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Abstract

Random bin picking is still one of the main tasks for robotics in the current days. When the environment is very cluttered, the
calculation of grasping positions can be highly demanding in terms of time and computing power. To ease the computation
load, some parts arranging operations can be performed before the segmentation stage. For instance, for small and light parts,
a feeder-vibrating table system can be used to separate the components, allowing them to be easily grasped, and increasing
the overall performance of the solution. However, as the geometry and requirements for piece type are different, one or more
feasibility tests need to be done for each case. These analyses are usually very time and cost intensive and require the use
of expensive hardware such as robots, grippers, and prototype cells. The use of virtual reproductions of the environment like
digital twins or physical-based simulations could help reduce the time and effort spent on designing the settings, nevertheless,
their correct configuration is not trivial. This paper presents a simulation based analysis method for picking small-sized parts.
It aims to supply the tools and define a streamlined procedure for efficient feasibility testing. Those concepts are applied in
a specific bin picking scenario of multiple small electronic components. For each part type, a set of case-specific initial and
boundary conditions are taken into account, then a series of performance metrics for both bin and vibrating table part picking
are computed. The obtained information is decisive to make strategic decisions regarding the hardware requirements, the
profitability, and the success probability of the project.

CCS Concepts
• Computer systems organization → Robotics; • Computer graphics → Physical simulation; • Hardware validation →
Simulation and emulation;

1. Introduction

Industry 4.0 is based on several technologies that have improved
and settled in recent years. Robotics, high-quality simulations,
and system integration flexibility are some of them ( [JASG21],
[OG20], [GCSR21]).

One suitable field of application of these techniques is the in-
dustry of electronic component manufacturing. Here, a variety of
small parts, such as Pin-Through-Holes (PTH) components, need
to be taken from bins or containers and mounted with high accu-
racy on Printed Circuit Boards (PCBs). Currently, those operations
are performed by specialized machines or human operators. The
former excels in productivity and accuracy, but lacks flexibility for
manufacturing small batches, which many state as a goal of In-
dustry 4.0 ( [ANL∗20], [SKWK20]), [MW17]. The latter on the
contrary, has low productivity but great flexibility and adaptation
to new references. The use of robots in this task could be a com-
promise between both of them.

The mentioned task of picking parts from bins is known as Bin

Picking ( [Buc16]), and it is one of the most common tasks asso-
ciated with robotics. The parts to be grasped can be arranged in a
structured, or random formation (see Figure 1). The latest has been
deeply studied in the recent decades, because the upstream cost of
randomly piling parts is significantly lower than placing them in
a structured arrangement. For the specific case of light and small
pieces, another solution exists that can be applied to randomly ar-
ranged parts: the use of feeders and vibrating tables (see Figure 2).
These systems allow having a controlled number of components si-
multaneously on a table that has the capacity of shaking the parts
in up to three directions (X, Y, Z). This way, they can be rearranged
and placed in a way that a robot can grasp them. Some electronic
components might meet this weight and shape criteria, which al-
lows the use of vibrating tables to pick them.

Bin picking and vibrating table solutions usually require an ex-
tensive analysis specific to the geometry and characteristics of the
part, which adds cost and delays the deployment time. These analy-
ses take into account vision systems and robots, and output metrics
such as the part picking success rate or cycle time. However, this
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Figure 1: Possible part arrangements in bins: (A) structured, (B)
random.

Figure 2: Commercial vibrating table ©Asyril Asycube 240,
Switzerland (source Asyril).

paper proves that before experimenting with physical hardware like
cameras or robots, virtual simulations can be used as a primary tool
to validate if a prototype is feasible or not. By creating a virtual
copy of the environment using detailed 3D models, reproducing
the sensor’s output and the robot behavior, and utilizing an accu-
rate physics engine, it is possible to systematically test multiple
solutions with relatively low effort.

This paper proposes a parametrical pipeline to analyse the fea-
sibility of picking small components, with different settings, e.g.
bin and vibrating table, based on virtual simulations. In Section 2
the literature related to cell optimization, part picking, and small
part grasping is analysed. Section 3 explains the methodology used
in the pipeline. In Section 4, how simulations were designed and
implemented is explained. Also, a test-case example is described.
Section 5 shows the results of that test-case. Finally, Section 6 states
the obtained conclusions and the future work.

