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Abstract
Structure-from-motion along with multi-view stereo techniques jointly allow for the inexpensive scanning of 3D objects (e.g.
buildings) using just a collection of images taken from commodity cameras. Despite major advances in these fields, a major
limitation of dense reconstruction algorithms is that correct depth/normal values are not recovered on specular surfaces (e.g.
windows) and parts lacking image features (e.g. flat, textureless parts of the facade). Since these reflective properties are
inherent to the surface being acquired, images from different viewpoints hardly contribute to solve this problem. In this paper
we present a simple method for detecting, classifying and filling non-valid data regions in depth maps produced by dense stereo
algorithms. Triangles meshes reconstructed from our repaired depth maps exhibit much higher quality than those produced by
state-of-the-art reconstruction algorithms like Screened Poisson-based techniques.

CCS Concepts
•Computing methodologies → Computer graphics;

1. Introduction

The construction of detailed 3D models of existing buildings has

a number of applications in areas such as videogames, architecture

and smart cities. Although 3D scanner equipment (e.g. Lidar) can

produce detailed and accurate models of 3D buildings, techniques

based on bare images taken from commodity digital cameras are

gaining popularity due to their low cost and general availability. In

this case, the most common approach is to combine Structure from

Motion (SfM) and Multi-view stereo (MVS) techniques (Fig. 1).

SfM [SF16] takes as input a collection of images of an object

(e.g. a building), taken from different viewpoints, and outputs both

camera parameters (both intrinsic and extrinsic) for the images, and

a sparse point cloud representation of the scene. MVS [SZPF16]

takes as input the provided images and the reconstructed camera

poses, and outputs both undistorted versions of the images, and a

dense reconstruction in the form of depth maps and color maps for

each input image. These depth maps can be fused into a single col-

ored and oriented point cloud, which can be further meshed through

surface reconstruction algorithms such as Screened Poisson-based

reconstruction [KH13]. Further processing allows for the genera-

tion of color and normal texture atlases for higher normal and color

resolution on the reconstructed meshes.

Figure 2 shows a small collection of input images along with

the intermediate and final output of a state-of-the-art SfM+MVS

pipeline [SZPF16]. Note that the final output shows some clearly

visible artifacts: (a) occluding objects (trees, cars...) have been in-

cluded in the reconstructed mesh, (b) parts of the reconstructed

mesh are missing, (c) parts of the surface have a curved shape, and

(d) there is low detail in the mesh color.

Missing depth values mostly occur in facade parts lacking image

features and on specular surfaces (e.g. windows) where consistency

checks among images will fail. Since these features depend on sur-

face reflectivity, adding more images from different views does not

alleviate this problem.

Rounded shapes around the facade can be attributed to the sur-

face reconstruction algorithm employed (e.g. Poisson-based ap-

proaches). These algorithms define an implicit function and then

obtain the reconstructed surface by extracting an appropriate iso-

surface. Since the implicit function is assumed to be smooth, when

the sampling rate is not enough to capture the facade details, the

reconstructed surface shows a curved appearance.

Low-resolution color in the example shown in Fig. 2 is due to

the use of per-vertex color. The use of texture maps increases the

color resolution, but results are still not satisfactory due to shape

offsets in the reconstructed surface that cause color from images to

be mapped onto wrong surface locations.

In this paper we slightly modify the typical SfM+MVS pipeline

to address the issues mentioned above. The new pipeline is depicted

in Fig. 3. In particular, (1) we segment the (undistorted) input im-

ages into a small set of classes (constructions, sky, obstacles...), us-

ing a pre-trained CNN, (2) we remove from the depth maps those

parts containing unintended objects, (3) we repair the depth map

by detecting missing parts and assigning plausible depth values to

them, and (4) we use an optional meshing algorithm that avoids
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Figure 1: Standard pipeline for 3D reconstruction from images.

Figure 2: Artifacts in standard SfM+MVS pipelines: input images, depth map and final mesh.

surrounding curved shapes produced by Poisson-based approaches.

The new pipeline is able to create detailed, plausible reconstruc-

tions of building facades, with much better shape and appearance

than conventional SfM+MVS pipelines.

2. Previous Work

There is extensive research done in the reconstruction of 3D mod-

els from point clouds [BTS∗14]. However, most of the developed

techniques are designed for models obtained from laser scanning.

As a result, they rarely use the information used to obtain the input

point cloud, even when the method is integrated into a Multi-View

Stereo pipeline.

It would also be possible to apply a repair technique after the

reconstruction [Ju09], but disregarding all the information available

during model capture, it is difficult to recover from certain errors. In

particular, a commonly used prior in both reconstruction and repair

algorithms is model smoothness, which for certain inputs can be

counterproductive. In the case of the reconstruction of buildings,

one possibility is to take advantage of their symmetries, as Ceylan

et al [CMZP14] do. Still the running time of this type of methods

can become prohibitive for massive models or when the number of

models to process is large enough.

