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Abstract
Shape optimization in the context of technical design is the process by which mechanical demands (e.g. loads, stresses) govern
a sequence of piece instances, which satisfy the demands, while at the same time evolving towards more attractive geometric
features (e.g. lighter, cheaper, etc.). The SIMP (Solid Isotropic Material with Penalization) strategy seeks a redistribution of
local densities of a part in order to stand stress / strain demands. Neighborhoods (e.g. voxels) whose density drifts to lower
values are considered superfluous and removed, leading to an optimization of the part shape. This manuscript presents a study
on how the parameters governing the voxel pruning affect the convergence speed and performance of the attained shape. A
stronger penalization factor establishes the criteria by which thin voxels are considered void. In addition, the filter discourages
punctured, chessboard pattern regions. The SIMP algorithm produces a forecasted density map on the whole piece voxels.
A post-processing is applied to effectively eliminate voxels with low density, to obtain the effective shape. In the literature,
mechanical performance finite element analyses are conducted on the full voxel set with diluted densities by linearly weakening
each voxel resistance according to its diluted density. Numerical tests show that this approach predicts a more favorable
mechanical performance as compared with the one obtained with the shape which actually lacks the voxels with low density.
This voxel density - based optimization is particularly convenient for additive manufacturing, as shown with the piece actually
produced in this work. Future endeavors include different evolution processes, albeit based on variable density voxel sets, and
mechanical tests conducted on the actual sample produced by additive manufacture.

CCS Concepts
•Applied computing → Computer-aided manufacturing; •Computing methodologies → Modeling and simulation;

Glossary

Term Description Units
FEA Finite element analysis N/A
η ∈
(0,1)

Fraction of mass to be re-
tained in the final design

Adimensional

p≥ 1 Penalty factor aimed to polar-
ize element relative densities
around 0 and 1

Adimensional

R≥ 0 Filter radius used to discour-
age chessboard voxel patterns

Adimensional

M0 Initial mass of the domain g
M Mass function of the domain g
c Compliance function of the

domain
µJ

† Corresponding author. Paseo Mikeletegi, 57. San Sebastian, Spain.
amoreno@vicomtech.org

1. Introduction

Shape Optimization usually includes the set up of physical de-
mands (stress, abrasion, vibration, light, heat, temperature, etc.) on
the desired object and a domain evolution (reduction, in most pub-
lications). Evolution takes place until some constraint domain is
satisfied, both in terms of remaining volume and of responses to
the demands.

This paper uses the term shape optimization as encompassing
both geometry and topology aspects. The reason for this usage is
that when voxel densities in one region vanish (geometry change),
a side effect may be the creation of holes or disjoint portions, which
are topological changes. Therefore, topological changes derive in
natural form from geometry changes. Fig. 1 shows an example of
the application of shape optimization to a fixed beam subjected to
a linear distributed load.

The strategy SIMP (Solid Isotropic Microstructure with Penal-
ization [Sig01, LT14]) implies setting up of a goal percentage of
domain volume reduction, the decomposition of the domain in fi-
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nite elements, the load and boundary conditions. For the purpose
of the present discussion one may assume that the finite elements
are voxels. In each iteration of the algorithm, the density of each
voxel is re-considered to minimize the compliance of the piece, al-
ways keeping the piece mass (i.e. summation of density times voxel
volume) below a certain level.

XY

Z
2
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m

Fixed Faces
F

(a) Design domain and boundary conditions.

(b) Example of the application of voxel density al-
gorithms for shape optimization.

Figure 1: Design domain and result of the application of shape
optimization.

The voxel density strategy uses a parameter p to polarize the
densities of the finite elements towards 0 and 1. It also uses a fil-
ter (parameter R) which discourages puncturing or chessboard ef-
fects that would produce low and high density voxels mixing in a
non-dense pattern. The goal is, therefore, to have voxel - density -
homogeneous regions.

This paper studies the influence of the parameters of the density-
based algorithm, which is one of the most used structural optimiza-
tion algorithms in additive manufacturing. For this purpose, a case
study in the field of solid mechanics is defined. This paper evalu-
ates the impact of the density-based algorithm parameters, not only
in the geometry of the final design, but also in the structural perfor-
mance and computation time.

The rest of the paper is organized as follows: Section 2 provides
a review of the related literature. Section 3 describes the method-
ology used for testing the influence of the studied parameters. Sec-
tion 4 presents and discusses the obtained results. Finally, Section
5 concludes the work and proposes some potential lines for future
research.

2. Literature Review

Section 2.1 shows the development of visualization tools to as-
sist manufacturing processes. Subsequently, Section 2.2 presents
the use of structural optimization for additive manufacturing. Sec-
tion 2.3 introduces the studies on the effects of the optimization
parameters in the solution given by the voxel density algorithm. Fi-
nally, Section 2.4 concludes the literature review and synthesize the
contributions of this work.

2.1. Structural Optimization and Visual Computing

Structural optimization may be traced back to the work in
Ref. [Ben89] and has evolved rapidly since the beginning of the
2000’s. Applications in aerospace [SB11], fluid flow [KPEM10]
and biomedicine [SPMN10] show the adoption of structural opti-
mization in different fields. The reader is referred to the works in
Refs. [DG14, SM13] for a more detailed review. Section 2.2 dis-
cusses the use of structural optimization in manufacturing.