2. Related work

Robotics is one of the backbones of Industry 4.0. However, dur-
ing operation, robots usually acquire data from other sensors (e.g.
2D, 3D cameras, safety light curtains) and physically interact with
other components (e.g. more robots, bins, or conveyors). All these
elements together shape what is called a robotic cell. Since these
independent units need to work together, their position and the way
they interact in the workspace is a key component for achieving
the required production needs. For these reasons, many researchers

have been analyzing the problem. Zhang et al. [ZF17] for example,
look for the main challenges to get a good design. It mentions the
importance of choosing the correct type and number of robots, the
cell layout, the tasks scheduling, a tool design optimized for the
task, and the importance of human-robot collaboration. Another
study ( [BSG∗15]) talks about how robotic cells can be designed
in a modular way, to increase the flexibility of adding, removing or
moving the robots that compose it. Laemmle et al. ( [LG19]) men-
tion the benefits of using simulation tools for such a task. But, they
also show how time-intensive the task of generating a correct vir-
tual scenario can be. Additionally, Gadaleta et al. ( [GBP17]) anal-
yses the reduction of the energy consumption of the cell depend-
ing on its layout design. However, no literature has been found that
specifically addresses the bin or vibrating table design optimization
problem.

Research about Bin Picking is developed in many directions.
[SK14] shows a general virtual framework for path planning, de-
sign, and simulation of Bin Picking applications. Regarding mo-
tion planning, [MKS∗21] uses Deep learning to separate entangled
parts; [IDX∗20] proposes an algorithm that takes into account the
dynamics of the robot and some candidate grasps (generated by
a grasp planner) to produce optimal planning; and [VVS17] uses
motion primitives for generating the planning. Finally, [FDN∗20]
and [MTS∗20] research new metrics and benchmarks to evaluate
Bin Picking.

Innovation has also been applied in the design of the grippers.
[BG18] for example, proposes a two-finger gripper to grasp flat
parts on a surface. [ZWW∗20] on the other hand, proposes a grip-
per with a rotational degree of freedom on the jaws to rotate the
parts in the gripper without involving the robot joints in it. Finally,
other studies (such as [DTA20]) propose custom grippers for pick-
ing parts in cluttered environments.

Regarding virtual simulations, in the last years, an increasing
adoption of digital twins in industrial settings has been seen. Es-
pecially during the design phase of manufacturing lines and in-
telligent manufacturing [ZZL∗20]. In [KKT∗18] the authors cat-
egorize the relation between a digital model and its corresponding
physical model, based on the level of integration and the data flow
between the real and simulated world. Nowadays exist many sim-
ulation environments that have a built-in physics engine and can
produce high fidelity results. Some are: ROS [QCG∗09], the Robot
Operating System which with his second iteration fixed many is-
sues that prevented it to become the industry standard [MVPR∗20];
Pybullet [CB16], a python-based physics engine very popular in
deep reinforcement learning applications; MuJoCo [TET12], and
advanced physics simulator with a focus on contact forces calcu-
lation; Unity, a 3D simulator supported by the Nvidia Physx en-
gine, initially designed for creating video games, but that has been
increasingly adopted to simulate industrial environments and has
good integration with 3rd party tools, e.g. ROS [SHT∗17].

3. Methodology

The goal of this paper is to formulate a procedure for small part
picking analysis and test its effectiveness. Therefore, in this section
we present a standard methodology that models this procedure. In
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practice, it takes a real use case as input and abstracts it by forming
a simpler simulated environment with respect to the task require-
ments and boundary conditions. This formulates the real use case
verification problem as a task of searching an optimal solution in
the solution space provided by the constrained simulated environ-
ment. To evaluate the solution, validation strategies are exploited
with respect to the specific task involved in the use case. Finally,
the analysis is performed on top of repeated experiments. Certain
metrics are used to compare the solutions with the test-case require-
ments. In the following paragraphs, the proposed standard method-
ology is explained along with some examples in specific tasks:

The requirements for a use case are normally task-related. For
instance, in a bin picking task, those consist in the number of parts
to be grasped per hour or to be able to provide a continuous flow of
parts during certain amount of time.

