CEIG - Spanish Computer Graphics Conference (2022)
J. Posada and A. Serrano (Editors)

Reusable procedural building parts

Alejandro Arangua, Gustavo Patow and Gonzalo Besuievsky

ViRVIG, Universitat de Girona, Spain

Abstract

With the increase in popularity of procedural urban modeling for film, TV, and interactive entertainment, an urgent need for
editing tools to support procedural content creation has become apparent. In this paper, we present an end-to-end system for
creating a library of reusable procedural parts in a rule-based setting to address this need. No trivial extension exists to perform
this action in a way such that the resulting ruleset is ready for production. For procedural reusable parts, we need to handle
the rulesets extracted from the source graphs, and later on, merge them with a target graph to obtain a final consistent ruleset.
As one of the main contributions of our system, we introduce a library of reusable parts that could be seamlessly glued to other
graphs and obtain consistent new procedural buildings. Hence, we focus on intuitive and minimal user interaction, and our
editing operations perform interactively to provide immediate feedback.

1. Introduction

A broad range of areas, such as games, movies or urban simula-
tion require virtual 3D city models with detailed geometry. Pro-
cedural modeling [MWH™06] has proven to be quite effective, of-
fering a potential alternative to the labor-intensive modeling tasks
required by traditional 3D modeling techniques for building recon-
struction. However, traditional procedural methods are not always
a suitable alternative to manual modeling. With this, there is an
increasing need for more advanced content creation and editing
tools. However, it is not straightforward to extend existing tools,
as for example sketch-based interfaces for modeling [NSACOO05],
drag-and-drop mesh tools [Aut12] or the modeling-by-example ap-
proach [FKS*04] to procedural models because these tools operate
on the mesh level, and are not able to preserve the procedural nature
(i.e., the ruleset) of the input building.

In this paper, which is a direct continuation of a previous
work [BBP13], we focus on a specific editing application: reusable
building parts (or modules) for procedural architectural models.
One of the main motivations for choosing this application is to
provide a simple but flexible library of building elements, ranging
from a simple window or door up to a whole facade, that would
allow non-experts to generate new content using pre-existing con-
tent. See Figure 1. We present here a complete, end-to-end system
for procedural library of building parts, which can be integrated
with our previous system that allows selection, storing, loading and
compositing.

With our approach, artists can easily reuse already known build-
ing styles to create new content. As a benefit, the tools may shorten
significantly the modeling time creation, avoiding designing new
rules or re-configuring old ones. Similar to [LWWO08], we used a
visual programming paradigm, where the user can construct and

© 2022 The Author(s)

Eurographics Proceedings © 2022 The Eurographics Association.

This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/ceig.20221143

modify the building by simply connecting its components on screen
by interactive visual inspection. Actually, our approach is comple-
mentary to existing modeling techniques, as it produces a building
ruleset ready to be used in any production environment. Our main
contributions are: providing an interactive visually-based method
for editing models based on procedural architectural and introduc-
ing a file format for procedural building parts that can be saved and
reuse as an architectural library.

Select
)

Select Load &
Target > Compose

Figure 1: Reusable procedural architectural parts workflow sys-
tem. From procedural buildings selected sources, a file is gener-
ated containing all the procedural information needed to recon-
struct this part (top). At editing time, the artist selects a target, then
loads the required parts from the library, and finally a new building
is composed (bottom).

delivered by

EG EUROGRAPHICS

www.eg.org

DIGITAL LIBRARY
diglib.eg.org

https://doi.org/10.2312/ceig.20221143

34 A. Arangua, G. Patow and G. Besuievsky / Reusable procedural building parts

2. Previous Work

The idea of using a library of parts that could be copied & pasted
as to modeling tools is not new. However, classical modeling ap-
proaches are not suitable to be applied to procedural models be-
cause they operate on the mesh level, and are not able to preserve
the procedural nature (i.e., the ruleset) of the input building. Lipp
et al. [LWWO8] presented a first attempts to improve editing oper-
ations for procedural buildings using an interactive visual system,
avoiding text editing rules. Later, some approaches tried to bring
together direct control and visual procedural languages, resulting
in a simple visual traversal of the hierarchy tree plus direct visual
assignment of the desired changes [RP12]. However, results only
reduce the user options to only a few simple operations [Patl2].
In this paper we provide a completely visual application to store
and retrieve procedural building parts to simplify the user’s editing
tasks.