In recent years, different tools of visual computing have started
to support structural optimization and manufacturing [MHSL18,
MMA∗14, WWZW16], proving that visual computing is a core
technology of Industry 4.0 [PTB∗15]. This paper states the mathe-
matical and algorithmic background for the development of an in-
teractive and intuitive tool to assist the process of structural opti-
mization in additive manufacturing.

2.2. Structural Optimization for Additive Manufacturing

Although structural and shape optimization impact diverse man-
ufacturing methods, additive manufacturing is particularly con-
venient for materializing voxel scale optimization. In the con-
text of additive manufacturing, optimization is conducted by (a)
growing / clipping the shape (i.e. bi-directional evolutionary struc-
tural optimization -BESO [TKZ15, TDZZ18, MZARS∗19]), (b)
tuning the density of spatial neighborhoods ( [Lan16, PAHA18,
ZCX19]), (c) using level sets to determine infill and shell profiles
( [LYT18,FLGX19]), and (d) tuning diameters (proportional topol-
ogy [CZB∗17]).

Voxel density as tuning parameter has been used along level sets
as supports for shape optimization in the context of additive man-
ufacturing ( [LM16]). Voxel density variations are relevant in var-
ious additive manufacturing aspects, such as: (1) minimization of
support structures during the material deposition stages, (2) gener-
ation of lattice and porous structures for weight reduction, and (3)
tailoring part designs for additive manufacturing.

Ref. [Lan16] presents neighborhood density optimization
which hosts elimination of deposition stage support structures.
Ref. [PAHA18] maps density maps onto lattice materials suited for
shape optimization. Ref. [ZCX19] finds voxel density maps which
optimize shape, while at the same time integrates an overhang con-
straint into the formulation of the shape optimization with additive
manufacturing.

2.3. Effect of the Parameters in Voxel-density Algorithms

As shown in the previous section, voxel density algorithms have
been used in structural optimization for different and varied appli-
cations. However, it is not clear how the parameters associated to
the optimization process affect, not only the topology and geome-
try of the final design, but also other relevant variables, such as the
convergence speed, objective function, and structural performance
of the obtained design.

The impact of the penalization factor p in the geometry of the
final design has been widely studied. It is known that large pe-
nalization factors (p > 3) tend to produce black–and–white de-
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signs [Sig01, LT14, DHV09, AAH∗10, GWH17, VBSDC18]. How-
ever, the influence of the penalization factor on the behavior of
other variables (e.g. compliance and von Mises stress) has not been
established.

On the other hand, it is common to use filtering techniques
to reduce the checkerboard patterns that result from numerical
instabilities of the density-based methods [BS04]. In this case,
a filtering radius R must be included. This parameter defines
the area of the neighborhood in which the filter is applied. The
larger the filtering radius R, the simpler the geometry of the final
shape [GAV16,GWH17]. However, the impact of this parameter on
the compliance, time of convergence and structural performance is
not well studied yet.

Ref. [GAV16] studies the effects of the variation of the goal vol-
ume/mass fraction in the geometrical complexity of the obtained
designs. Refs. [EKB07,AAH∗10] state that different designs can be
obtained by varying the initial density distribution. Besides, other
parameters concerning the finite element analysis (FEA) are also
studied. Ref. [DHV09] shows the advantage of quadratic finite ele-
ments over the linear ones for avoiding checker-board patterns and
Ref. [EKB07] exhibits the mesh density dependency of the geom-
etry of the final solution. However, these analyses mainly focus on
the geometry of the final shape, leaving aside the structural and
mechanical performance of the piece.

2.4. Conclusions of the Literature Review

The interest of the additive manufacturing community to advance
towards structurally optimal designs has been shown. Different
structural optimization algorithms (e.g. density-based, level set,
evolutionary structural optimization) have been used in the context
of additive manufacturing. However, the success of the optimiza-
tion is highly dependent on the chosen parameters associated to the
algorithm.

This paper focuses on getting a better understanding on how the
parameters of the voxel density method affect (1) the behavior of
the algorithm and, (2) the geometry and structural performance of
the obtained design. This literature review has shown that exist few
works that tackle this task. Most of the studies limit to evaluate only
changes on the final geometry.

This work assess (1) the speed of convergence of the algorithm,
(2) the final compliance, (3) the final maximum von Mises stress
and, (4) the geometry and manufacturability of the final shape. As
opposed to the found in previous works—in which the tested design
is the voxel density map—measurements are also taken on the final
piece.

3. Methodology

3.1. Tuning of Element Density

The objective of the classical structural optimization algorithms
is to minimize the amount of material of a design so that it re-
mains functional. In particular, density-based methods for shape
optimization are heuristic strategies that aim to find the optimal
distribution of the relative densities (xi) of the FEA elements along
the domain.

In order to avoid FEA elements with intermediate (gray)
densities—i.e. densities that are neither close to 0 nor 1—, voxel
density methods adopt the heuristic rule in Eq. 1:

Ei = xp
i E0 (1)

where p is the penalization power for intermediate densities and,
Ei and E0 are the elastic moduli of the i–th element and the raw
material, respectively.