The solution space is created by simulating the real use case
with boundary conditions, where trade-offs are made between the
fidelity and the complexity of the solution space. Boundary condi-
tions constrain the solution space with respect to the specific use
case.

The validation strategy describes how good a solution is. In a bin
picking task, it could be a binary function which verifies that a part
can be picked and placed without colliding with the scene. A more
sophisticate validation strategy could also be defined, such as given
a grasping pose, the probability that a path planner can solve the
path planning problem within a time limit.

The metrics define how the repeated experiments will be anal-
ysed comparing with the requirements. Commonly used metrics are
the probability to find a valid part or emptying a bin in a picking
task.

4. Implementation

Here is presented an implementation of the general methodology
explained in Section 3. This section explains its specific details and
extends it with a test-case example.

4.1. Part validity analysis

The core concept behind the feasibility tests is the definition of
a graspable piece. A test piece is considered valid for pick-and-
place if it satisfies a series of subsequent constraints. The testing
is performed following the specific order shown in Figure 3, and if
one requirement is not met, the subject is considered not valid for
pick and place. To satisfy a condition, all previous ones need to be
satisfied too. In the following paragraphs, these constraints will be
presented in detail.

Figure 3: Part validity process.

A part is considered a valid candidate if it is placed in a position

close to one or more grasping poses predefined by the user. The def-
inition of these poses is given by the axis of the part that is aligned
with the world axis Z (Zw) and by the one aligned with the gripper
closing direction. Figure 4 shows two grasping pose examples. If
the orientation of the analysed part is closer than a rotation of 45º
in any direction from a user-defined grasping pose, the subject is
considered a valid user candidate ( [IDX∗20]). In that case, all the
pose information is saved (e.g. grasping position, gripper opening
during grasping). In Figure 5 it can be seen how by changing the
part angle, the chosen user-defined pose is different.

Figure 4: Example of user defined grasping poses: (A) isometric
view of the PTH, (B) is defined by part axis X p (red) coinciding
with world coordinate Zw, and (C) by part axis Y p (blue). In both
cases the gripper closes parallel to part axis Zp.

Once the part was confirmed as a candidate, its placeability is
tested, because there might be some cases in which the gripper col-
lides the table when placing the parts on the target region. Since
the case of a parallel jaw gripper is considered, this is done by iter-
atively looking for gripper-table collisions, in a range of rotations
specified by: the grasping point, the jaw closing axis, and a range
of angles (-45º to 45º in this case [IDX∗20]). Figure 6 presents the
case in which a grasping pose is considered valid for grasping but
not for placing. In (A) the minimum (pose 1) and maximum (pose
2) values of the range are collision-free, while during the placing
operation (B) the relative position of the grippers and the parts are
kept the same, but they are rotated 90º to the placing orientation of
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Figure 5: Example of influence of part angle in chosen user-defined
pose: (A) X p (red) has an angle of 25º respect of Zw. Therefore, the
grasping pose defined by X p is chosen; (B) Y p (blue) has an angle
of 40º respect of Zw. Therefore, the grasping pose defined by Y p is
chosen.

the part. It can be seen that position 1 collides against the placing
surface. Therefore, that particular orientation is not valid. All valid
orientations are saved for the next steps.

At this stage, the remaining poses are tested for collisions be-
tween the gripper and the container (see Figure 7). The simulator
built-in physics engine is used to compute collisions and interac-
tions between objects. In this and the next step, we used a simpli-
fied version of the real gripper for faster collision checking (see
Figure 8). The gripper model is approximated by a cylinder for the
body and a cuboid for the workspace of the jaw. Parameter D is
the diameter of the gripper, which is kept constant throughout the
whole project; U is the width of the jaws in the approach position.
This value depends on the part to be grasped as well as the grasp-
ing orientation; parameters V and W are the height and depth of the
jaws, which are also kept constant.