Our work is based on graph-grammars and graph rewriting tech-
niques. In the context of urban procedural modeling there have
been some approaches that take advantage of the graph-like struc-
tures that arise in urban layouts [LSWW11] or the building rule-
sets [Pat12]. Here we also perform graph-rewriting operations over
the rulesets, but in contrast to [Pat12], where only simple operations
to fix some minor design issues in the procedural model where al-
lowed, our editing tool goes far beyond current state of the art tech-
niques, allowing complex editing operations to be performed in a
way transparent to the user.

This paper extends a previous copy & paste work [BBP13],
where a methodology for easy editing procedural buildings was
proposed. Here, we include also an intermediate library of proce-
dural architectural elements, which can be saved to disk and later
reused in any design project, thus greatly increasing effectively by
creating a portfolio or parts that can be designed, created and then
reused in any subsequent project.

3. Procedural Modeling

The seminal works by Wonka et al. [WWSRO03] and Miiller et
al. [MWH"06] introduced Grammar-based procedural modeling
for buildings. The main concept of this technique is a shape gram-
mar, which is based on a ruleset: starting from an initial axiom
primitive (e.g. a building outline), rules are iteratively applied, re-
placing shapes with other shapes. The resulting geometry is formed
by shapes that can be optionally assigned new labels with the pur-
pose of being further processed. In our system, geometry carries all
labels that the shape or any ancestor has received during the produc-
tion process. Traditionally, during a rule application, a hierarchy of
shapes is generated corresponding to a particular instance created
by the grammar while inserting rule successor shapes as children
of the rule predecessor shape. This production process is executed
until only terminal shapes are left.

The whole production process described above can be seen as
a graph where each node represents an operation applied to its in-
coming geometry stream and the leaf nodes are the geometry as-
sets [Pat12] (see Figure 2). A ruleset can be regarded as a directed
acyclic graph G = (N,E), where N is a set whose elements n; are
called vertices or nodes (i.e., these are commands of the ruleset),

Figure 2: A full graph-based representation (top) of a procedurally
modeled building (bottom, right). The red subgraph (bottom, left)
represents the red part of the facade.

and E is a set of ordered pairs of vertices, called edges (i.e., the
connections between the rules that represent the flux of geometry).
Each command n; € N processes its incoming flux of geometry,
which is given by all its incoming primitives (i.e., the shapes) that
have the given predecessor label. Let ¢'. € E be the edge connecting

J
the output of node #; to the input of a downstream node n;.

4. A Library of Reusable Procedural Parts

Our system for saving procedural building parts allows a user to
select objects from several procedural source buildings and save
them to an asset library. The full workflow is shown in Figure 1.
Input to the system is roughly the user interacting with tools like
CityEngine [Esr12] or SideFX’s Houdini [Sid12]. The system can
be divided into two stages: Selecting and saving the procedural se-
lected part into a file in XML format; and loading a file for the final
composition.

4.1. Select and Store

The first step is to select a part of a facade, which is identified by
traversing the primitive hierarchy. We provide two different starting
points for this navigation: by defining a selection window with the
mouse over the geometry the user wants to select, or by directly
selecting a leaf by a point-and-click action. Then, the user can visit
any primitive children, browse through its siblings, and go back to
the parent primitive as desired [RP12]. Some selection examples
can be seen in Figure 3.

Once the user selected a set of primitives {p}, either as a result
of this navigation through the primitive tree or by direct point and
click, we can precisely locate the common ancestor 7, both at the
tree level and at the graph level. For this, all the possible paths to
np are stored, each in a separate stack. Then, the algorithm starts
to traverse the graph from the root, updating each stack for each
iteration with the labels of the nodes it is traversing. Being all the

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

A. Arangua, G. Patow and G. Besuievsky / Reusable procedural building parts 35

9% o PR u

Figure 3: The selection system with four examples. The visual in-
terface allows to navigate through the primitives of the tree for in-
teractive selection, and then save the selected elements to disk.