The formulation for the minimization of compliance in Eq. 2 (
[Sig01,LT14]) assumes that the domain is (1) rectangular prismatic,
and (2) discretized into N cubic FEA elements (voxels):

minimize
X

c(X) = UTKU

subject to M(X)≤ ηM0,

KU = F,
0 < xmin ≤ xi ≤ 1, i = 1, . . . ,N.

(2)

where X = [x1, . . . ,xN ]
T is the vector of relative densities, xmin is

the minimum value that the relative density can reach (non-zero to
avoid discontinuities that can produce numerical issues), c(X) is the
compliance function, U is the global displacement vector, F is the
global force vector, K is the global stiffness matrix, M0 is the mass
of the initial design domain, η is the fraction of mass that aims to be
retained in the final design and M(X) is the mass function (Eq. 3),

M(X) =
M0
N

N

∑
i=1

xi. (3)

Most of the implementations of the voxel density algorithms also
include filtering techniques to avoid checkerboard patterns and,
mesh-dependent solutions [Sig01]. One of the most frequently used
filters is the sensitivity filter, which operates on the derivatives of
the compliance function, as shown in Eq. 4 [Sig01]:

∂̃c
∂xi

=
∑ j∈Ni

Hi j
∂c
∂x j

x j

x j ∑ j∈Ni
Hi j

, (4)

where Ni = { j : dist(i, j) ≤ R} is the neighborhood of the i-th ele-
ment and R is the filter radius and, Hi j is a weight factor defined in
Eq. 5:

Hi j = R−dist(i, j), (5)

where dist(i, j) is the distance between the centers of the elements
i and j (ci and c j , respectively), divided by the length l of the FEA
elements (Eq. 6):

dist(i, j) =
||ci− c j||

l
. (6)

3.2. Conversion of the Voxel Density Map to the
Design-for-Manufacturing

The output of the implemented heuristic algorithm is a density map
(Fig. 2(a)) in which each voxel i has an associated relative density
xi (0 ≤ xi ≤ 1). In general, this design cannot be manufactured. In
order to select the elements to manufacture, this paper employes
the algorithm presented in Ref. [SM13]. The algorithm finds the
minimum density threshold xT that guarantees the mass constraint
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for the design-for-manufacturing (also called black-and-white de-
sign). The surviving elements are those for which xi ≥ xT . Fig. 2
shows an example of the conversion of the voxeld density map to
the design-to-manufacturing.

(a) Voxel density map. (b) Black-and-white domain.

Figure 2: Conversion of the voxel density map to the design-to-
manufacture.

3.3. Sensitivity Analysis

The formula in Eq. 7 allows the numerical analysis of the sensitivity
of the function F with respect to the parameter α:

SF
α =

∂ lnF
∂ lnα

=
α

F
∂F
∂α
≈ α

F
∆F
∆α

, (7)

where ∆α and ∆F denote small changes in the value of α and F ;
and α = α+∆α/2, F = (Fα +Fα+∆α)/2.

In this paper, the functions F to analyze are: compliance, maxi-
mum von Mises stress and number of iterations. Likewise, the pa-
rameters α to study are p and R.

Relative sensitivity allows to study how slight variations in the
value of the parameters can affect the mechanical performance of
the final piece.

Von Mises stress is used in solid mechanics as a failure criterion
and it is desirable to minimize it. Von Mises stress is defined as per
Eq. 8:

σV M =

√
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2

2
, (8)

where σ1,σ2 and σ3 are the principal stresses.

3.4. Case Study

This paper uses a case study for the analysis of the effects of the
algorithm parameters. This section describes: (1) the domain and
material used for the simulations and, (2) the configuration of the
numerical tests.

3.4.1. Domain of Analysis and Material Characterization

The studied domain is a 3D fixed beam with linearly distributed
load applied in the center of the top face (see Fig. 1(a)). The beam
has size 140.0mm x 20.0mm x 20.0mm and the magnitude of the
total applied load is 1.1N. The material employed for the simula-
tions is a PLA filament of a commercial brand. The properties of
this material are presented in Table 1.

Table 1: Properties of the PLA filament used for the simulations.

Property Value
Young’s modulus 1230 MPa [BQ18]
Poisson’s ratio 0.33 [FAL16]
Density 1.24 g/cm3 [BQ18]

The domain in Fig. 1(a) is symmetric to the planes depicted in
Figs. 3(a) and 3(b). Therefore, it can be simplified to the domain in
Fig. 3(c). The equivalent load case is shown in Fig. 4.

In order to show the equivalence of the load cases presented in
Figs. 1(a) and 4, a FEA simulation is executed for each domain,
using F = 1.1N. Results of the simulations are presented in Fig. 5.
Notice how the displacements of the two load cases are equivalent.
This result allows to execute the simulations of the shape optimiza-
tion algorithm on the simplified domain.

Symmetry Plane

X = 7 cm

XY

Z

(a) Symmetry w.r.t. X = 7 cm.

Symmetry Plane

Y = 1 cm

XY

Z

(b) Symmetry w.r.t. Y = 1 cm.

