CEIG - Spanish Computer Graphics Conference (2017)
F. J. Melero and N. Pelechano (Editors)

Physically Based Skeleton Tracking

Axel Lopez-Gandia and A. Susin

Universitat Politecnica de Catalunya UPC-BarcelonaTech

Abstract

Skeleton tracking has multiple applications such as games, virtual reality, motion capture and more. One of the main challenges
of pose detection is to be able to obtain the best possible quality with a cheap and easy-to-use device. In this work we propose
a physically based method to detect errors and tracking issues which appear when we use low cost tracking devices such as
Kinect. Therefore, we can correct the animation in order to obtain a smoother movement. We have implemented the Newton-
Euler Algorithm, which allow us to compute the internal forces involved in a skeleton. In a common movement, forces are
usually smooth without sudden variations. When the tracking yields poor results or invalid poses the internal forces become
very large with a lot of variation. This allow us to detect when the tracking system fails and the animation needs to be inferred

through different methods.
CCS Concepts

eComputing methodologies — Skeleton Tracking; eHardware — Sensors and actuators;

1. Introduction

Skeleton tracking is an active area of research since it allows for a
large number of applications such as gesture interaction schemes,
virtual reality frameworks, motion capture and more. Currently
there are many proposed solutions to this problem, although there is
a trade-off between accuracy, expense and realtime capability. Cur-
rent accurate body reconstructions typically involves a set up of a
number of cameras and optical marker suits. The advantages of this
approach are very precise motion tracking and no heavy suits are
involved. The drawbacks of this system are an expensive and fixed
scenario. Also this approach does not allow for a real-time appli-
cations since it is usually necessary to be post-processed. On the
other hand, there is a very cheap solution which consists of using
a single depth sensor and reduce the skeleton tracking problem to
a pixel classification problem. One known device capturing human
motion through depth sensor is Kinect-2 [Kin13]. This allows for a
real-time and portable way to capture a skeleton motion, however
it results in a low accuracy tracking. This method also handles very
poorly when parts of the body are occluded to the camera. We fo-
cus on single depth sensor devices because of its versatility and we
believe that the same tracking system can be improved without a
significant computation load. Therefore, the objective of this work
is to filter the skeleton capture by a single depth sensor using phys-
ical information. Skeletons are physical systems and given some
parameters such as weight and height of the user, we are capable
of extract dynamic information from an animation such as internal
torques and forces. Our hypothesis is when significant occlusions
occur, the skeleton provided by the tracking system will show large
unrealistic internal forces. Consequently, we can use this informa-

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

DOI: 10.2312/ceig.20171203

tion to filter an animation captured from these kind of systems. We
will use a Kinect device in order to test our hypothesis and find a
way to smooth the forces and provide a better estimation of the mo-
tion under occlusions circumstances. Below we introduce a small
state of the art relating this topic.

1.1. Skeleton Tracking

Grest et al. [GKKO7] used Iterative Closest Points (ICP) ap-
proaches to solve this problem. Using a single depth camera and
a color camera, a human 3D model is iteratively moved in order to
best match the information from the depth camera. Also they take
advantage of color camera information to better determine bound-
aries of the body and therefore the background can be dynamic.
The drawback from ICP methods is that they may get local mini-
mum as result and yield an incorrect pose. Also they may be time
expensive if there is a large amount of points to iterate.

Siddiqui and Medioni [SM10] proposed an optimization method
in a data driven Markov Chain Monte Carlo framework. They de-
fine a likelihood function, to measure how well the input data
matches the predicted pose, and used prior frame information to
discard unfeasible poses. They improve over previous ICP tech-
niques obtaining interactive framerate.

Shotton et al. [SFC*11] reformulated the pose tracking into a
pixel classification problem. The input data is a segmented depth
image and its pixels need to be assigned to a body part. To solve
the problem they use a random forest approach which are trained
with a large number of synthetic images. This approach is used
in the kinect [Kin13] game sensor and yields good results in an

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20171203

20 A. Lopez-Gandia and A. Susin / Physically Based Skeleton Tracking

interactive framerate (30 fps due to the sensor framerate) but may
fail to classify some pixels when large occlusions occur. The main
advantage of this techniques is that it performs well for arbitrary
backgrounds so no special set up is necessary other than the device
within a certain range from the tracked body.

Wei et al. [WZC12] applied a MAP framework to estimate body
pose. They defined several functions to quantize how much input
data matches the predicted pose taking into account silhouette, oc-
cluded pixels, and the depth image. Also use prior poses in order
to obtain a better estimation of the skeleton by penalizing changes
in the velocity of the joints of the skeleton. This approach is capa-
ble of producing good results in real-time, and solves some poses
where previous attempts such as kinect is not able to provide a valid
result. Despite the advantages of this method it is GPU intensive
which may not be suitable for some applications.

Our intention is to improve an existing fast skeleton tracking
such as kinect and filter its results to provide a better estimation
of the pose when occlusions occur or in situations where the sensor
is not able to provide acceptable results.

1.2. Articulated Body Dynamics

The main part of this work is focused in skeleton dynamics. An ex-
tensive work in the fields of robot dynamics is has been conducted
by Featherstone [Fea08] with many publications.

There is a number of algorithms regarding skeleton dynamics,
our focus is to find the most efficient to implement, these have been
proposed by Featherstone [FO00] which are able to compute forces
or acceleration in O(n) cost with the number of joints of a skeleton.

