to add static menus to
preserve simplicity, unity, and dynamism. Due to how the library
works and renders, we could not implement zooming.

The nodes’ categorization reflect the operations and methods:

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

61



L. Suaya Leiro & M. Garrigó / Development of a Node-Based Material Editor

• Vertex Attributes Nodes: Geometry vertex attributes
• Constants Nodes: Global or external constants (time, pi. . . )
• Camera Nodes: Related to the scene camera
• Variables Nodes: Plain data type variables (int, float, vec2. . . )
• Mathematic Nodes: Mathematical operations (random numbers,

simple and advanced operations, conversions, trigonometric and
shader operations...).

• Vectors Nodes Related to vector operations (break into compo-
nents, normalize, rotate, reflect, lerp...).

Figure 3: Images of Kaimos Material Editor (KME). On top, an
overview with an example and in the bottom details of the nodes.

To conclude, it is noteworthy that we considered an alternative to
the system consisting of parsing the entire graph into a shader, as if
it was a translator from the graph to code. It was a more attractive
approach but highly complicated with the available resources, and
it would imply significant and complex changes, especially with
the API-abstracted nature of Kaimos and the shaders’ compilation
process. As it went much further from our knowledge barrier and
from the scope of the project, it was discarded.

3.4. Results

We built three scenes with different complexity setups to test the
renderer performance and the material editor. Two consisted of
seventy-two spheres (a total of 12500 triangles, approximately),
each with a relatively simple material, and thus a simple node
graph. One scene was rendered with PBR materials and an IBL en-
vironment, the other without PBR and a plain skybox environment
without IBL. The third scene consisted of a 3D plane simulating
water movement through its material (of 800 triangles to make the
animation softer), which required a far more complex PBR mate-
rial with a complex arrangement of nodes, and with an IBL envi-
ronment too.
We measured them with Kaimos Engine built-in tools executing in
a computer with an AMD Ryzen 5 3500X CPU, 32GB of RAM and

an Nvidia GeForce RTX 2060 GPU. Furthermore, we also used a
profiler to measure the performance of the application and have an
independent measurer in which we could rely and compare to be
sure of our own measurements. The three scenes maintained a sta-
ble framerate of 60fps with Vertical Synchronization enabled and
a rendering time taking from 1ms to 5ms. It was beyond expected
for the project scope considering that our objective was to keep a
minimum of 30fps, and we initially expected the rendering to take
more time (we did not consider a reasonable limit, but the measure
was better than we ambitioned). Still, as we did not implement any
rendering optimization, it is a potential improvement point.

The memory usage was below 2GB. This also considered the Visual
Studio memory usage and the memory measurer we implemented
in Kaimos was not considered to be trusted due to the issues with
its implementation and its erratic behaviour. Nevertheless, although
we cannot determine the proper memory usage of the application
and the scenes with all the certainty that we would like, we do know
that all the resources were loaded in memory (heavy HDR maps,
models, ...) as we did not have resources management or optimiza-
tions. Therefore, we can affirm that this is also an improvement
point that could potentially improve this measure.

In conclusion, the performance was better than expected, and we
did not have any relevant or crucial issues in this field. Some im-
provements can be developed such as decreasing the GPU queries
and textures load, geometry, rendering, and resources optimizations
(such as space-partitioning, camera culling. . . ) amongst others.

4. Conclusions and Future Works

We presented a real-time engine with a scene editor centered in a
3D geometry renderer with modern and advanced real-time render-
ing features. It features a node-based material editor that allows as-
sembling materials without programming or having complex tech-
nical knowledge as traditionally, so we can consider it a positive
result. It performs better than expected, and we developed it us-
ing modern C++, using techniques that were unknown to us before.
We satisfactorily accomplished the project objectives; additionally,
we have learned beyond the domains and disciplines in which we
wanted or expected to learn.

In future works, besides the optimizations considered – which
should be a priority – we would recommend to address compatibil-
ity with other software. In other words, to implement the usage of
the materials in Kaimos in another software, for instance by means
of exportation, in order to synchronize the engine with widely-used
software like Unreal Engine or Unity and observe the result in other
renderers. Additionally, although we can consider a good improve-
ment the creation materials through a node-based editor without
requiring any programming, it would be critical to execute a user
study and test, by asking artists to use Kaimos, to evaluate the per-
formance and user experience.