XY

Z

2
cm

Domain to

Analyze

(c) Simplified domain.

Figure 3: Simplification of the domain in Fig. 1(a).
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Z

Figure 4: Design domain and boundary conditions. Simplified do-
main.

3.5. Set-up of Numerical Experiments

This paper conducts studies of the effects of p (density polariza-
tion) and R (region homogenization) parameters upon the piece ge-
ometry and mechanical performance, in the scenario of voxel den-
sity optimization methods. Table 2 presents the set of different sim-
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X
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-2.0e-5 0.00 2.0e-5 cm

(a) Original domain. X displace-
ment.

-2.0e-5 0.00 2.0e-5 cm

X
Y

Z

(b) Simplified domain. X displace-
ment.

X
Y

Z

-1.3e-4 -0.7e-4 0.0 cm

(c) Original domain. Z displace-
ment.

X
Y

Z

-1.3e-4 -0.7e-4 0.0 cm

(d) Simplified domain. Z displace-
ment.

Figure 5: Comparison of the X and Z displacements for the original
and simplified domain.

ulations used for the study of each parameter. The measured vari-
ables for each simulation are: (1) compliance, (2) maximum von
Mises stress and, (3) convergence speed, measured by the number
of iterations. The authors implemented the heuristic voxel density
optimization method in C++. The implementation uses the optimal-
ity criteria for updating the variables within the optimizer [Ben95].

To execute the FEA simulations, the domain in Fig. 4 is dis-
cretized into 1750 voxels (35x5x10). Subsequently, the FEA mesh
is obtained by converting every voxel into a regular hexahedral (cu-
bic) FEA element.

4. Results and Discussion

Sections 4.1 and 4.2 discuss the influence of the penalty factor p
and the filter radius R in the manufacturability, compliance and
maximum von Mises stress of the final design, so as the con-
vergence speed of the algorithm. Measurements are executed on
both the voxel density map and the black-and-white design. Sub-
sequently, Section 4.3 presents a sensitivity analysis of the stud-
ied variables with respect to p and R. Finally, Section 4.4 shows
some of the specimens generated using different parameter config-
urations.

4.1. Influence of the Penalty Factor in the Geometry,
Manufacturability and Mechanical Performance of the
Design

To evaluate the influence of the penalty factor p in the geometry
and structural performance of the final design, 14 simulations were
executed varying the value of p between 1.0 and 7.5, as shown in
Table 2. Figs. 6(a), 6(b) and 6(c) show the resultant density field
for p = 1.0 (no penalty), p = 3.0 and, p = 7.0. Histograms in
Figs. 6(d), 6(e) and 6(f) depict the frequency distribution of the
density values. Notice that for p = 1.0, density distribution is con-
centrated in the interval (0.0,0.2). On the other hand, for p = 3.0
and p = 7.0, the largest bars are for xi = 0.0 and xi = 1.0. These
density distributions show the action of the penalty factor to elimi-
nate the intermediate densities.

Table 2: Values of the parameters used for the numerical simula-
tions.

Analyzed
parameter

Parameter value
p R η M0

p {1.0,1.5, . . . ,7.5} 1.0 0.1 17.4 g
R 3.0 {0,1, . . . ,5} 0.1 17.4 g

Figs. 6(g), 6(h) and 6(i) display the black-and-white design for
p = 1.0, p = 3.0 and, p = 7.0. The design for p = 1.0 is composed
by multiple non-connected parts and cannot be manufactured. The
differences in the designs for p = 3.0 and p = 7.0 show that larger
values of p tend to produce simpler geometries.

Fig. 7(a) shows the compliance of the gray and black-and-white
designs of the 14 simulations varying p. For p = 1.0 and p = 1.5,
the black-and-white domains are not connected and, therefore,
compliance is not reported. Notice that for the gray domain, com-
pliance tends to increase as p increases. However, for the black-
and-white design, compliance converges to a value close to 4.0 µJ.

Fig. 7(b) displays the maximum von Mises stress for the gray and
black-and-white domains. So as in the case of compliance, maxi-
mum von Mises stress has a different behavior for the gray and
black-and-white designs. In the case of the gray domain, maximum
von Mises stress tends to increase, even for p ≥ 2.0. On the other
hand, for the black-and-white domain, maximum von Mises stress
oscillates around 100 kPa.

For the studied gray domains, the compliance and maximum von
Mises stress attain their lowest values when p = 1.0 and p = 1.5.
However, for these values of p, the respective black-and-white do-
mains cannot be manufacture. It exhibits that the results for the
black-and-white domain are not necessarily in concordance with
the results for the gray domain. It demonstrates the importance of
analyzing the black-and-white domain, which is the one to be man-
ufactured.

In Fig. 7(c) can be seen the number of iterations that the algo-
rithm needed to converge for every value of p. The reader can see
that, for the domains that can be manufactured (p > 2.5), large val-
ues of p tend to accelerate the convergence of the algorithm.

