
CEIG – Spanish Computer Graphics Conference (2019)
A. Jarabo and D. Casas (Editors)

Perfect Spatial Hashing for Point-cloud-to-mesh Registration

Daniel Mejia-Parra1,2, Juan Lalinde-Pulido3, Jairo R. Sánchez†2, Oscar Ruiz-Salguero1 and Jorge Posada2

1Laboratory of CAD CAM CAE, Universidad EAFIT, Colombia
2Vicomtech, España

3High Performance Computing Facility APOLO, Universidad EAFIT, Colombia

Abstract
Point-cloud-to-mesh registration estimates a rigid transformation that minimizes the distance between a point sample of a sur-
face and a reference mesh of such a surface, both lying in different coordinate systems. Point-cloud-to-mesh-registration is
an ubiquitous problem in medical imaging, CAD CAM CAE, reverse engineering, virtual reality and many other disciplines.
Common registration methods include Iterative Closest Point (ICP), RANdom SAmple Consensus (RANSAC) and Normal Dis-
tribution Transform (NDT). These methods require to repeatedly estimate the distance between a point cloud and a mesh, which
becomes computationally expensive as the point set sizes increase. To overcome this problem, this article presents the imple-
mentation of a Perfect Spatial Hashing for point-cloud-to-mesh registration. The complexity of the registration algorithm using
Perfect Spatial Hashing is O(NY × n) (NY : point cloud size, n: number of max. ICP iterations), compared to standard octrees
and kd-trees (time complexity O(NY log(NT)× n), NT : reference mesh size). The cost of pre-processing is O(NT + (N3

H)
2)

(N3
H : Hash table size). The test results show convergence of the algorithm (error below 7e-05) for massive point clouds / refer-

ence meshes (NY = 50k and NT = 28055k, respectively). Future work includes GPU implementation of the algorithm for fast
registration of massive point clouds.

CCS Concepts
•Theory of computation → Convex optimization; Computational geometry; •Computing methodologies → Mesh models;
Point-based models; •Applied computing → Computer-aided design;

1. Introduction

Point set registration is ubiquitous in Reverse Engineering, Medical
Imaging, Visual (Dimensional) Inspection, Robotics, among other
disciplines.

Consider two point set samples of an object, each one conducted
in its own coordinate system. The points in one set do not exactly
correspond to object locations sampled in the other set. Moreover,
parts of the object visible in one coordinate system may be unac-
cessible for sample in the other coordinate system (e.g. two clipped
depth scans of the same object). The point set registration problem
consists of finding a rigid transformation that rotates and translates
one point set onto the other, producing the best possible matching
between the transformed and the static point sets.

Point set registration is strongly qualified by the underlying
structure of the point sets. Registration of surface point samples
is very different from registration of point samples obtained from
the interior of the same object (such as the volumetric point sets
obtained from Computed Tomography Scans) [SK15]. It is an im-
portant advantage the fact that a 2-manifold structure (i.e. non self-

† Corresponding Author

intersecting surface) might be recognized as underlying the point
sets. The present publication refers to registration between a point
set which is optically sampled on an object surface vs. a triangular
mesh (i.e. a planar triangular graph) obtained from a CAD repre-
sentation of the object. The problem of point-cloud-to-mesh regis-
tration is relevant in CAD CAM CAE applications where the CAD
(or triangular mesh) model of the object to register is known a pri-
ori. These applications include (but are not limited to) Dimensional
Inspection [SSB18, MPSRS∗19] and Robotic Bin Picking [BG10].

Within point-cloud-to-mesh registration, the sub-problem of
point-cloud-to-mesh distance is central and heavily contributes to
the computing expenditure. For the later problem, existing liter-
ature relies on spatial partition structures (such as octrees or kd-
trees), which produce logarithmic search times. Given the massive
amount of points of the sets to be registered, it is of interest to
find a more economic strategy. Therefore, this manuscript presents
the implementation of a point-cloud-to-mesh registration algorithm
based on a Spatial Hashing data structure. This Spatial Hashing
structure provides constant time access (O(1)) to the list of close
triangles to a given point p. Consequently, the point-cloud-to-mesh
registration based on Perfect Spatial Hashing is significantly faster
than its hierarchical-based counterparts for massive point sets.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/ceig.20191202 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/ceig.20191202

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

In this manuscript, Section 2 presents a literature review of rele-
vant approaches. Section 3 conveys the methodology applied. Sec-
tion 4 discusses the results obtained with several data sets. Section
5 concludes the manuscript and mentions possible related future
enhancements to the present approach.

2. Literature Review

The problem of point cloud registration has gotten a lot of re-
search interest due to its relevancy in many engineering areas. Refs.
[PCS15, TCL∗13] present a survey on point cloud registration al-
gorithms. The Iterative Closest Point (ICP) algorithm is one of the
most widely used method for mesh registration in such literature.
The algorithm consists of computing the closest points (correspon-
dences) between the point cloud to register and the reference mesh.
Such a procedure is performed iteratively until a convergence crite-
ria is met [BM92]. The ICP extends the quaternion method [Hor87]
for correspondent point-to-point registration.

To avoid local minima, the ICP requires the point-cloud-to-
register and the reference mesh to be locally close enough. User-
assisted alignment of correspondences is used to compute a pre-
registration of the point cloud, which is finally registered by the
ICP [SSB18]. Other ICP variations include feature-based mesh reg-
istration, in which some key points are automatically matched be-
tween the point-cloud-to-register and the reference mesh [PCS15].
These feature-based registration methods rely on spherical harmon-
ics [SLW02] or surface signatures [YF02].

The main problem with ICP registration is the computation of
correspondences (set of closest points from the reference mesh to
the point cloud to register). The most naive approach is the ex-
haustive search, which is quadratic in time complexityO(NY ×NT)
(NY is the point-cloud-to-register size and NT is the number of tri-
angles in the reference mesh). Thus, spatial partitions of the do-
main are usually used to reduce the computational cost of the reg-
istration. Approaches to such spatial partitions include kd-trees
[WGG11], heuristic search [JH02], R-trees [GZZ∗12] and oc-
trees [EBN13], whose search complexity becomesO(NY log(NT)).
Refs. [DI13, DI18] use 1-D hash tables to index octree entries, re-
ducing the octree search toO(NY log(log(NT))). Ref. [YB07] com-
putes a regular grid that encloses the reference mesh, reducing the
registration search complexity to linear O(NY). However, this last
approach demands excessive storage resources as the full rectangu-
lar grid needs to be stored.