Figure 4: Selection process. The selected node np (lilac node) and
all its descendants (green nodes) are saved to disk, together with
the necessary connecting information.

paths updated, it performs a set operation on the labels of the cur-
rent level, to remove the repeated entries. The algorithm stops when
the set operation returns an empty set. Note that, with this method,
there can be several common ancestors at the same level.

After np is found, we collect all nodes in the source graph G5
that operate on np or any of its descendants. See Figure 4. For that,
we traverse the primitive tree in depth-first order, starting from np,
until we reach the leaf primitives. For every descendant d of np, we
collect the node node(p) that produced it. This new set of nodes
isN' C NS, and the node inter-relations are the edges E' C ES,
forming a subgraph G’ = (N',E’). All the information is stored in
a XML file, containing all the nodes N’, edges E’, the proportions
meta-data, together with other attributes and actions in G’.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

4.2. Load and Compose

In a later stage, the user selects where some loaded geometry
should be placed on the target building, using the same selection
tool. After the selection, the common ancestor algorithm is used to
find the primitive n; and the graph is traversed from that node to get
the GT = (NT,ET) on the target building.

To merge the graph GT of the target building with the sub-
graph G’ from the library file, we follow the rules of graph rewrit-
ing [Roz97, Hec06]: first, we identify the actions performed on n;
by G, and then separate n; from GT, as it is now going to be pro-
cessed by G’. This can be done with an Exception node E [Pat12],
which assigns a user-defined label to a primitive that fulfills a given
condition; and a Selector node S, which deletes any primitive that
does not have the adequate label. We connect node(n;) to E, and
then S to E’s output. Finally, we reconnect all nodes connected to
the outputs of node(n,) to be the outputs of S. The parameters for E
node are set to select n; descendants. This way, all other primitives
produced by node(n;) will continue being processed as before, with
n; set aside of the process.

The next step it to redirect f to the loaded subgraph G’. Again, we
do this with another selector node S that is set to keep ¢ and delete
all other primitives. Now, we have to load and integrate the graph
G’ into the new graph, attaching the nodes in N to the outputs of
S. For that, we instantiate G’, including all nodes in N " and their
connections. Remember that we have kept information about np,
the node in G° that produced the chosen primitives p, so it will be
composed along with the other nodes in G’.

The final step in the gluing process is to transfer all the useful
connections from n,, to the last selector node created, S. We say that
a connection ef’ from ny, to n; is useful if filter(n;) € I (remember
that [= allLabels(p)). Finally, we simply delete np. As we have
stored the original proportions and sizes in the XML file, there is
no need to manually adjust them to have a consistent result.

5. Results and Conclusions

Our system is implemented on top of SideFX’s Houdini [Sid12].
using the buildingEngine system [RP10, Pat12]. Given that the im-
plementation is done using embedded Python scripts and external
Python methods, the presented framework is easily reproducible
almost straightforwardly.

Figure 5 shows new buildings with facades created (or modified)
using parts from an already existing procedural building. A typical
modeling session using our system (see Figure 1) has the following
sequential steps for each part of the building to be reused: In a first
stage, the user navigates through the source building using the se-
lection tool (see Figure 3), use the select button to store in an XML
file. Then, in a posterior session, the user can navigate through a
target building to select the part where to integrate one of the saved
structures, and finally applies the compose operation to load and
merge both structures.

The main contribution in usability of our approach is that it is an
end-to-end process that runs without needing to write any rules or
even neither changing any parameters: everything is done visually.
We have explored new alternatives for storing and visual editing

36 A. Arangua, G. Patow and G. Besuievsky / Reusable procedural building parts

Figure 5: Two examples where different parts from an existing building are saved to disk and later inserted into procedural buildings. Above:

into an office building. Below: into the Raccolette house.

procedural buildings, by developing a library of reusable procedu-
ral parts that would allow non-technical users to reuse whole rule-
sets from existing ones, without the burden of any manual interven-
tion nor knowing any grammar.