4.2. Influence of the Filter Radius in the Geometry,
Manufacturability and Mechanical Performance of the
Design

To study the influence of the filter radius R, it was varied between
0.0 and 6.0. Figs. 8(a), 8(b) and 8(c) show the resultant density field
for R = 0.0 (no filtering), R = 1.0 and, R = 3.0. Figs. 8(d), 8(e)
and 8(f) show the corresponding histograms of the density maps:
when R increases, the density is distributed more evenly along the
domain and, therefore, more intermediate densities appear.

The black-and-white domains for R = 0.0, R = 1.0 and, R = 3.0
are displayed in Figs. 8(g), 8(h) and 8(i). Complex and detailed ge-
ometries are attained for small values of R. However, the geomet-
rical complexity stimulates the appearance of non-manufacturable
sub-domains. Fig. 12(c) show that for R = 0.0 appear voxels that
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(a) Gray domain. Density field for p = 1.0. (b) Gray domain. Density field for p = 3.0. (c) Gray domain. Density field for p = 7.0.
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(d) Histogram of densities for p = 1.0.
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(e) Histogram of densities for p = 3.0.
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(f) Histogram of densities for p = 7.0.

(g) Black-and-white domain (red) for p = 1.0. (h) Black-and-white domain (red) for p = 3.0. (i) Black-and-white domain (red) for p = 7.0.

Figure 6: Impact of the penalty factor in the geometry and manufacturability.
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Figure 7: Impact of the penalty factor in the convergence speed and mechanical performance.

are connected by a single edge, which impedes the correct manu-
facturing (even using additive manufacturing technologies) of the
piece. The occurrence of these chessboard patterns are associated
to numerical errors that may be caused by the voxel discretization
and the type of FEA element used for the simulations [PQR05].

The compliance and maximum von Mises stress are shown in
Figs. 9(a) and 9(b). For R = 5.0, compliance and maximum von
Mises stress are not reported for the black-and-white domain be-
cause the domain is not connected. The increase of the compliance
for the gray domain (Fig. 9(a)) for increments in R is noticeable.
However, the value of R does not affect the compliance of the black-
and-white domain.

So as in the previous section, the behavior of the compliance and
maximum von Mises stress is different for the black-and-white and
gray domains. The mechanical performance of the gray domain is
merely illustrative and does not represent a real piece. Therefore, it
is necessary to check the performance of the piece for manufactur-

ing. This finding shows the relevance of a stage of validation in the
pipeline of structural optimization.

Fig. 9(b) shows that larger values of R produce structures with
larger maximum von Mises stress for the black-and-white domain.
This result agrees with the result for the gray domain when R≤ 3.0.
However, for R ≥ 4.0, the maximum von Mises stress of the gray
domain decays. It is related to the more even distribution of the
relative densities in the volume.

Fig. 9(c) shows the convergence speed of the algorithm depend-
ing on the value of R. No filtering and large filter radii contribute to
a faster convergence. However, the final design may not be manu-
facturable. Therefore, intermediate values of R should be selected.

4.3. Sensitivity Analysis

Fig. 10 presents the relative sensitivity of the compliance, maxi-
mum von Mises stress and number of iterations with respect to the
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(a) Gray domain. Density field for R = 0.0. (b) Gray domain. Density field for R = 1.0. (c) Gray domain. Density field for R = 3.0.
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(d) Histogram of densities for R = 0.0.
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(e) Histogram of densities for R = 1.0.
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(f) Histogram of densities for R = 3.0.
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Figure 8: Impact of the radius filter in the geometry and manufacturability.
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Figure 9: Impact of the filter radius in the convergence speed and mechanical performance.

parameter p. To calculate these values, R was fixed to 1.0. It is no-
ticeable that for p > 4.0, the compliance and the maximum von
Mises stress are not affected by the value of p. On the other hand,
the convergence speed of the algorithm is very sensitive to the value
of p.

Fig. 11 displays the sensitivity analysis of the parameter R for the
studied variables: compliance, maximum von Mises stress and con-
vergence speed. From Figs. 11(a) and 11(b) can be infered that R
does not have much influence on the compliance and maximum von
Mises stress of the final design. However, R does impact the me-
chanical performance of the voxel density map, specially for larger
values of R. Convergence speed is also affected when R≥ 2.0.

4.4. Evaluation of the Manufacturability and 3D Printed
Pieces

Additive manufacturing allows the production of complicated ge-
ometries that cannot be manufactured using other technologies. To

evaluate the feasibility of the designs produced by the voxel den-
sity algorithm, three resultant domains of Sections 4.1 and 4.2 were
selected. Figs. 12(a)–12(c) show the corresponding STL model of
each design. The domain in Fig. 12(c) has neighborhoods in which
the voxels are connected only by an edge, which compromises the
manufacturability of the piece.

Figs. 12(d)–12(f) show the 3D printed pieces obtained from the
STL models in Figs. 12(a)–12(c). Notice that for the first two do-
mains, the geometry of the shape can be reproduced accurately.
However, due to the single edge’s connections in the third design,
some sub-domains disconnect when support material is removed.
In order to improve the manufacturability of the final piece, dif-
ferent solutions for suppressing these punctured or chessboard-
looking regions have been proposed. Filtering techniques (as the
implemented in this work), the use of higher–order FEA ele-
ments and the deletion of single-edge or single vertex connec-
tions [PQR05] are some of the plausible solutions. Other possible
solution is to smooth the voxel design. This work uses the March-
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Figure 10: Relative sensitivity of the compliance, maximum von Mises stress and convergence speed w.r.t. p.
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Figure 11: Relative sensitivity of the compliance, maximum von Mises stress and convergence speed w.r.t. R.

ing Cubes algorithm to smooth the surface associated to the voxel
domain. Figs.13 show the obtained STL models after smoothing
the domains in Fig. 12 and the corresponding 3D-printed pieces.