Other algorithms for cloud-to-mesh registration have been pre-
sented in the literature. RANdom SAmple Consensus (RANSAC)
is a registration algorithm which takes many different sets of sam-
ples from the point cloud to register, and then fits a different model
to each of these sets. The algorithm returns the best fitted model
according to the optimization criteria [FRS07]. The Normal Distri-
bution Transform (NDT) algorithm computes a 3D grid enclosing
the point cloud to register and the reference mesh, which are used
to compute a spatial probability distribution function. The registra-
tion of the obtained probability functions is performed using the
Hessian matrix method [UT11]. RANSAC and NDT methods have
shown to perform faster than standard ICP methods. However, their
result is non-deterministic and highly sensitive to algorithm param-

eters. A full review on mesh registration algorithms is presented
in [PCS15, CCL∗18].

2.1. Conclusions of the Literature Review

Current mesh registration algorithms rely on spatial partitions of
the 3D domain to search the cloud-to-mesh closest points. Most
of these algorithms are linear-logarithmic. Table 1 summarizes the
mesh registration algorithms presented in the literature with their
respective time complexity.

Table 1: Summary of closest point search algorithms in the litera-
ture. NY is the point-cloud-to-register size and NT is the reference
mesh size.

Reference Computational Complexity
K-d tree search [WGG11] O(NY log(NT))

Heuristic search [JH02] O(NY log(NT))
R-tree search [GZZ∗12] O(NY log(NT))

Octree search [EBN13] O(NY log(NT))
Hash-Octree search [DI13, DI18] O(NY log(log(NT)))

Cubic grid search [YB07] O(NY)

Perfect Spatial Hash (this manuscript) O(NY)

To overcome these problems, this manuscript presents the inte-
gration and implementation of a Perfect Spatial Hashing [LH06]
data structure into the ICP registration process. Given a point to
be registered, the Perfect Spatial Hashing defines a hash function
which returns the closest point from the reference mesh in con-
stant time. As a consequence, the complexity of our registration
algorithm is O(NY × n), improving previous spatial partition ap-
proaches. In contrast to the discretization presented in [YB07],
the Spatial Hash partition reduces significantly the storage require-
ments of the data structure, as the Hash table is optimized to reach
the smallest size possible, at the cost of some pre-processing time.

3. Methodology

Given a point cloud to register Y = {y1,y2, . . . ,yNY } and a ref-
erence triangle mesh M = (T ,P) (T = {t1, t2, . . . , tNT }, P =
{p1,p2, . . . ,pNP}), the mesh registration problem consists of find-
ing a rigid transformation (rotation R ∈ SO(3) and translation
p0 ∈ R3) that minimizes the distance between the point cloud Y
and the reference meshM:

min
R,p0

NY

∑
i=1

d(Ryi +p0,M)2 (1)

where d(y∗i ,M) is shortest distance between the registered point
y∗i and the meshM. The registered point cloud is the set of points
Y∗ = {y∗1 ,y∗2 , . . . ,y∗NY

} such that y∗i = Ryi +p0.

The following sections describe the Iterative Closest Point (ICP)
algorithm [BM92] that solves the above minimization problem and
the integration of Perfect Spatial Hashing [LH06] in the registration
process.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

42

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

3.1. Mesh Registration of Correspondences

Let xi ∈ M be the closest point to the registered point y∗i (see
Fig. 1). The set X= {x1,x2, . . . ,xNY } is a resample ofM, known as
the set of correspondences of Y. As a consequence, Eq. 1 becomes:

min
R,p0

NY

∑
i=1
‖Ryi +p0−xi‖2 (2)

𝒚𝑖
∗ ∈ 𝒀∗

𝒙𝑖

Figure 1: Registered point y∗i and its correspondent (closest) point
xi ∈M. xi does not belong to the original discretization ofM.

It is worth noting that X and Y share the same number of points
(|X| = |Y| = NY) and the set X does not contain the same points
as the initial discretization of M (i.e. X 6= P). In addition, since
the solution Y∗ is an unknown of the problem, the set X is not
known a priori. However, an estimation of X can be computed using
the initial point set Y. Such an estimation is discussed later in this
section.

The minizimation problem presented in Eq. 2 becomes the fol-
lowing maximization problem [BM92]:

max
R

NY

∑
i=1

(yi−µy)
T R(xi−µx) (3)

and the optimal solution to p0 becomes:

p0 = µx−Rµy (4)

where µx ∈ R3 and µy ∈ R3 are the centroids of the point clouds
X and Y, respectively. Let S be the 3× 3 cross-covariance matrix
between X and Y, defined as follows:

S =
NY

∑
i=1

(xi−µx)(yi−µy)
T (5)

The rotation R can be expressed as a unit quaternion q̇ ∈ R4,
‖q̇‖= 1. Using quaternion algebra [Hor87], Eq. 3 becomes:

max
‖q̇‖=1

NY

∑
i=1

q̇T Qiq̇ = max
‖q̇‖=1

q̇T Qq̇ (6)

where q̇ ∈ R4 is the unit quaternion (‖q̇‖ = 1) representation of
R and Qi is the 4× 4 symmetric matrix associated to the cross-
covariance (xi−µx)(yi−µy)

T . The matrix Q (Q=∑i Qi) is defined

in terms of the cross-covariance matrix S as follows [Hor87]:

Q=


S00 +S11 +S22 S12−S21 S20−S02 S01−S10

S12−S21 S00−S11−S22 S01 +S10 S02 +S20
S20−S02 S01 +S10 S11−S22−S00 S12 +S21
S01−S10 S02 +S20 S12 +S21 S22−S00−S11


(7)

Finally, Eq. 6 has the form of a Rayleigh quotient, thus becom-
ing an eigenvector problem. The optimal rotation q̇ that registers
the set of correspondences X,Y is the eigenvector of the matrix Q,
corresponding to its largest eigenvalue.