Although we designed our system with the idea of freeing the
user from tedious manual intervention at the ruleset level during
the storing or loading and composing operations, in some cases the
user might want to manually adjust the resulting ruleset. In general,
in our experiments we found that there was no need to further edit
the resulting ruleset, as the implemented graph-rewriting steps al-
ready glued correctly the two graphs. However, the automatic pro-
portion adjustment for the parameters described in the previous sec-
tion may need some further parameter tweaking, which is to be ex-
pected: it can happen that the measures and distances designed for
a building to look right might not fit well to a target building and
could require some adjustment. For instance, an asset could require
an offset to be positioned correctly in a given building, but the same
offset, even if corrected as described in our system, might lead to
a separation between parts of the building coming from different
rulesets, resulting in a lower geometric quality as the model would
not be watertight. In any case, these small adjustments are quite
simple to perform. All the examples in this paper were rendered
without any manual user intervention.

Acknowledgements

This work was partially funded by project TIN2017-88515-C2-2-R
from Ministerio de Ciencia, Innovacién y Universidades, Spain.
Our buildings are based on the Raccolet house and Urban Sprawl
models from Daz3D (http://www.daz3d.com/).

References

[Autl2] AUTODESK:
meshmixer.com. 1

Meshmixer, 2012. URL: http://www.

[BBP13] BARROSO S., BESUIEVSKY G., PATOW G.: Visual copy
& paste for procedurally modeled buildings by ruleset rewriting.
Computers & Graphics 37, 4 (2013), 238-246. Special session on pro-
cedural modeling. doi:10.1016/3j.cag.2013.01.003. 1,2

[Esr12] EsrI: Cityengine, 2012. URL: http://www.esril.com/
software/cityengine. 2

[FKS*04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN P.,
KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Modeling by ex-
ample. In ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
SIGGRAPH 04, ACM, pp. 652-663. 1

[Hec06] HECKEL R.: Graph transformation in a nutshell. In Electr. Notes
Theor. Comput. Sci (2006), Elsevier, pp. 187-198. 3

[LSWWI11] Lipp M., SCHERZER D., WONKA P., WIMMER M.: In-
teractive modeling of city layouts using layers of procedural content.
Computer Graphics Forum (Proceedings EG 2011) 30, 2 (Apr. 2011),
345-354. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

http://www.meshmixer.com
http://www.meshmixer.com
https://doi.org/10.1016/j.cag.2013.01.003
http://www.esril.com/software/cityengine
http://www.esril.com/software/cityengine

A. Arangua, G. Patow and G. Besuievsky / Reusable procedural building parts

[LWWO08] Lipp M., WONKA P., WIMMER M.: Interactive visual editing
of grammars for procedural architecture. ACM Transactions on Graphics
27, 3 (Aug. 2008), 102:1-10. 1,2

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GooL L.: Procedural modeling of buildings. ACM Trans. Graph.
25,3 (2006), 614-623. 1,2

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-OR D.: A
sketch-based interface for detail-preserving mesh editing. ACM Trans.
Graph. 24, 3 (July 2005), 1142-1147. 1

[Pat12] PATOW G.: User-friendly graph editing for procedural modeling
of buildings. IEEE Computer Graphics and Applications 32 (2012), 66—
75.2,3

[Roz97] ROZENBERG G. (Ed.): Handbook of graph grammars and
computing by graph transformation: volume I. foundations. World Sci-
entific Publishing Co., Inc., River Edge, NJ, USA, 1997. 3

[RP10] RIDORSA R., PATOW G.: The skylineengine system. In XX
Congreso Espaiiol De Informdtica Gréfica, CEIG2010 (2010), pp. 207-
216. 3

[RP12] RIU A., PATOW G.: Bringing Direct Local Control to Interac-
tive Visual Editing of Procedural Buildings. In XXII Spanish Computer
Graphics Conference (Jaen, Spain, 2012), Eurographics Association,
pp. 67-75. 2

[Sid12] SIDEFX: Houdini 12, 2012. URL: http://www.sidefx.
com. 2,3

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY W.: In-
stant architecture. ACM Transaction on Graphics 22, 3 (July 2003), 669—
677. Proceedings ACM SIGGRAPH 2003. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

37

http://www.sidefx.com
http://www.sidefx.com