5. Conclusions

This paper presents analysis of the effects of the parameters of the
heuristic voxel density algorithms in (1) the geometry and struc-
tural performance of the final design and, (2) the convergence speed
of the algorithm. For the study, the authors use one set-up, therefore
conclusions on the detailed behavior of the parameters may not be
drawn. However, results show that (a) extreme values of the param-
eters may affect the manufacturability and mechanical performance
of the designs and (b) mechanical analyses must be executed on the
domain-to-manufacture and not in the optimal voxel density map
given by the algorithm.

Shape optimization is an intermediate step in the work-flow of
the design-to-manufacturing. In this realm, it is important to under-
stand how the shape optimization algorithms work and how their
parameters affect the obtained design. This work can be a worthy
tool for many designers and engineers that use commercial soft-
ware that implements density-based methods.

5.1. Limitations

This work studies the effects of the penalty power p and the fil-
ter radius R independently. It may be interesting to understand the
interaction between these two parameters. Future research should
address the analysis of simultaneous changes in the values of p

and R. Moreover, other parameters (e.g. mass fraction η) can be in-
vestigated. Physical experimentation is also required for testing the
correctness and exactitude of the numerical results.

5.2. Future Work

The authors look forward to generate an interactive tool to assist the
design process in additive manufacturing. The tool would allow de-
signers to visualize different different pieces and their mechanical
performance. It has to be capable of generating different configu-
rations for the domain, loads, constraints and parameter configura-
tions for shape optimization.

It is necessary to validate the conclusions drawn in this work. In
that sense, there are three lines of research that are open for further
work: (1) the simulation of other domains with different load cases,
(2) the analysis of interactions between p and R and (3) physical
tests to confirm numerical results.

References
[AAH∗10] AREMU A., ASHCROFT I., HAGUE R., WILDMAN R.,

TUCK C.: Suitability of SIMP and BESO topology optimization al-
gorithms for additive manufacture. In 21st Annual International Solid
Freeform Fabrication Symposium (SFF)–An Additive Manufacturing
Conference (2010), pp. 679–692. 3

[Ben89] BENDSØE M. P.: Optimal shape design as a material distribution
problem. Structural optimization 1, 4 (Dec 1989), 193–202. doi:10.
1007/BF01650949. 2

[Ben95] BENDSØE M. P.: The homogenization approach to topology de-
sign. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995, pp. 5–77.
doi:10.1007/978-3-662-03115-5_2. 5

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

38

http://dx.doi.org/10.1007/BF01650949
http://dx.doi.org/10.1007/BF01650949
http://dx.doi.org/10.1007/978-3-662-03115-5_2


D. Montoya-Zapata, D. A. Acosta, A. Moreno, J. Posada & O. Ruiz-Salguero / Sensitivity Analysis in Shape Optimization

(a) STL model for p = 3.0,R = 1.0. (b) STL model for p = 7.0,R = 1.0. (c) STL model for p = 3.0,R = 0.0.

(d) Printed version of model in Fig. 12(a). (e) Printed version of model in Fig. 12(b). (f) Printed version of model in Fig. 12(c).

Figure 12: 3D printed designs obtained using the voxel density algorithm.

(a) Smoothed model for p = 3.0,R = 1.0. (b) Smoothed model for p = 7.0,R = 1.0. (c) Smoothed model for p = 3.0,R = 0.0.

(d) Printed version of model in Fig. 13(a). (e) Printed version of model in Fig. 13(b). (f) Printed version of model in Fig. 13(c).

Figure 13: Smoothed designs using Marching Cubes algorithm and the corresponding 3D printed pieces.

[BQ18] BQ: PLA filament: technical datasheet, 2018.
https://www.bq.com/en/support/pla-premium/support-sheet. URL:
https://www.bq.com/en/support/pla-premium/
support-sheet. 4

[BS04] BENDSØE M. P., SIGMUND O.: Topology optimization by distri-
bution of isotropic material. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004, pp. 1–69. doi:10.1007/978-3-662-05086-6_1. 3

[CZB∗17] CHENG L., ZHANG P., BIYIKLI E., BAI J., ROBBINS J.,
TO A.: Efficient design optimization of variable-density cellular struc-
tures for additive manufacturing: theory and experimental validation.
Rapid Prototyping Journal 23, 4 (2017), 660–677. doi:10.1108/
RPJ-04-2016-0069. 2

[DG14] DEATON J. D., GRANDHI R. V.: A survey of structural and
multidisciplinary continuum topology optimization: post 2000. Struc-
tural and Multidisciplinary Optimization 49, 1 (Jan 2014), 1–38. doi:
10.1007/s00158-013-0956-z. 2