The last stage is similar to the previous one and involves the
collision check between the gripper and the other pieces close to
the target (see Figure 9). The tests are also made with the built-in
physics engine and if there are no neighbour parts that could inter-
fere with grasping, the part is finally considered valid and ready to
be picked.

4.2. Simulator

The simulator was developed using ©Unity, USA, V2020.3.24f1.
We chose it because it has a high-fidelity physics engine, namely
PhysiX SDK 4, with support of joint articulations and very fast col-
lision detection. In addition, this engine is very famous and there-
fore has a very rich library of plugins, components, and tutorials.

At the simulation initialization stage, a file containing all initial
and boundary conditions is loaded and parsed. The main variables
in this file are the following:

• Experiment ID
• Number of simulation instances (Nit )
• Bin size (x, y, z) in mm (BINdim)
• PTH type to analyse (PT Htype)
• Number of pieces in bin or feeder (Nparts)
• Presence of vibrating table.

Figure 6: Gripper position analysis during (A) part picking, (B)
placing.

• Type of experiment (Static analysis, bin emptying simulation,
etc.)

• Optimal range of parts in bin (only applies in vibrating table sce-
nario)

• Maximum number of vibrations (only applies in vibrating table
scenario)

Right after parsing it, Nit demo instances are created with ran-
domized initial part positions. This allows testing the same bound-
ary conditions multiple times in just one simulation (see Figure 10).
Each instance is composed of three main objects: a part (PTH) fac-
tory (responsible for creating the PT Htype instances), a gripper, and
a bin (with its dimensions defined by BINtype).

Mesh bodies were attached to every model, so the physics en-
gine could register the collisions between them. Physical proper-
ties were only applied to the pieces, so they could be affected by
gravity and move realistically. The bin is considered to be fixed in
space, and therefore, no physical properties were needed for it. Fi-
nally, the simulation checks if there are any collisions between the
gripper and the other elements in the scene.

Afterwards, the type of experiment associated with the current
input is executed. For example, Figure 11 shows an experiment
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Figure 7: Gripper colliding (left) and not colliding (right) the bin.

Figure 8: Simplified gripper model: (A) Isometric view, (B) front
view, (C) side view.

where the validity of each part in a bin is checked, and if it sat-
isfies all previously explained conditions, the part is removed from
the bin. These experiments are explained in detail in sections 4.3.1
and 4.3.2.

After all the iterations are over, an output file containing the sim-
ulation results is exported. The generated values are the following:

• Iteration number (n ∈ [1,Nit ])
• Initial positions of all the parts
• Candidacy of each part in the simulation
• Placeability of each part in the simulation
• Result of bin collision check of each part in the simulation
• Results of neighbour collision check of each part in the simula-

tion
• Total number of valid parts
• Picking position of each part that has been removed from the bin

(only applicable in bin picking experiments)
• Number of searches done before a valid part was found and re-

moved from the bin (only applicable in bin picking experiments)

Figure 9: Gripper colliding (left) and not colliding (right) with the
neighbour parts.

Figure 10: Multiple demo instances in a single simulation.

• Number of vibrations done before each part was removed from
the bin (only applicable in vibrating table experiments)

Data is then analysed, and the performance metrics are com-
puted.

When the simulation was being implemented, several problems
and limitations appeared.

First, when the part factory created the instances, if the time
between the generation of two objects was too small, the physics
engine would detect a collision between them and would create a
force sending them away from the bin. However, if the time be-
tween creating one part and the next was greater, this phase would
have been taken too long. The solution consisted in defining sev-
eral points in which the parts were created and then dropped in the
container. Second, due to the difference in size between the PTHs
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Figure 11: Gripper in a part grasping position.

and the other objects (gripper, container), many times the physics
engine would not register the collisions and the parts would just
pass through other surfaces. The solution consisted in using a con-
tinuous collision detection technique instead of the default discrete
one and decreasing the physics solver time step.

Finally, the total number of parts in the scene depends on the
number of simulation instances and the quantity of parts (PTHs) on
each of them. If that value was too high, all the resources of the PC
were used, slowing down the simulation and making them take too
long time. Therefore, to get results faster, the number of iterations
in each simulation had to be reduced.