3.2. Iterative Closest Point

As previously discussed, the set of correspondences X is not known
a priori since the solution y∗i = Ryi + p0 is not known. The ICP
algorithm [BM92] proposes to estimate a sequence of correspon-
dences X(k) based on a previous known point cloud Y(k−1). The
correspondent point x(k)i ∈M is the closest point inM to the point

y(k−1)
i :

x(k)i = arg min
x∈M

‖x−y(k−1)
i ‖ (8)

In Eq. 8 it is reasonable to assume that ‖x(k)i −y(k−1)
i ‖< ∆, with

∆ > 0 being a distance threshold. This assumption means that the
point cloud Y(k−1) is locally close enough to the reference mesh
M (i.e., d(y(k−1)

i ,M)< ∆). Any point y(k)i not satisfying such as-
sumption is discarded from Y(k−1). Such an assumption is made
in order to: (1) avoid falling in local minima and, (2) filter outliers
from Y(k−1) [BM92]. Other methods already presented in the liter-
ature can be used as a pre-processing to guarantee that most of the
points in Y satisfy the previous assumption before our algorithm
starts [SSB18].

With such a set of correspondences, it is possible to solve the
optimization problem presented in Eq. 2, which becomes:

min
R(k),p(k)

0

NY

∑
i=1
‖R(k)y(k−1)

i +p(k)
0 −x(k)i ‖

2 (9)

where R(k) ∈ SO(3), p(k)
0 ∈ R3 originate the rigid transformation

at the current iteration k. Finally, the point cloud Y(k) is updated by
using the obtained transformation:

y(k)i = R(k)y(k−1)
i +p(k)

0 (10)

The sequences Y(k), R(k) and p(k)
0 have been proved to converge to

the optimal solution Y∗, R and p0, respectively [BM92]:

y∗i = lim
n→∞

y(n)i

R = lim
n→∞

n

∏
i=0

R(k)

p0 = lim
n→∞

[
n−1

∑
k1=0

(
n

∏
k2=k1+1

R(k2)

)
p(k1)

0

]
+p(n)

0

(11)

The ICP works iterating over k = 1,2, . . . ,n for the previous se-
quences, until either one of the following criteria is satisfied:

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

43

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

1. Max. number of iterations n reached.
2. Approximation error below a given threshold

(∑i
‖y(k)i −y(k−1)

i ‖2

NY
< ε)

The algorithm is initialized from the original point cloud Y(0) = Y,
and the identity transformation R(0) = I3×3, p(0)

0 = 03×1. Fig. 2
summarizes the mesh registration algorithm. The most expensive
procedure in the ICP algorithm is the computation of the cloud-to-
mesh distance (steps 4 and 5), which computed by an exhaustive
search drives the complexity of the registration toO(NY ×NT ×n),
with NY being the point cloud size, NT being the number of tri-
angles in the mesh M and n being the maximum number of ICP
iterations. It is common in the literature to use hierarchical parti-
tion structures (such as kd-trees and octrees) which improve such
a search to O(NY log(NT)× n). Our registration algorithm imple-
ments instead a Perfect Spatial Hashing strategy (step 1), whose
search complexity is constant (O(1)) [LH06]. As a consequence,
the overall time complexity of our mesh registration algorithm be-
comes O(NY ×n). The following sections discuss the construction
of the Spatial Perfect Hash and the distance computation.

3.3. Perfect Spatial Hash

Given a triangular mesh M⊂ R3, consider V ⊂ P(R3) (P(·) is
the power set) as a rectangular prism, oriented along the coordinate
axes, which containsM and is the union of small (disjoint) cubic
cells (voxels vi jk) of side length ∆ (Fig. 3):

V =
{

vi jk|i ∈ [0,NV)∧ j = [0,NV)∧ k ∈ [0,NV)
}

(12)

where each voxel vi jk is also oriented along the coordinate axes,
and the interiors of two different voxels never intersect.

The size of the previous spatial partition is |V| = N3
V , with i <

NV , j < NV and k < NV being the 3D indices of each voxel. Define
D(vi jk) as the triangles ofM that intersect vi jk (Fig. 4), i.e.:

D(vi jk) = {t ∈ T |t ∩ vi jk 6= ∅} (13)

Finally, the set VM ⊂V is the set of voxels vi jk ∈ V that intersect
at least one triangle ofM, i.e. VM = {vi jk ∈ V|D(vi jk) 6= ∅}. It is
worth noting that the set size |VM | is much smaller than the full grid
size |V| (Fig. 3).

A Perfect Spatial Hash table H : N3→P(T), is a 3D table with
indices hi,h j,hk. Each entry H[hi,h j,hk] contains the set of trian-
gles associated to the voxel h−1(hi,h j,hk), i.e.:

H[h(vi jk)] = H[hi,h j,hk] = D(vi jk) (14)

where h : VM → N3 is a function which takes a voxel vi jk and re-
turns its respective position indices hi,h j,hk in the Hash table H.
h is known as the hash function of H. The Perfect Spatial Hash is
denoted as (H,h).

The objective of the Perfect Spatial Hash is to produce a ta-
ble H which stores the information VM , and its respective hash
function h. A trivial hash function would be the identity func-
tion h(vi jk) = [i, j,k] (implicitly used by [YB07]). However, such
a function implies storing the full rectangular prism V in the ta-
ble H (|H| = |V| >> |VM |), and the content of most of the table

1. Compute Spatial Hash
𝑯 ← 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_ℎ𝑎𝑠ℎ ℳ, Δ

2. Initialize Algorithm
𝑹 ← 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 3
𝒑0 ← 𝟎3×1
𝑘 ← 1

6. Compute point cloud centroids and cross-covariance
𝝁𝒙 ← 𝑚𝑒𝑎𝑛 𝑿
𝝁𝒚 ← 𝑚𝑒𝑎𝑛 𝒀

𝑺 ← 𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑣 𝑿, 𝒀

3. While
𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑓𝑎𝑙𝑠𝑒

4. For each
𝒚𝑖 ∈ 𝒀

7. Compute optimal rigid tranformation
ሶ𝒒 ← 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 𝑺

𝑹 𝑘 ← 𝑞𝑢𝑎𝑡2𝑟𝑜𝑡 ሶ𝒒

𝒑0
𝑘
← 𝝁𝒙 − 𝑹𝝁𝒚

8. Update solution

𝑹 ← 𝑹 ∗ 𝑹 𝑘

𝒑0 ← 𝑹 𝑘 𝒑0 + 𝒑0
𝑘

𝒀 ← 𝑹 𝑘 𝒀 + 𝒑0
𝑘

𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎. 𝑢𝑝𝑑𝑎𝑡𝑒()