We also recommend the implementation of rendering improve-
ments like transparencies, IBL probes, and techniques like dis-
placement maps, bloom, anti-aliasing, or shadowing. Another inter-
esting investigation would be renderering systems like Forward+,
Deferred, or the one used by Unreal Engine 5, as well as the imple-
mentation of better graphic APIs like Vulkan or DirectX.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

62



L. Suaya Leiro & M. Garrigó / Development of a Node-Based Material Editor

References
[Adonea] ADOBE: Adobe Substance 3D Designer, 3D Assets Cre-

ation. Limitless. Adobe Substance 3D Designer Frontpage, Website,
2022 [Online]. URL: https://www.adobe.com/products/
substance3d-designer.html. 2

[Adoneb] ADOBE: Adobe Substance 3D Painter, Paint in 3D.
In real time. Adobe Substance 3D Painter Frontpage, Website,
2022 [Online]. URL: https://www.adobe.com/products/
substance3d-painter.html. 2

[AMHH18] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.: Real-
Time Rendering, Fourth Edition, 4th ed. A. K. Peters, Ltd., USA, 2018.

[Autne] AUTODESK: 3ds Max: Massive Worlds and High-
Quality Designs. 3DS Max Frontpage, Website, 2022 [Online].
URL: https://www.autodesk.eu/products/3ds-max/
overview?term=1-YEAR&tab=subscription. 1

[Blene] BLENDER FOUNDATION: Blender, Reach new lights. Blender
Frontpage, Website, 2022 [Online]. URL: https://www.blender.
org/. 1

[Bli77] BLINN J. F.: Models of light reflection forccomputer syn-
thesized pictures. SIGGRAPH Computer Graphics 11, 2 (Jul
1977), 192–198. URL: https://doi.org/10.1145/965141.
563893, doi:10.1145/965141.563893. 2

[CT82] COOK R. L., TORRANCE K. E.: A Reflectance Model
for Computer Graphics. ACM Trans. Graph. 1, 1 (Jan 1982),
7–24. URL: https://doi.org/10.1145/357290.357293,
doi:10.1145/357290.357293. 3

[dVnea] DE VRIES J.: Advanced Lighting. Learn OpenGL,
Blog, 2014 [Online]. URL: https://learnopengl.com/
Advanced-Lighting/Advanced-Lighting. 2

[dVneb] DE VRIES J.: Basic Lighting. Learn OpenGL, Blog,
2014 [Online]. URL: https://learnopengl.com/Lighting/
Basic-Lighting. 2

[dVnec] DE VRIES J.: IBL Diffuse Irradiance. Learn OpenGL, Blog,
2014 [Online]. URL: https://learnopengl.com/PBR/IBL/
Diffuse-irradiance. 3

[dVned] DE VRIES J.: Lighting Maps. Learn OpenGL, Blog,
2014 [Online]. URL: https://learnopengl.com/Lighting/
Lighting-maps. 2

[dVnee] DE VRIES J.: Normal Mapping. Learn OpenGL,
Blog, 2014 [Online]. URL: https://learnopengl.com/
Advanced-Lighting/Normal-Mapping. 2

[dVnef] DE VRIES J.: PBR Lighting. Learn OpenGL, Blog, 2014 [On-
line]. URL: https://learnopengl.com/PBR/Lighting. 3

[dVneg] DE VRIES J.: PBR Theory. Learn OpenGL, Blog, 2014 [Online].
URL: https://learnopengl.com/PBR/Theory. 2, 3

[dVneh] DE VRIES J.: Specular IBL. Learn OpenGL, Blog,
2014 [Online]. URL: https://learnopengl.com/PBR/IBL/
Specular-IBL. 3

[Epinea] EPIC GAMES: Materials Compendium. Unreal En-
gine 3 Documentation, Online User Manual, 2006 [Online].
URL: https://docs.unrealengine.com/udk/Three/
MaterialsCompendium.html. 2

[Epineb] EPIC GAMES: Materials. Unreal Engine 4.26 Doc-
umentation, Online User Manual, 2020 [Online]. URL:
https://docs.unrealengine.com/4.26/en-US/
RenderingAndGraphics/Materials/. 2

[Epinec] EPIC GAMES: Unreal Engine, The world’s most open and ad-
vanced real-time 3D creation tool. Unreal Engine Frontpage, Web-
site, 2022 [Online]. URL: https://www.unrealengine.com/
en-US. 1

[Frene] FREYA HOLMÉR: The ultimate visual node-based shader edi-
tor for Unity. Shader Forge Documentation, Online User Manual, 2013
[Online]. URL: https://acegikmo.com/shaderforge/. 2

[ICG86] IMMEL D. S., COHEN M. F., GREENBERG D. P.: A radios-
ity method for non-diffuse environments. SIGGRAPH Comput. Graph.
20, 4 (Aug 1986), 133–142. URL: https://doi.org/10.1145/
15886.15901, doi:10.1145/15886.15901. 2