[DHV09] DADALAU A., HAFLA A., VERL A.: A new adaptive penal-
ization scheme for topology optimization. Production Engineering 3, 4
(2009), 427. doi:10.1007/s11740-009-0187-8. 3

[EKB07] EDWARDS C. S., KIM H. A., BUDD C. J.: An evaluative study
on ESO and SIMP for optimising a cantilever tie—beam. Structural

and Multidisciplinary Optimization 34, 5 (2007), 403–414. doi:10.
1007/s00158-007-0102-x. 3

[FAL16] FARAH S., ANDERSON D. G., LANGER R.: Physical and
mechanical properties of PLA, and their functions in widespread
applications–a comprehensive review. Advanced Drug Delivery Reviews
107 (2016), 367 – 392. doi:10.1016/j.addr.2016.06.012. 4

[FLGX19] FU J., LI H., GAO L., XIAO M.: Design of shell-infill struc-
tures by a multiscale level set topology optimization method. Computers
& Structures 212 (2019), 162 – 172. doi:10.1016/j.compstruc.
2018.10.006. 2

[GAV16] GARAIGORDOBIL A., ANSOLA R., VEGUERÍA E.: Study
of topology optimization parameters and scaffold structures in additive
manufacturing. In Proceedings of the VII European Congress on Com-
putational Methods in Applied Sciences and Engineering (2016), Na-
tional Technical University of Athens, pp. 3700–3710. doi:10.7712/
100016.2066.6404. 3

[GWH17] GEBREMEDHEN H. S., WOLDEMICHAEL D. E., HASHIM
F. M.: Effect of modeling parameters in SIMP based stress constrained
structural topology optimization. International Journal of Mechanical
and Mechatronics Engineering 17, 6 (2017), 32–39. 3

[KPEM10] KREISSL S., PINGEN G., EVGRAFOV A., MAUTE K.:
Topology optimization of flexible micro-fluidic devices. Structural

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

39

https://www.bq.com/en/support/pla-premium/support-sheet
https://www.bq.com/en/support/pla-premium/support-sheet
http://dx.doi.org/10.1007/978-3-662-05086-6_1
http://dx.doi.org/10.1108/RPJ-04-2016-0069
http://dx.doi.org/10.1108/RPJ-04-2016-0069
http://dx.doi.org/10.1007/s00158-013-0956-z
http://dx.doi.org/10.1007/s00158-013-0956-z
http://dx.doi.org/10.1007/s11740-009-0187-8
http://dx.doi.org/10.1007/s00158-007-0102-x
http://dx.doi.org/10.1007/s00158-007-0102-x
http://dx.doi.org/10.1016/j.addr.2016.06.012
http://dx.doi.org/10.1016/j.compstruc.2018.10.006
http://dx.doi.org/10.1016/j.compstruc.2018.10.006
http://dx.doi.org/10.7712/100016.2066.6404
http://dx.doi.org/10.7712/100016.2066.6404


D. Montoya-Zapata, D. A. Acosta, A. Moreno, J. Posada & O. Ruiz-Salguero / Sensitivity Analysis in Shape Optimization

and Multidisciplinary Optimization 42, 4 (Oct 2010), 495–516. doi:
10.1007/s00158-010-0526-6. 2

[Lan16] LANGELAAR M.: Topology optimization of 3D self-supporting
structures for additive manufacturing. Additive Manufacturing 12
(2016), 60 – 70. doi:10.1016/j.addma.2016.06.010. 2

[LM16] LIU J., MA Y.: A survey of manufacturing oriented topology
optimization methods. Advances in Engineering Software 100 (2016),
161 – 175. doi:10.1016/j.advengsoft.2016.07.017. 2

[LT14] LIU K., TOVAR A.: An efficient 3D topology optimization code
written in Matlab. Structural and Multidisciplinary Optimization 50, 6
(2014), 1175–1196. doi:10.1007/s00158-014-1107-x. 1, 3

[LYT18] LIU J., YU H., TO A. C.: Porous structure design through
Blinn transformation-based level set method. Structural and Multi-
disciplinary Optimization 57, 2 (2018), 849–864. doi:10.1007/
s00158-017-1786-1. 2

[MHSL18] MARTÍNEZ J., HORNUS S., SONG H., LEFEBVRE S.: Poly-
hedral voronoi diagrams for additive manufacturing. ACM Trans. Graph.
37, 4 (2018), 129:1–129:15. doi:10.1145/3197517.3201343. 2

[MMA∗14] MEJIA D., MORENO A., ARBELAIZ A., POSADA J., RUIZ-
SALGUERO O.: Accelerated thermal simulation for three-dimensional
interactive optimization of computer numeric control sheet metal laser
cutting. Journal of Manufacturing Science and Engineering 140, 3
(2014), 031006–031006–9. doi:10.1115/1.4038207. 2

[MZARS∗19] MONTOYA-ZAPATA D., ACOSTA D. A., RUIZ-
SALGUERO O., POSADA J., SANCHEZ-LONDONO D.: A
general meta-graph strategy for shape evolution under me-
chanical stress. Cybernetics and Systems 50, 1 (2019), 3–24.
doi:10.1080/01969722.2018.1558011. 2