5. Compute closest point 𝒙𝑖 ∈ ℳ
𝒙𝑖 ← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡 𝑯, 𝒚𝑖

• ℳ: Reference mesh
• 𝒀: Point cloud to register
• Δ: Distance threshold

• 𝑯: Spatial Hash table

• 𝑹, 𝒑0: Identity transformation
• 𝑘: Current iteration

• 𝑿, 𝒀 : Set of correspondences

• 𝝁𝒙, 𝝁𝒚 ∈ ℝ3

• 𝑺 ∈ ℝ3×3

• 𝑹 𝑘 , 𝒑0
𝑘

: Rigid transformation for
current iteration

• Optimal rigid transformation 𝑹, 𝒑0
• Registered point cloud 𝒀 ← 𝑹𝒀 + 𝒑0

𝑖
+
1

𝑘
←
𝑘
+
1

Figure 2: Scheme of the Iterative Closest Point mesh registration
algorithm. Our registration uses Perfect Spatial Hashing to com-
pute the cloud-to-mesh distances.

cells would be empty (most cells of V are empty, Fig. 3). Instead,
the Perfect Spatial Hash [LH06] aims to produce the smallest table
H possible able to store the set VM , such that |VM | ≤ |H| << |V|
(ideally, |H|= |VM |).

The Perfect Spatial Hashing (H,h) satisfies by definition the fol-
lowing conditions:

1. The function h is bijective. As a consequence, there are no col-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

44

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

Figure 3: Full min-max voxel set V (gray). Non triangle-empty
voxel set VM (red). Triangle meshM (blue). |VM |<< |V|.

Figure 4: Set of triangles D(vi jk) (dark blue) that intersect the
voxel vi jk (red)

lisions in the table H (i.e. different voxels in VM never point to
the same cell of H).

2. The size of H is greater or equal than the size of VM (|H| >
|VM |).

In addition, (H,h) should satisfy (by construction) the following
conditions:

1. The size of H is smaller than the size of V (|H|< N3
V).

2. Evaluation of the hash function h should be O(1).

The first step to build the Spatial Hash (H,h) is to compute the
table size |H| = N3

H , as the smallest table size able to store the set
VM :

NH = arg min
NH∈N

|VM | ≤ N3
H (15)

The hash function h is then defined as a sum of an auxiliar func-
tion f and a displacement Φ [LH06]:

h(vi jk) = f(vi jk)+Φ[g(vi jk)] (16)

The auxiliar function f : VM → N3 is defined as:

f(vi jk) = [fi, f j, fk] = [i, j,k] mod NH (17)

By taking the modulo of each of the voxel indices, the values of
the function f are guaranteed to never exceed the size of the Hash
table H (i.e. fi < NH , f j < NH and fk < NH). The function f is not
bijective as NH ≤ NV . As a consequence, an auxiliar 3D table Φ is
computed as follows:

Let Φ◦g : VM → N3 be an (auxiliar) 3D table of size N3
Φ,NΦ 6=

NH , and its corresponding auxiliar function g : VM → N3. The
objective of the table (Φ,g) is to provide a translation term
Φ[g(vi jk)] = [φi,φ j,φk] such that f(vi jk) + Φ[g(vi jk)] is bijective,
guaranteeing that there are no collisions in H.

Similar to the auxiliar function f, the function g is defined as:

g(vi jk) = [gi,g j,gk] = [i, j,k] mod NΦ (18)

where gi < NΦ, g j < NΦ and gk < NΦ indicate the position of the
voxel vi jk in the auxiliar table Φ, i.e. [φi,φ j,φk] = Φ[gi,g j,gk]. It is
worth noting that, by construction, f 6= g (since NΦ 6= NH).

Fig. 5 illustrates the aforementioned translation Φ. In the exam-
ple, the non-empty voxels v11 and v33 map to the same f value.
However, the same voxels map to a different g value. The Φ table
stores the respective translations φ11 = [0,0] and φ33 = [1,1]. The
Perfect Hash Table presents no collisions as the hash function is
bijective (h11 = [1,1], h33 = [0,0]).

𝑣11

𝑣33

0 1 2 3

0

1

2

3

𝐷 𝑣33

𝐷 𝑣11

−1
−1

0
0

Square grid 𝒱 (𝑁𝑉 = 4)

0 1

0

1

0 1 2

0

1

2

Auxiliar table 𝚽 (𝑁Φ = 3)

Perfect Spatial Hash 𝐇 (𝑁𝐻 = 2)

𝐟 =
1
1

𝐟 𝑣𝑖𝑗 =
𝑖
𝑗
mod 𝑁𝐻

𝐠33 =
0
0

𝐠11 =
1
1

𝐠 𝑣𝑖𝑗 =
𝑖
𝑗
mod 𝑁Φ

𝐡 𝑣𝑖𝑗 = 𝐟 𝑣𝑖𝑗 +𝚽 𝐠 𝑣𝑖𝑗

𝐡33 𝐡11

𝛟11𝛟33

Figure 5: Perfect Spatial Hash 2D example. The auxiliar function
f is not bijective, but the Hash function h is.

The table Φ and its size NΦ is computed using an heuristic ap-
proach as described in Ref. [LH06], as follows:

1. Locate all collisions in f.
2. Initialize the size of Φ as NΦ← ceil(3

√
|VM |/6).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

45

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

3. Initialize Φ as an empty N3
Φ 3D table.

4. Locate all free indices of f (i.e. f(vi jk) is undefined).
5. For each collision f(vi jk), set Φ[g(vi jk)] as c− f(vi jk), where

c = [ci,c j,ck] ∈ N3 is a free index in f.
6. If there are no collisions in f+Φ, return Φ.
7. Otherwise, increase NΦ and go to step 3.

In the previous heuristic, it is worth noting that there is no theo-
retical guarantee that the computed Perfect Spatial Hash (H and Φ)
is smaller than the full grid V . In fact, it is possible that |H|+ |Φ|
is larger than |V|. However, our experiments and the experiments
presented in [LH06] have shown that the Perfect Spatial Hash is al-
ways smaller than the full grid discretization (i.e., |H|+ |Φ|< |V|).

After Φ, h and NH have been computed, the table H is filled with
the elements of the set VM . At this point, the function h is guar-
anteed to be bijective and as a consequence, H presents no colli-
sions. Fig. 6 summarizes the algorithm to compute the Perfect Spa-
tial Hashing. Note that if the reference mesh M slightly changes
(due to a small rigid transformation or shape deformation), the Per-
fect Spatial Hash table changes dramatically, requiring to rebuild
it from scratch. However, since our registration algorithm assumes
thatM does not change at any time, the aforementioned problem
is out of the scope of this research.