4.3. Experiments

We define four types of experiments to evaluate the validity of pick-
ing parts from static bins and vibrating tables, two for each case.
This section explains each of them.

4.3.1. Static bin picking

In the first group of experiments, we analyse the viability of bin
picking with two different tests, a static analysis and a bin emptying
simulation.

The goal of the static analysis is to find the optimal bin dimen-
sion for each part type. The solution is subjected to three limita-
tions:

• The shape of the bin must be rectangular, meaning that circular
or hexagonal bins for example are not considered.

• The maximum length on any dimension (x, y, z) is limited by the
boundary conditions. This constraint comes from the assumption
that the available space near the robot is limited.

• The volume of the bin needs to be sufficient to hold the number
of parts stated in the boundary conditions.

Considering these limitations, a list of possible solutions (i.e. set
of bins with different dimensions) is generated for each PTH type.
Then, for each PTH - bin combination, we execute several sim-
ulations. In each one, the bin is filled up with a fixed number of
randomly distributed parts and then their candidacy, placeability
and bin collisions are checked. At this stage, the collision between
the gripper and parts other than the candidate is not checked. This

means that even if the target part is located in the middle of the
container, surrounded by other parts, it is considered a valid candi-
date, being placeable and bin collision free. Once the simulations
for each part type are finished, we consider the bin with the best
success rate among all analysed options, and use it in the second
experiment, bin emptying simulation.

In this second experiment, the goal is to check how probable is
to empty an optimal bin full of parts. Therefore, once parts are ran-
domly placed in the bin, besides testing the candidacy, placeability
and bin collision of each part, also the collision of the gripper with
the neighbour parts is evaluated. If a part satisfies all four condi-
tions, it is considered valid, and removed from the bin. When this
happens, as PTHs in the simulation are influenced by gravity, they
will move within the bin, creating a new scenario. Therefore, once
a part is removed, we have to test again the remaining parts. These
simulations finish when there are no valid parts or the bin is emp-
tied.

4.3.2. Vibrating table

In the second group of experiments, the viability of vibrating ta-
ble picking is analysed. It is also split into static and bin emptying
analysis.

There are two important differences between picking from a bin
or a vibrating table: the latest has the ability to change the position
of the parts, and it can also drop more parts on the table through a
feeder. These two properties allow the system to always have the
optimal number of parts on the table, to maximize the chances of
having valid parts.

This experiment aims to find the optimal region, defined by a
minimum and maximum number of parts on the table. This is done
by testing different numbers of parts on the table and choosing the
area that yield the best results. In this case, the testing range for
each part type goes from 1 part up to 100. Figure 12 shows how 1
and 100 parts look like in a vibrating table simulation.

Figure 12: Vibrating table static analysis: (A) 1 part, (B) 100 parts.

Once the optimal region (min∗, max∗) is found, the next step is
to simulate a feeder emptying procedure. In this case, the vibrating
table is filled with max∗ parts and an initial vibration is applied to
scatter the parts, then the analysis is launched. We test each part
on the table, and if it is found valid, it is removed from the simula-
tion. This process will continue until one of the following situations
occur:

• If there are no other valid parts in the table and the number of
parts in the table is within the optimal region (min∗ ≥ Nparts ≥
max∗) a vibration is triggered, which will modify the pose of the
parts.
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• If there are no other valid parts in the table and the number
of parts in the bin is less than the minimum optimal (Nparts <
min∗), the feeder will throw parts on the vibrating surface un-
til the number of parts is the same as the maximum optimal
(Nparts = max∗). Before starting checking the parts, a vibration
is triggered.

• If the total number of picked parts is equal to the initial parts on
the feeder (meaning that the feeder is empty), the simulation is
stopped.

4.4. Test-case

As mentioned, the proposed pipeline is used in a test-case example.
The boundary conditions and customer requirements of this indus-
trial application example are the following:

• Each PCB is composed by 1xPTH0, 2xPTH1, and 2xPTH2 (see
Figure 13). Their weight and geometry allow the use of both
static bins and vibrating tables.

• 60 PCBs required per hour.
• A human operator fills a bin every 4 hours. Therefore, the bin ca-

pacity needs to be greater than 240 for PTH0 and 480 for PTH1
and PTH2.