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH Computer
Graphics 20, 4 (Aug 1986), 143–150. URL: https://doi.org/
10.1145/15886.15902, doi:10.1145/15886.15902. 2

[Karne] KARIS B.: Specular BRDF Reference. Graphic Rants,
Blog, Aug. 03, 2013 [Online]. URL: http://graphicrants.
blogspot.com/2013/08/specular-brdf-reference.
html. 3

[KEne] KARIS B., EPIC GAMES: Real Shading in Unreal Engine
4. Epic Games. URL: https://blog.selfshadow.com/
publications/s2013-shading-course/karis/s2013_
pbs_epic_notes_v2.pdf. 3

[Linne] LINIETSKY, JUAN AND MANZUR, ARIEL: Godot, The game
engine you waited for. Godot Engine Frontpage, Website, 2022 [Online].
URL: http://www.godotengine.org/. 1

[Marne] MARMOSET: Marmoset Toolbag, REAL-TIME RENDER-
ING, TEXTURING, & BAKING TOOLS. Marmoset Toolbag Front-
page, Website, 2022 [Online]. URL: https://marmoset.co/
toolbag/. 2

[Sidne] SIDEFX: Houdini. Houdini Frontpage, Website, 2022 [Online].
URL: https://www.sidefx.com/products/houdini/. 1

[Uninea] UNITY TECHNOLOGIES: Material. Unity Documen-
tation, Online User Manual, 2015 [Online]. URL: https:
//docs.unity3d.com/520/Documentation/Manual/
class-Material.html. 2

[Unineb] UNITY TECHNOLOGIES: Writing Vertex and Fragment
Shaders. Unity Documentation, Online User Manual, 2015 [Online].
URL: https://docs.unity3d.com/520/Documentation/
Manual/SL-ShaderPrograms.html. 2

[Uninec] UNITY TECHNOLOGIES: Introduction to Shader Graph:
Build your Shaders with a Visual Editor. Unity Blog, Blog, 
2018
[Online]. URL: https://blog.unity.com/technology/
introduction-to-shader-graph-build-your-shaders-
with-a-visual-editor. 2

[Unined] UNITY TECHNOLOGIES: Unity Engine, The world’s leading
platform for real-time content creation. Unity Engine Frontpage, Web-
site, 2022 [Online]. URL: https://unity.com/. 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

63

https://www.adobe.com/products/substance3d-designer.html
https://www.adobe.com/products/substance3d-designer.html
https://www.adobe.com/products/substance3d-painter.html
https://www.adobe.com/products/substance3d-painter.html
https://www.autodesk.eu/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://www.autodesk.eu/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://www.blender.org/
https://www.blender.org/
https://doi.org/10.1145/965141.563893
https://doi.org/10.1145/965141.563893
https://doi.org/10.1145/965141.563893
https://doi.org/10.1145/357290.357293
https://doi.org/10.1145/357290.357293
https://learnopengl.com/Advanced-Lighting/Advanced-Lighting
https://learnopengl.com/Advanced-Lighting/Advanced-Lighting
https://learnopengl.com/Lighting/Basic-Lighting
https://learnopengl.com/Lighting/Basic-Lighting
https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://learnopengl.com/Lighting/Lighting-maps
https://learnopengl.com/Lighting/Lighting-maps
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/PBR/Lighting
https://learnopengl.com/PBR/Theory
https://learnopengl.com/PBR/IBL/Specular-IBL
https://learnopengl.com/PBR/IBL/Specular-IBL
https://docs.unrealengine.com/udk/Three/MaterialsCompendium.html
https://docs.unrealengine.com/udk/Three/MaterialsCompendium.html
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://acegikmo.com/shaderforge/
https://doi.org/10.1145/15886.15901
https://doi.org/10.1145/15886.15901
https://doi.org/10.1145/15886.15901
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://www.godotengine.org/
https://marmoset.co/toolbag/
https://marmoset.co/toolbag/
https://www.sidefx.com/products/houdini/
https://docs.unity3d.com/520/Documentation/Manual/class-Material.html
https://docs.unity3d.com/520/Documentation/Manual/class-Material.html
https://docs.unity3d.com/520/Documentation/Manual/class-Material.html
https://docs.unity3d.com/520/Documentation/Manual/SL-ShaderPrograms.html
https://docs.unity3d.com/520/Documentation/Manual/SL-ShaderPrograms.html
https://blog.unity.com/technology/introduction-to-shader-graph-build-your-shaders-with-a-visual-editor
https://blog.unity.com/technology/introduction-to-shader-graph-build-your-shaders-with-a-visual-editor
https://unity.com/