[PAHA18] PANESAR A., ABDI M., HICKMAN D., ASHCROFT I.:
Strategies for functionally graded lattice structures derived using topol-
ogy optimisation for Additive Manufacturing. Additive Manufacturing
19 (2018), 81 – 94. doi:10.1016/j.addma.2017.11.008. 2

[PQR05] POMEZANSKI V., QUERIN O., ROZVANY G.: CO–SIMP: ex-
tended SIMP algorithm with direct COrner COntact COntrol. Struc-
tural and Multidisciplinary Optimization 30, 2 (Aug 2005), 164–168.
doi:10.1007/s00158-005-0514-4. 6, 7

[PTB∗15] POSADA J., TORO C., BARANDIARAN I., OYARZUN D.,
STRICKER D., DE AMICIS R., PINTO E. B., EISERT P., DÖLLNER
J., VALLARINO I.: Visual computing as a key enabling technology for
Industrie 4.0 and industrial internet. IEEE Computer Graphics and Ap-
plications 35, 2 (2015), 26–40. doi:10.1109/MCG.2015.45. 2

[SB11] STANFORD B., BERAN P.: Conceptual design of compliant
mechanisms for flapping wings with topology optimization. AIAA Jour-
nal 49, 4 (2011), 855–867. doi:10.2514/1.J050940. 2

[Sig01] SIGMUND O.: A 99 line topology optimization code written
in Matlab. Structural and Multidisciplinary Optimization 21, 2 (2001),
120–127. doi:10.1007/s001580050176. 1, 3

[SM13] SIGMUND O., MAUTE K.: Topology optimization approaches.
Structural and Multidisciplinary Optimization 48, 6 (2013), 1031–1055.
doi:10.1007/s00158-013-0978-6. 2, 3

[SPMN10] SUTRADHAR A., PAULINO G. H., MILLER M. J., NGUYEN
T. H.: Topological optimization for designing patient-specific large
craniofacial segmental bone replacements. Proceedings of the National
Academy of Sciences 107, 30 (2010), 13222–13227. doi:10.1073/
pnas.1001208107. 2

[TDZZ18] TANG Y., DONG G., ZHOU Q., ZHAO Y. F.: Lattice struc-
ture design and optimization with additive manufacturing constraints.
IEEE Transactions on Automation Science and Engineering 15, 4 (2018),
1546–1562. doi:10.1109/TASE.2017.2685643. 2

[TKZ15] TANG Y., KURTZ A., ZHAO Y. F.: Bidirectional Evolutionary
Structural Optimization (BESO) based design method for lattice struc-
ture to be fabricated by additive manufacturing. Computer-Aided Design
69 (2015), 91 – 101. doi:10.1016/j.cad.2015.06.001. 2

[VBSDC18] VANTYGHEM G., BOEL V., STEEMAN M., DE CORTE W.:
Multi-material topology optimization involving simultaneous structural
and thermal analyses. Structural and Multidisciplinary Optimization
(2018). doi:10.1007/s00158-018-2095-z. 3

[WWZW16] WU J., WANG C. C., ZHANG X., WESTERMANN R.:
Self-supporting rhombic infill structures for additive manufacturing.
Computer-Aided Design 80 (2016), 32 – 42. doi:10.1016/j.cad.
2016.07.006. 2

[ZCX19] ZHANG K., CHENG G., XU L.: Topology optimization con-
sidering overhang constraint in additive manufacturing. Computers &
Structures 212 (2019), 86 – 100. doi:10.1016/j.compstruc.
2018.10.011. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

40

http://dx.doi.org/10.1007/s00158-010-0526-6
http://dx.doi.org/10.1007/s00158-010-0526-6
http://dx.doi.org/10.1016/j.addma.2016.06.010
http://dx.doi.org/10.1016/j.advengsoft.2016.07.017
http://dx.doi.org/10.1007/s00158-014-1107-x
http://dx.doi.org/10.1007/s00158-017-1786-1
http://dx.doi.org/10.1007/s00158-017-1786-1
http://dx.doi.org/10.1145/3197517.3201343
http://dx.doi.org/10.1115/1.4038207
http://dx.doi.org/10.1080/01969722.2018.1558011
http://dx.doi.org/10.1016/j.addma.2017.11.008
http://dx.doi.org/10.1007/s00158-005-0514-4
http://dx.doi.org/10.1109/MCG.2015.45
http://dx.doi.org/10.2514/1.J050940
http://dx.doi.org/10.1007/s001580050176
http://dx.doi.org/10.1007/s00158-013-0978-6
http://dx.doi.org/10.1073/pnas.1001208107
http://dx.doi.org/10.1073/pnas.1001208107
http://dx.doi.org/10.1109/TASE.2017.2685643
http://dx.doi.org/10.1016/j.cad.2015.06.001
http://dx.doi.org/10.1007/s00158-018-2095-z
http://dx.doi.org/10.1016/j.cad.2016.07.006
http://dx.doi.org/10.1016/j.cad.2016.07.006
http://dx.doi.org/10.1016/j.compstruc.2018.10.011
http://dx.doi.org/10.1016/j.compstruc.2018.10.011