• Due to limited available workspace, the largest length in any di-
mension (X, Y, Z) is 0.3 m (only applies to bin picking)

• Fixed vibrating table size is 195x150x27mm (only applies to vi-
brating table picking) (see Figure 2)

Figure 13: Analysed parts: (A) PTH0, (B) PTH1, (C) PTH2.

5. Results

As previously mentioned, experiments are divided into two groups:
static bin and vibrating table picking. This section analyses the data
generated in those simulations with the test-case boundary condi-
tions stated in Section 4.4.

5.1. Bin picking

As mentioned in section 4.3.1 the first experiment done in the bin
picking scenario is used to search the optimal bin size for each PTH
type. The dimensions of the candidate bins are shown in Table 5.1.
Each bin has an unique XY surface for each part type. As we want
to keep the volumen of the bin constant for each PTH type, the Z
dimension will be automatically defined. Figure 14 shows the can-
didacy, placing and bin collision free probability for parts PTH0,
PTH1 and PTH2 depending on the XY surface of the bin after 40
iterations. It shows that candidacy and placeability varies less than
7%, 5% and %3 for PTH0, PTH1 and PTH2 respectively with the
analysed bin. However, bin collisions are very dependent on the

Table 1: List of analysed bins and their dimensions

Part type Bin dimensions
(X, Y, Z) [mm]

PTH0 100, 100, 27
PTH0 100, 125, 22
PTH0 100, 150, 18
PTH0 100, 175, 15
PTH0 75, 75, 48
PTH0 75, 100, 36
PTH0 75, 125, 29
PTH0 75, 150, 24
PTH0 75, 175, 21
PTH1 200, 75, 158
PTH1 300, 100, 79
PTH1 300, 125, 63
PTH1 300, 150, 53
PTH1 300, 175, 45
PTH1 300, 200, 40
PTH1 300, 225, 35
PTH1 300, 250, 32
PTH1 300, 275, 29
PTH1 300, 300, 26
PTH2 300, 75, 88
PTH2 300, 100, 66
PTH2 300, 125, 53
PTH2 300, 150, 44
PTH2 300, 175, 38
PTH2 300, 200, 33
PTH2 300, 225, 29
PTH2 300, 250, 26
PTH2 300, 275, 24
PTH2 300, 300, 22

XY surface of the bin, the greater this value is, the probability of
not having a gripper-bin collision is higher.

In this case, the optimal bins for PTH0, PTH1 and PTH2 (bin∗0 ,
bin∗1 and bin∗2 ) have the following dimensions:

• bin∗0 (x, y, z) = 100, 175, 15 mm
• bin∗1 (x, y, z) = 300, 300, 26 mm
• bin∗2 (x, y, z) = 300, 300, 22 mm

Once the optimal bin for each part type is found, the bin picking
simulation is performed. It can be seen that the bin was not emptied
in none of the iterations, and in the single best case, 11 parts were
taken out of 480 (see Table 2).

The chosen optimal bins had an average bin collision free prob-
ability of 25.02%, 34.77% and 38.8%. However, those values de-
creased to 0.36%, 0.47% and 1.27% when the collision with the
neighbours was checked. Therefore, these results show that with
the current conditions, picking from static bins is not possible. The
main reason being that the gripper is too bulky and hits other parts
in the container.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

7



I. Mendizabal-Arrieta, A. Tammaro, M. Ojer & X. Lin / Simulation based initial feasibility analysis pipeline for small-sized part picking

Figure 14: Candidacy, placeability and bin-collision analysis for
parts (A) PTH0, (B) PTH1 and (C) PTH2.

Table 2: Bin picking simulation results for each part type.