For the computation of the set of voxels that intersect the trian-
gulation (i.e. VM), our algorithm visits each triangle of the mesh as
illustrated in steps 2-3 of Fig. 6. The triangle-voxel intersection for
each ti ∈ T is implemented as follows: (1) all the voxels that inter-
sect the bounding box of ti are identified and then, (2) all the voxels
inside the bounding box, which also intersect the plane defined by
ti are kept, discarding the non-intersecting ones.

From the algorithm presented in Fig. 6, steps 2-3 are O(NT),
steps 7-8 are O((N3

H)
2) and steps 10-11 are O(N3

H). Therefore,
the computational cost for the Perfect Spatial Hash construction is
O(NT + (N3

H)
2). Such a cost becomes reasonable for large point

cloud and reference mesh sizes as this pre-processing is performed
only once. In addition, the storage complexity of the Perfect Spatial
Hash is O(N3

H +N3
Φ), which is considerably less expensive than

storing the full grid O(N3
V) (such as in Ref. [YB07]).

3.4. Point-to-mesh Distance Computation

Given a point yi ∈ Y, it is necessary to locate its closest point xi ∈
M (as per Eq. 8, Fig. 1). This problem is equivalent to find the
closest triangle t ∈ T to yi, and then find the closest point xi ∈ t to
yi, as described below.

Given any triangle t ∈ T , the distance from a point yi ∈ Y to t is
defined as follows:

d(yi, t) = min
α,β∈R

‖αq0 +βq1 +(1−α−β)q2−yi‖

s.t.

α+β≤ 1

α,β≥ 0

(19)

where q0, q1 and q2 are the vertices of the triangle t, and α, β,
(1− α− β) are their corresponding barycentric coordinates, re-
spectively. Therefore, the closest point q∗ ∈ t to yi is defined as

6. Initialize auxiliar function 𝐠

𝑁Φ ← 𝑐𝑒𝑖𝑙
3 𝑚

6

𝐠 𝑣𝑖𝑗𝑘 = 𝑖, 𝑗, 𝑘 mod 𝑁Φ

1. Compute the cube containing the mesh
𝒱 ← 𝑐𝑢𝑏𝑖𝑐_𝑔𝑟𝑖𝑑 ℳ,Δ

• ℳ = 𝒯,𝐏 : Triangle mesh
• Δ: Voxel side length

• 𝒱: Cubic grid

2. For each
𝑡𝑖 ∈ 𝒯

3. Compute the set of voxels 𝑣𝑖𝑗𝑘 ⊂ 𝒱 that intersect 𝑡𝑖
𝐷 𝑣𝑗𝑘𝑙 ← 𝑡𝑟𝑖_𝑣𝑜𝑥_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝒱, 𝑡𝑖

• Set of voxels that intersect ℳ:

𝒱𝑀 = 𝑣𝑖𝑗𝑘 ∈ 𝒱 | 𝑣𝑖𝑗𝑘 ∩ℳ ≠ ∅

• Set of triangles that intersect 𝑣𝑖𝑗𝑘:

𝐷 𝑣𝑖𝑗𝑘 = 𝑡 ∈ 𝒯 | 𝑡 ∩ 𝑣𝑖𝑗𝑘 ≠ ∅

4. Compute the size of 𝒱𝑀, and size of Hash table 𝐇
𝑚 ← 𝑠𝑖𝑧𝑒 𝒱𝑀
𝑁𝐻 ← 𝑐𝑒𝑖𝑙 3 𝑚

• 𝒱𝑀 = 𝑚
• 𝐇 = 𝑁𝐻

3

5. Compute auxiliar function 𝐟
𝐟 𝑣𝑖𝑗𝑘 = 𝑖, 𝑗, 𝑘 mod 𝑁𝐻

7. While
𝐟 𝑣𝑖𝑗𝑘 +𝚽 𝑔 𝑣𝑖𝑗𝑘 is not bijective

• Auxiliar function 𝐟

• Initial auxiliar function 𝐠

8. Compute auxiliar table 𝚽
𝚽 ← 𝑏𝑢𝑖𝑙𝑑_𝑎𝑢𝑥_𝑡𝑎𝑏𝑙𝑒 𝒱𝑀, 𝐟, 𝐠

• Auxiliar table 𝚽
• Bijective hash function

𝐡 𝑣𝑖𝑗𝑘 = 𝐟 𝑣𝑖𝑗𝑘 +𝚽 𝐠 𝑣𝑖𝑗𝑘

10. For each
𝑣𝑖𝑗𝑘 ∈ 𝒱𝑀

9. Initialize Hash table 𝐇
𝐇 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑁𝐻

11. Fill the Hash table 𝐇
𝐇 𝐡 𝑣𝑖𝑗𝑘 ← 𝐷 𝑣𝑖𝑗𝑘

• Empty Hash table 𝐇

• Perfect Hash table 𝐇

• Perfect Hash function 𝐡 𝑣𝑖𝑗𝑘

𝑖
←
𝑖
+
1

𝑢
𝑝
𝑑
𝑎
𝑡𝑒

𝑁
Φ

𝑣
𝑖𝑗
𝑘
←
𝒱
𝑀
.𝑛
𝑒𝑥
𝑡_
𝑣
𝑜
𝑥
𝑒𝑙
()

Figure 6: Algorithm scheme for the construction of the Perfect
Spatial Hash (H,h)

the point q∗ = αq0 +βq1 +(1−α−β)q2 that minimizes Eq. (19).
The closest point xi ∈M to yi is defined as:

xi = arg min
q∗∈M

‖yi−q∗‖ (20)

A naive evaluation of Eq. 20 requires searching the closest trian-
gle t through the full meshM. However, the Perfect Spatial Hash
H reduces such an evaluation by only requiring to evaluate triangles
that are already close to yi. Let v jkl ∈ V be the voxel that contains

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

46

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

the point yi. The Hash cell H[h(v jkl)] stores the set of triangles
D(v jkl) that intersect v jkl (as illustrated in Fig. 4).