A common strategy in Multi-View Stereo algorithms is to make

a local estimation of the depth maps of the input images using sub-

sets of these. Afterwards the computed depth maps are integrated

into a single surface rejecting all points that despite having a match

show inconsistencies. Most of the work that has been done regard-

ing the repair of these depth maps has focused on those situations

in which the number of images is small. This is because the low

redundancy of this type of datasets results in a reduction in the ac-

curacy of the reconstruction. The quality of the meshes produced

increases considerably if the number of outliers is reduced in the

depths maps [CVHC08]. In any case, when the captured surface

contains enough specular or translucent surfaces, as well as a good

number of difficult-to-avoid occluders, it is necessary to repair the

depth maps. When the number of images is high, it is also interest-

ing that the repair algorithm is as efficient as possible.

The reconstruction process discards those points that do not pass

the consistency tests. As a result, all surfaces with no texture fea-

tures or that due to specular reflection show different colors de-

pending on the viewpoint are not reconstructed correctly. As urban

models can be approximated by a set of flat surfaces, it is possible to

add planar priors as terms of consistency to the dense reconstruc-

tion process of the MVS pipeline. Mičušík and Košecká [MK10]

introduced a method that used such planar priors to a set of super-

pixels computed on each input image. This same superpixel repre-

sentation may be used to output a repaired mesh from any of the

computed depth maps. An algorithm proposed by Bódis-Szomorú

et al [BSRVG15] extracts a 2D mesh from a depth map, and repro-

jects its 2D points to 3D using the sparse point cloud that results

from the SfM (Structure-from-Motion) step.

Another possibility is to detect any symmetry present in out in-

put models and exploit it to repair them. Pauly et al [PMW∗08]

introduced the idea that repetitions of a part resulted in a grid of
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Figure 3: Proposed pipeline for 3D reconstruction of buildings.

points in the appropriate transformation space. This makes it pos-

sible to detect this regularity and apply it to repair all instances of a

common surface part. Zheng et al [ZSW∗10] adapted this process

to point clouds obtained from terrestrial Lidar. On the other hand Li

et al [LZS∗11] improved this type of algorithms using the associ-

ated color information where available. Still some features typical

of urban models cannot be dealt by this techniques alone and their

performance make them prohibitive for large datasets.

In parallel, the introduction of depth capture devices like the

Kinect has produced the need to process the resulting depth maps.

In addition to filtering the noise in these datasets, it is essential to

fill in the holes that are present [LJW14]. Nevertheless such tech-

niques rarely include any prior knowledge specific to building re-

construction due to the low range of such devices.

3. Our approach

3.1. Image Segmentation

We use a state-of-the-art encoder-decoder network architecture

(Xception-65 from DeepLab-v3+ [CPSA17]) to segment the undis-

torted images into the following classes: construction (building,

wall and fences), flat (road, sidewalks), sky, obstacles (persons, ve-

hicles, and objects such as poles and traffic lights), nature (vege-

tation, terrain) and sky. For this purpose, the network was trained

with the well known ImageNet and Cityscapes datasets [COR∗16].

Cityscapes is a large-scale dataset for semantic urban scene under-

standing that contains 25,000 annotated images from 20 different

European cities, into a superset of the classes we use. The segmen-

tation is applied once input images have been undistorted, so that

there is a one-to-one mapping between depth map pixels and seg-

mented image pixels. This will allow us to remove unwanted ob-

jects either directly on the depth maps, or later on in the dense point

cloud. Fig. 4 shows one example of our automatic segmentation.

Cars, trees, sky and building facades appear clearly segmented.

3.2. Repairing the depth maps

MVS techniques create a dense reconstruction of the scene through

the computation of depth and normal maps for each input image.

Unfortunately, depth maps often exhibit two major types of arti-

facts: unwanted obstacles such as trees and vehicles, and missing

parts on uniform/mirror surfaces. The advantages of operating di-

rectly on the depth maps is two-fold: we can remove distracting

objects that will not appear in the final dense pointcloud/meshes,

and we can repair holes so that each individual depth map can be

rendered with a high-quality texture map.

We remove unintended objects by invalidating (setting to 0) their

values in the depth maps. By default, we remove pixels belonging

to all classes except constructions (i.e. we remove roads, sidewalks,

sky, obstacles, vegetation, and sky), although we let the user to pre-

serve a subset of these classes (e.g. we might choose the preserve

vegetation for vertical gardens).