PTH Iterations Parts Emptied bins Average
valid parts

Min valid
parts

Max valid
parts

Standard
Deviation

0 40 240 0 0.8 0 4 0.92
1 40 480 0 2.7 0 6 1.67
2 40 480 0 7.5 2 11 2.28

5.2. Vibrating table

As mentioned in section 4.3.2, before performing the vibrating ta-
ble picking, an analysis was done to find the range of parts that
need to be on the table in order to maximize the success proba-
bilities of part picking tests. In order to do it, some experiments
were performed. In each of them, a exact number of parts (i.e.
n∈ {1,2, ...,100}) were placed in the vibrating table and their pick-
and-place validity was analysed. To introduce the randomness, each
experiment was repeated 40 times by randomly dropping the parts
onto the vibrating table. The average number of valid parts over
those 40 experiments is computed to represent the performance in
each experiment. Figure 15 shows the average number of valid parts
depending on how many parts are located in the vibrating table. As
it can be seen, when there are few parts on the table, the number
of available valid parts is very low. This is caused by the part pose
that is not a valid candidate, or the part is not placeable, or because
the gripper collides with the bin when trying to grasp it. When the
number of parts is increased, we reach the maximum number of
valid candidates, until it decreases again due to collisions with the
other parts, since the environment starts to be more cluttered.

In order to find the range of maximum performance, a non-linear
regression is calculated to obtain the performance curve for each
PTH type. In practice, a fourth order model is employed in the re-

Figure 15: Number of valid parts in vibrating table depending on
total number of parts with their fourth order polynomial fittings.

Table 3: Vibrating table picking simulation results for each part
type.

PTH Iterations Parts Optimal range Emptied bins Av. vibrations
to empty feeder

0 50 240 44-54 50 123.14
1 50 480 17-27 50 166.96
2 50 480 22-32 50 139.07

gression to fit with the discrete data and further eliminate the noise
introduced by the randomness. Then the best performance of each
PTH type is found at the maximum value of each curve.

For these part geometries and the analysed vibrating table di-
mensions, the maximum performance points are the following: 49
PTH0 parts on the table, 22 PTH1 and 27 PTH2.

Taking this information as the starting point, new experiments
for the vibrating table picking are prepared. The input needed for
them is not a single number of parts, but a range, since other-
wise the feeder would be constantly placing new PTHs on the vi-
brating table. Therefore, a ± 5 part margin is considered, mak-
ing the optimal ranges the following: (min∗0 ,max∗0 ) = (44,54),
(min∗1 ,max∗1 ) = (17,27), (min∗2 ,max∗2 ) = (22,32).

The results of the vibrating picking process are shown in Table
3. As it can be seen, 100% of a total of 150 bins (50 for each PTH
type) were emptied. In order to empty the feeder with the PTH1
components, the table had to vibrate on average 167 times. As the
whole feeder emptying process needs to be done in 240 minutes
(i.e. due to the process boundary conditions) a vibration was done
every 1.43 minutes. Therefore, a vibrating table system is consid-
ered valid for picking these parts.

6. Conclusions and further work

In a bin picking scenario for small and light parts, picking can be
done from static containers or feeder-vibrating table systems. The
second one requires more expensive hardware, but has the ability
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to scatter and vibrate the parts on the surface, increasing the suc-
cess probability. However, the feasibility test of either of them is
very time-consuming and requires the use of specific hardware. In
this paper, a simulation based initial analysis pipeline for picking
small parts was presented. Obtaining a valid result in this test is a
necessary but not sufficient condition for a bin type and small part
geometry combination to be picking feasible.

As the simulations are fast and cheap to run, many robotic cell
designs can be discarded quickly, focusing on those with higher
success probabilities. Once a valid result is obtained, the subse-
quent tests involving other hardware (e.g. real robot or cameras)
can be performed.

In the paper, the parameters of the simulator are explained with
special focus on the configuration of the small parts. Then, a test-
case defined by its boundary conditions is described and used as
an example for the proposed strategy. The results reveal that the
analysed parts are not valid for bin picking, but they are if a feeder-
vibrating table system is used.

Further work could be extended in many directions. First, other
kinds of grippers, such as vacuum or multi-finger, could be imple-
mented. Focusing more on the simulation field, parallel program-
ming on GPUs could be used to reduce the computation time. Fi-
nally, in the current paper, especially in the bin picking scenario,
a large subset of parts is not valid because they did not satisfy the
placeability condition. In future versions, the user could provide
more information about how to grasp parts in that configuration, to
place them in an intermediate surface and regrasp them.
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