Let B jkl ⊂ V be the set of adjacent voxels to v jkl (v jkl included).
The set of closest triangles to yi can be extracted from the inter-
section between B jkl and M, i.e. the set H[h(B jkl)] (see Fig. 7).
Therefore, Eq (20) is equivalent to:

xi = arg min
q∗∈H[h(B jkl)]

‖yi−q∗‖ (21)

where clearly |H[h(B jkl)]| << T . Since each voxel side size is ∆,
the set B jkl is guaranteed to contain a triangle whose distance to yi
is less than ∆ (if such triangle exists inM). It is worth noting that if
such triangle does not exist, then d(yi,M)> ∆, and the registration
algorithm treats yi as an outlier (as discussed at the beginning of
Sect. 3.2) [BM92].

Reference mesh ℳ = (𝒯, 𝐏)

𝐵𝑗𝑘𝑙: Voxels adjacent to 𝑣𝑗𝑘𝑙

Point 𝐲𝑖 ∈ 𝐘

Voxel 𝑣𝑗𝑘𝑙 containing

the point 𝐲𝑖

Set of triangles 𝐇 𝐡(𝐵𝑗𝑘𝑙) ⊂ 𝒯

Figure 7: The closest point ofM to yi is in the set B jkl (|B jkl |<<
|T |). B jkl is the set of triangles that intersect v jkl and all its adja-
cent voxels.

The algorithm for computing the closest point xi is summarized
as follows:

1. Compute the voxel v jkl that contains the point to register yi (i.e.,
yi ∈ v jkl).

2. Compute the set of voxels B jkl , adjacent to v jkl (as illustrated in
Fig. 7).

3. Compute the Hash indices h(B jkl) as per Eq. (16).
4. Extract from the Spatial Hash, the triangles H[h(B jkl)] closest

to yi (Fig. 7).
5. Compute the closest triangle t ∈H[h(B jkl)] as per Eq. 19.
6. Compute xi as per Eq. (21).

Since the evaluation of h in Eq. (16) and the access to the table
H is O(1), the computational cost of the above algorithm is O(1).

4. Results

Four different models have been used to test our registration al-
gorithm: Gargoyle, Dragon, Buddha and Lucy [CL96]. The point-
cloud-to-register is extracted from the original model by computing
a uniform re-sample of each model surface. Figs. 8(a), 8(c), 8(e)
and 8(g) plot the unregistered point-clouds of each model, respec-
tively. As mentioned in Sect. 3.2, the point-cloud-to-register should

be close enough to the reference mesh to avoid falling into a local
minima solution [BM92]. Figs. 8(b), 8(d), 8(f) and 8(h) plot the
result of our registration process for each model, respectively. The
registration algorithm minimizes the point-cloud-to-mesh distance
as per Eq. (1).

Table 2 shows Spatial Hashing and ICP convergence results of
our registration algorithm. The 4 point-clouds-to-register are of
size NY = 50k, while the size of the reference meshes (NT) is 20k,
871.4k, 1631.6k and 28055.7k for the Gargoyle, Dragon, Buddha
and Lucy, respectively. The smallest Spatial Hash constructed is
for the Gargoyle dataset, consisting of a N3

H = 512 Hash table and
a N3

Φ = 1.3k3 auxiliar table, and the largest Spatial Hash is con-
structed for the Lucy (N3

H = 5.8k3 Hash table and N3
Φ = 2.2k3 aux-

iliar table). The convergence error is measured as the difference be-

tween the last iteration and the previous iteration ∑i ‖y
(n)
i −y(n−1)

i ‖2

NY
,

as discussed in Sect. 3.2. All the 4 test cases converge at 34, 19, 30
and 53 ICP iterations (n), respectively, with an error below 7e-05.

Table 2: Perfect Spatial Hashing and ICP convergence results for
the 4 datasets presented in Fig. 8

Dataset NY NT N3
H N3

Φ
n ∑i ‖y(n)i −y(n−1)

i ‖2

NY

Gargoyle 50k 20k 512 1.3k 34 6.20e-05
Dragon 50k 871.4k 2.1k 4.9k 19 5.87e-05
Buddha 50k 1631.6k 3.4k 1.3k 30 6.06e-05

Lucy 50k 28055.7k 5.8k 2.2k 53 5.97e-05

Table 3 presents the execution times for the registration of a
N3

V = 50k point cloud to the Buddha mesh (Figs. 8(e), 8(f)). For a
prism of size N3

V = 4096, the construction of the Hash table requires
0.032 minutes, while the ICP registration takes about 232.6 minutes
to perform 31 iterations and converge to the solution. Increasing the
prism resolution to N3

V = 32.8k, the construction of the Hash table
requires 0.033 minutes while the registration takes 41.1 minutes to
perform 30 iterations. In the case of a prism of size N3

V = 2097.2k,
the construction of the Hash table and the mesh registration times
are 0.06 and 2.6352 minutes, respectively, which is 15× faster than
the N3

V = 32.8k and 86× faster than the N3
V = 4096 test cases. Fi-

nally, the high resolution of the last test case (NV = 16777.2k) im-
plies that the voxel size ∆ is significantly smaller than the average
distance between the point cloud Y and the reference meshM, re-
sulting in the registration algorithm exiting at 0 iterations without
converging.

5. Conclusions

This manuscript presents the implementation of a Perfect Spa-
tial Hash Hashing for point-cloud-to-mesh registration. The reg-
istration algorithm uses the Perfect Spatial Hashing data struc-
ture to aid the computation of point-to-mesh distance of the Iter-
ative Closest Point (ICP) algorithm. Compared to standard spa-
tial partition techniques (such as octrees and kd-trees), our algo-
rithm reduces the closest-point-search complexity from logarithmic
(O(log(NT)), NT : reference mesh size) to constant O(1) complex-
ity. As a consequence, the cost of the mesh registration algorithm
becomesO(NY ×n) (NY : point-cloud-to-register size, n: number of
max. ICP iterations). The cost of pre-processing (pre-computation

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

47

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

Table 3: Buddha dataset. Execution times for the construction of the Perfect Spatial Hashing (H,h) and the registration of a NY = 50k point
cloud for different voxel resolutions NV . Note that the performance for the registration significantly improves as NV increases.