Repairing missing parts in the depth proceeds as follows. We as-

sume that missing values are set to 0. We first threshold the depth

mask to get a binary mask B by distinguishing zero-valued pixels

from the rest. Then we apply a border-following algorithm [S∗85]

to B to extract all the contours separating valid regions from non-

data ones. Each contour c is represented as a collection of 2D point

coordinates. Contours might include other contours and define deep

inclusion hierarchies, with complex topologies (Fig. 5). Points in-

side a contour might have only valid depth values, only zero val-

ues, or a combination of both, due to non-valid regions surround-

ing valid ones and vice-versa. We consider a contour c to define

a repairable region if (a) it contains at least one pixel with zero

depth in its interior, (b) it contains pixels from the intended classes

in the segmented image and (c) the area of the bounded region

is below some threshold. The interior of repairable contours are

fixed by replacing zero-depth values with a regression plane found

through RANSAC on the 3D coordinates of the points surround-

ing the contour’s boundary. In particular, we apply RANSAC to the

4-neighbors of all points of the contour boundary, excluding those

with non-valid (zero) depth value. Since very small contours do not

allow for a robust computation of the regression plane, we handle

these separately by just using the average depth of valid neighbor-

ing points. Fig. 5 illustrates this process. Notice that most holes

have been repaired, except those at the bottom-left of the image,

where tree branches have been detected and the holes have not been

repaired. Although this method can be applied to depth maps sepa-

rately, we can also preprocess the depth maps to replace non-valid

values using valid values from the rest of the registered depth maps

(since camera poses are known), and then fill only the remaining

holes using the regression plane approach described above.

3.3. Alternative meshing

Dense meshes from MVS are often created through surface recon-

struction methods adopting an implicit function approach. These

methods are robust against data noise, but produce water-tight sur-

faces even when the point cloud only captures a few sides of the

object. In the case of building facades, state-of-the-art Poisson-

based reconstructions tend to produce smooth surfaces around the

facade (Fig. 2). Furthermore, color reproduction in these parts is

often poor.

In some applications (e.g. restoration planning, cultural heritage
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Figure 4: Undistorted image and its semantic segmentation.

Figure 5: Repairing holes in the depth map: image, depth map (us-
ing a color map for illustration), segmentation into valid (blue)
and non-valid (yellow) values, extracted contours, mask defining
repairable holes, and fixed depth map.

documentation), it might be more desirable to get a 3D textured

model directly from one of the reconstructed depth maps. A clear

advantage is that undistorted images are readily available to be used

as high-quality texture maps. We apply this technique to our re-

paired depth-maps, by simply applying displacement mapping to a

tessellated plane, and directly using normalized image coordinates

as texture coordinates to transfer color from the undistorted color

images. We automatically remove faces at step discontinuities (as

in [CL96]) and zero-valued parts of the facade.

4. Results

We tested the proposed pipeline on a PC equipped with an Intel i7-

4770K CPU and an NVIDIA GTX 770 GPU. We used COLMAP

for SfM (on CPU) and MVS (on GPU), TensorFlow (on GPU) for

image segmentation, and Python (on CPU) for depth map repairing.

Original images (facades from Barcelona, Madrid and Zaragoza)

had a resolution of 3008×2000 pixels. Depth maps were generated

at 2000×1270 resolution due to the GPU memory constraints of

MVS. Each image set contained between 6 and 12 images. The

average running time for the standard COLMAP pipeline was about

12’ (4’ for SfM, 8’ for MVS). Adding our additional steps only

added about 3’ to the process.

Figure 6 shows some examples of depth maps that have been au-

tomatically segmented through the Xception-65 encoder-decoder

network trained on the Cityscapes dataset. Note how the build-

ing facade is clearly segmented from sky, trees and obstacles. Tree

branches were detected despite branches having almost no leaves.

Fig. 7 compares the output of a state-of-the-art SfM+MVS

pipeline (COLMAP), with that of our meshing algorithm. No-

tice that COLMAP creates a triangle mesh with per-vertex colors,

whereas we use the undistorted images to texture the mesh. Fig 8

compares renders of a displacement-mapped surface before and af-

ter depth map repairing. In both cases we use the undistorted color

image for texture mapping. Since missing data in the repaired depth

map has been recovered, a single depth map already provides an ac-

ceptable representation of the facade. Fig 9 shows further examples

of depth maps automatically repaired with our algorithm. Fig 10

shows our results after fusion [SZPF16] of the repaired depth maps.

Windows and texture-less patches have been reconstructed success-

fully.

5. Conclusions

We have presented a simple extension of a common 3D reconstruc-

tion pipeline to generate high-quality renders of reconstructed fa-

cades. The main idea is to use SfM+MVS to recover the depth maps

of the input images, and to repair them by removing unwanted ob-

jects (through semantic segmentation) and filling holes through lo-

cal regression planes. Repaired depth maps can be used to generate

clean point clouds or, alternatively, to render high-quality meshes

through a combined displacement mapping + texture mapping tech-

nique. As future work, we plan to further explore the fusion and

meshing steps with repaired depth maps.
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Figure 6: Images segmented automatically prior to depth cleaning.

Figure 7: Renders of the meshes produced by COLMAP (left) and our meshing algorithm (right).
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Figure 8: Meshes before (left) and after (right) applying our depth repairing algorithm.
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Figure 9: Repairing results: RGB image, segmentation, original depth map, repaired depth map.
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Figure 10: Impact of depth map repairing: point cloud from original depth maps, point cloud from repaired depth maps, reconstructed mesh,
and close-up view with projective texture mapping.
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