N3
V N3

H N3
Φ

n Time to build
(H,h) (min)

Registration
time (min)

Total time
(min)

4096 343 216 31 0.0317 232.6 232.7
32.8k 1728 2197 30 0.0334 41.077 41.111
262.1k 8000 4913 32 0.0407 9.6378 9.6785

2097.2k 32.8k 19.7k 40 0.0587 2.6352 2.6939
16777.2k 140.6k 91.1k 0 0.2210 NA NA

of the Perfect Spatial Hashing) is O(NT + (N3
H)

2) (N3
H : Hash ta-

ble size). Our algorithm is able to register a point cloud of size
NY = 50k against a mesh of size NT = 28055.7k, converging with
an error below 7e-05. We also show that the mesh registration al-
gorithm improves significantly in performance as the Spatial Hash-
ing resolution increases. However, if the voxel size ∆ becomes too
small (smaller than the average distance between the point cloud
and the reference mesh), the registration algorithm fails.

5.1. Future Implementation on GPU

The main shortcoming of our point-cloud-to-mesh registration al-
gorithm lies in the construction of the Perfect Spatial Hashing com-
putational cost, as the worst case scenario complexity is squared in
the size of the Hash table (O((N3

H)
2), see Sect. 3.3). To mitigate

this problem, we intend to implement Perfect Spatial Hash mesh
registration in a Graphic Processing Unit (GPU) parallelization
architecture. By taking advantage of Graphics Processing Units
(GPUs), the Hash structure can be computed in a more efficient
way, reducing the pre-processing time [LH06]. In addition, the in-
dependence in the computation of the closest point (Eq. (21)) be-
tween any two different points yi,y j ∈ Y permits an implemen-
tation following a highly parallelizable approach, resulting in fast
registration of considerably larger point clouds.

Glossary

ICP: Iterative Closest Point.
M: Triangular mesh M = (T ,P) of a 2-manifold

embedded in R3, defined by the triangle set
T = {t1, t2, · · · , tNT } and the point set P =
{p1,p2, · · · ,pNP}.M is the reference mesh for reg-
istration.

Y: Point cloud to register Y = {y1,y2, · · · ,yNY }. Y is a
noisy sample ofM, conducted in an unknown coor-
dinate system.

R,p0: Rigid transformation R ∈ SO(3) (Special Orthog-
onal Group), p0 ∈ R3, that matches the coordinate
system of Y to the coordinate system ofM.

Y∗: Rigidly transformed point cloud Y∗ =
{y∗1 ,y∗2 , · · · ,y∗NY

}, such that y∗i = Ryi +p0.
X: Point cloud X = {x1,x2, · · ·xNY } sampled fromM,

such that xi is the closest point in M to yi (|X| =
|Y|). X is the set of correspondences of Y.

µx, µy: Centroids µx,µy ∈ R3 of the point sets X and Y, re-
spectively.

S: 3×3 matrix of cross-covariances between X and Y.

q̇: Unit quaternion q̇ ∈ R4 (‖q̇‖= 1), equivalent to the
rotation matrix R.

Y(k),X(k): Values for the points sets Y, X at the current ICP
iteration k.

R(k),p(k)
0 : Values for the rigid transformation R, p0 at the cur-

rent ICP iteration k.
n: Maximal Number of iterations n > 0 allowed by the

ICP algorithm.
∆: Distance below which a point yi ∈ Y is not consid-

ered an outlier w.r.t. meshM (i.e. d(yi,M)< ∆).
P(A): Power set of A, defined as all the subsets of A.

P(A) = {a|a⊂ A}.
vi jk: A cubic cell (i, j,k) ∈ N3, of side length ∆, oriented

along the coordinate axes.
V: Rectangular prism V ⊂ P(R3) oriented along the

coordinate axes, defined as a set of disjoint voxels
vi jk that build the bounding box ofM. |V|= N3

V .
D(vi jk): Set of triangles inM that intersect voxel vi jk ∈ V .

D : V →P(T).
VM : Set of voxels vi jk ∈ V that intersect at least one tri-

angle ofM (i.e. D(vi jk) 6= ∅).
H: Perfect Spatial Hash table H : N3 → P(T). H is a

3D table where each entry H[hi,h j,hk] stores a sub-
set of triangles D(vi jk). |H|= N3

H .
h: (Bijective) Hash function h : VM→N3 of H. h takes

a voxel vi jk ∈ VM and returns the respective indices
hi,h j,hk in H, such that H[hi,h j,hk] = D(vi jk).

f,g: Auxiliar functions f,g : VM → N3 used by the func-
tion h to compute a bijective mapping.

Φ: Auxiliar 3D table table Φ : N3 → N3 used by the
function h to compute a bijective mapping. |Φ| =
N3

Φ.
q0,q1,q2: Vertices of triangle t j ∈ T with qi ∈ P.
α,β: Barycentric coordinates on a triangle t ∈ T with

α,β≥ 0, and α+β≤ 1.
B jkl : Set B jkl ⊂V of all adjacent voxels to v jkl (including

v jkl).

References

[BG10] BÖHNKE K., GOTTSCHEBER A.: Fast object registration and
robotic bin picking. In Research and Education in Robotics - EUROBOT
2009 (Berlin, Heidelberg, 2010), Gottscheber A., Obdržálek D., Schmidt
C., (Eds.), Springer Berlin Heidelberg, pp. 23–37. 1

[BM92] BESL P. J., MCKAY N. D.: A method for registration of 3-d

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

48

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence
14, 2 (Feb 1992), 239–256. doi:10.1109/34.121791. 2, 3, 7

[CCL∗18] CHENG L., CHEN S., LIU X., XU H., WU Y., LI M.,
CHEN Y.: Registration of laser scanning point clouds: A review. Sen-
sors (Basel) 18, 5 (May 2018), 1641:1–1641:25. doi:10.3390/
s18051641. 2

[CL96] CURLESS B., LEVOY M.: A volumetric method for build-
ing complex models from range images. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 303–312.
doi:10.1145/237170.237269. 7, 10

[DI13] DROST B., ILIC S.: A hierarchical voxel hash for fast 3d near-
est neighbor lookup. In Pattern Recognition (Berlin, Heidelberg, 2013),
Weickert J., Hein M., Schiele B., (Eds.), Springer Berlin Heidelberg,
pp. 302–312. 2

[DI18] DROST B. H., ILIC S.: Almost constant-time 3d nearest-neighbor
lookup using implicit octrees. Machine Vision and Applications 29, 2
(Feb 2018), 299–311. doi:10.1007/s00138-017-0889-4. 2

[EBN13] ELSEBERG J., BORRMANN D., NÜCHTER A.: One billion
points in the cloud – an octree for efficient processing of 3d laser scans.
ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013),
76–88. Terrestrial 3D modelling. doi:10.1016/j.isprsjprs.
2012.10.004. 2

[FRS07] FONTANELLI D., RICCIATO L., SOATTO S.: A fast ransac-
based registration algorithm for accurate localization in unknown envi-
ronments using lidar measurements. In 2007 IEEE International Confer-
ence on Automation Science and Engineering (Sep. 2007), pp. 597–602.
doi:10.1109/COASE.2007.4341827. 2

[GZZ∗12] GONG J., ZHU Q., ZHONG R., ZHANG Y., XIE X.: An
efficient point cloud management method based on a 3d r-tree. Pho-
togrammetric Engineering & Remote Sensing 78, 4 (2012), 373–381.
doi:doi:10.14358/PERS.78.4.373. 2

[Hor87] HORN B. K. P.: Closed-form solution of absolute orientation
using unit quaternions. J. Opt. Soc. Am. A 4, 4 (Apr 1987), 629–642.
doi:10.1364/JOSAA.4.000629. 2, 3

[JH02] JOST T., HÜGLI H.: Fast icp algorithms for shape registration.
In Pattern Recognition (Berlin, Heidelberg, 2002), Van Gool L., (Ed.),
Springer Berlin Heidelberg, pp. 91–99. 2

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. ACM
Trans. Graph. 25, 3 (July 2006), 579–588. doi:10.1145/1141911.
1141926. 2, 4, 5, 6, 8

[MPSRS∗19] MEJIA-PARRA D., SÁNCHEZ J. R., RUIZ-SALGUERO O.,
ALONSO M., IZAGUIRRE A., GIL E., PALOMAR J., POSADA J.: In-
line dimensional inspection of warm-die forged revolution workpieces
using 3d mesh reconstruction. Applied Sciences 9, 6 (2019). doi:
10.3390/app9061069. 1

[PCS15] POMERLEAU F., COLAS F., SIEGWART R.: A review of point
cloud registration algorithms for mobile robotics. Found. Trends Robot
4, 1 (May 2015), 1–104. doi:10.1561/2300000035. 2

[SK15] SAHILLIOǦLU Y., KAVAN L.: Skuller: A volumetric shape reg-
istration algorithm for modeling skull deformities. Medical Image Anal-
ysis 23, 1 (2015), 15–27. doi:https://doi.org/10.1016/j.
media.2015.03.005. 1

[SLW02] SHARP G. C., LEE S. W., WEHE D. K.: Icp registration using
invariant features. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24, 1 (Jan 2002), 90–102. doi:10.1109/34.982886.
2

[SSB18] SÁNCHEZ J. R., SEGURA Á., BARANDIARAN I.: Fast and
accurate mesh registration applied to in-line dimensional inspection
processes. International Journal on Interactive Design and Manu-
facturing (IJIDeM) 12, 3 (Aug 2018), 877–887. doi:10.1007/
s12008-017-0449-1. 1, 2, 3

[TCL∗13] TAM G. K. L., CHENG Z., LAI Y., LANGBEIN F. C., LIU Y.,
MARSHALL D., MARTIN R. R., SUN X., ROSIN P. L.: Registration

of 3d point clouds and meshes: A survey from rigid to nonrigid. IEEE
Transactions on Visualization and Computer Graphics 19, 7 (July 2013),
1199–1217. doi:10.1109/TVCG.2012.310. 2

[UT11] ULAS C., TEMELTAS H.: A 3d scan matching method based on
multi-layered normal distribution transform. IFAC Proceedings Volumes
44, 1 (2011), 11602–11607. 18th IFAC World Congress. doi:10.
3182/20110828-6-IT-1002.02865. 2

[WGG11] WU H., GUAN X., GONG J.: Parastream: A parallel stream-
ing delaunay triangulation algorithm for lidar points on multicore archi-
tectures. Computers & Geosciences 37, 9 (2011), 1355–1363. doi:
10.1016/j.cageo.2011.01.008. 2

[YB07] YAN P., BOWYER K. W.: A fast algorithm for icp-based 3d
shape biometrics. Computer Vision and Image Understanding 107, 3
(2007), 195–202. doi:10.1016/j.cviu.2006.11.001. 2, 4, 6

[YF02] YAMANY S. M., FARAG A. A.: Surface signatures: an orien-
tation independent free-form surface representation scheme for the pur-
pose of objects registration and matching. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 24, 8 (Aug 2002), 1105–1120.
doi:10.1109/TPAMI.2002.1023806. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

49

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.3390/s18051641
http://dx.doi.org/10.3390/s18051641
http://dx.doi.org/10.1145/237170.237269
http://dx.doi.org/10.1007/s00138-017-0889-4
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.1109/COASE.2007.4341827
http://dx.doi.org/doi:10.14358/PERS.78.4.373
http://dx.doi.org/10.1364/JOSAA.4.000629
http://dx.doi.org/10.1145/1141911.1141926
http://dx.doi.org/10.1145/1141911.1141926
http://dx.doi.org/10.3390/app9061069
http://dx.doi.org/10.3390/app9061069
http://dx.doi.org/10.1561/2300000035
http://dx.doi.org/https://doi.org/10.1016/j.media.2015.03.005
http://dx.doi.org/https://doi.org/10.1016/j.media.2015.03.005
http://dx.doi.org/10.1109/34.982886
http://dx.doi.org/10.1007/s12008-017-0449-1
http://dx.doi.org/10.1007/s12008-017-0449-1
http://dx.doi.org/10.1109/TVCG.2012.310
http://dx.doi.org/10.3182/20110828-6-IT-1002.02865
http://dx.doi.org/10.3182/20110828-6-IT-1002.02865
http://dx.doi.org/10.1016/j.cageo.2011.01.008
http://dx.doi.org/10.1016/j.cageo.2011.01.008
http://dx.doi.org/10.1016/j.cviu.2006.11.001
http://dx.doi.org/10.1109/TPAMI.2002.1023806

D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

(a) Gargoyle mesh and unregis-
tered point cloud

(b) Gargoyle point cloud registra-
tion

(c) Dragon mesh and unregistered
point cloud

(d) Dragon point cloud registration

(e) Buddha mesh and unregistered
point cloud

(f) Buddha point cloud registration

(g) Lucy mesh and unregistered
point cloud

(h) Lucy point cloud registration

Figure 8: Point-cloud-to-mesh registration of 4 different models:
Gargoyle, Dragon, Buddha and Lucy [CL96]. The registration al-
gorithm minimizes the cloud-to-mesh distance.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

50