Although much of these works focuses on robot development, it
can be easily applied to perform computer simulation in a graph-
ics environment such as games which was suggested by Kokke-
vis [Kok04].

2. Skeleton Dynamics

In this section we will show the framework for skeleton dynam-
ics. We will show the algebra used when dealing with this kind of
problems, show the relevant quantities and the possible operations.
Finally we will show two algorithms for computing forces and ac-
celerations of an skeleton.

2.1. Skeleton

We define a skeleton as a set of joints and bones. Joints have a
corresponding bone and may have multiple children and it holds
always true parent (i) < i. Each joint has a single degree of freedom
defined by an axis ®. Bones have a certain length and mass and
they are approximated by cylinder of which the inertia tensor Icopy
is defined in equation 1 where r is the radius of the cylindric bone,
L its length and m its mass.

2
lcom = diagMatrix(%7 %(3,2 +L2)

m

L)) M

Figure 1: Spatial Motion Axis. T is the vector connecting the center
of mass of the bone with the axis of rotation and u is the axis of
rotation.

Although in this model joints have only a single degree of free-
dom (see fig. 1) multiples degrees of freedom can be achieved by
concatenating more than one joint with a link of zero mass and
length and having as their motion axis the desired directions.

2.2. Spatial Notation

Spatial Vector Algebra [Feal4] [FeaOS8] is convenient way of ex-
pressing rigid-body kinematics and dynamics. It conceptually re-
duces the amount of quantities and measures to be taken into ac-
count preventing mistakes or confusions.

There are two vector spaces being the first space for motion
or kinematic vectors (velocities) and the second vector space
where dynamic quantities (forces). These vector spaces are six-
dimensional where lie both angular and linear quantities. For in-
stance, the spatial velocity is written as ¥ = (w,v)T € RS where
w is the angular velocity of a body and v is its linear velocity. We
remit to [Feal4] for the formulas and notation.

3. The Recursive Newton-Euler Algorithm

In order to obtain the underlying forces from a motion capture, we
require an algorithm which, given the kinematic information (ve-
locity and acceleration) and other known quantities (bone weights,
lengths and external forces), computes the internal forces and
torques in the articulated structure. This is the Newton-Euler Al-
gorithm [FOO00].

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

A. Lopez-Gandia and A. Susin / Physically Based Skeleton Tracking 21

Algorithm 1 Newton-Euler Algorithm

Algorithm 2 Articulated-Body Algorithm

fori=0toN—1do
J < parent (i)
v; :inf;j+§,-q
a; =[dej+ﬁ[X 8+ 8ig
£l =hai+ o x* Iid; — f;

end for
fori:N—Al to 0 do
v =3 f/

if i # root then
j+ parent(i)
fl+=x"f
end if
end for

In Algorithm 1 subindex refers to the corresponding joint, fJ is
the force transferred from a parent joint to its child joints, f is the
sum of external forces, T is the internal torque in the joint, ;X; is
transformation matrix from the frame linked to joint j to the frame
linked to joint i and ¢, ¢ and § are angle, angular speed and angular
acceleration of a joint respectively.

Algorithm 1 involves two loops, the first one traverse all the
joints from the root to the child joints. It transfers velocity and ac-
celeration in order to obtain this quantities in local coordinates for
each joint. It computes also the forces acting in that joint.

The second loop traverses the joints from the child joints to the
root and computes the torque of each joint as well as transfer the
force to the parent joint.

4. The Articulated-Body Algorithm

In Section 3 we explained how to compute the underlying forces of
the skeleton. In this section we will show the inverse process, given
the internal and external forces compute the resulting acceleration
in order to obtain a dynamic simulation of a skeleton. The algorithm
is called The Articulated-Body Algorithm [FO00] [KokO4].

Algorithm 2 follows the same notation as Algorithm 1 and addi-
tionally p is the bias forces and following the notation of Kokkevis
E. [Kok04] &, h, d and u are temporal variables in order to pre-
vent computing the same quantities multiple times. This algorithm
is divided in three loops, two which traverse the chain from root to
children and one from children to root.

The first loop is very similar to the first loop of algorithm 1 it
only computes velocity and force acting on that joint in local coor-
dinates. The second loop transfers the forces from children joints
to its parents and also composes the inertia of the joints. The fi-
nal loop computes the spatial accelerations as well as the angular
acceleration of the joint.

5. Results

To be able to compute physical quantities of a skeleton we need to
define a skeleton model. Real human bodies have a lot of bones and
joints however we will focus in the most relevant ones. In Fig. 2 we
show the base skeleton and its joints. We consider all joints to have

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

fori=0toN—1do
J < parent (i)
v; = inz‘;j+.§,-q
p="0; x"Io;+ fi
¢ = x 8q
end for
fori=N—-1to0Odo
for k in Childrens(i) do
I = X0 () — Ll), x;
pit = iXe(Pr + e+ P)

gnd for
h; =1;3;
d.

fori=0toN—1do
J < parent (i)

q — Ml'fhé’i;,‘xj’ﬁ.j
a; = iXja;+¢+3ig;
end for

Neck
Spine Shoulder

Shoulder

Spine Mid
& Elbow
Hip (roat)

Hip (side)
— \\-H“'

Knee

l«— Ankle

Figure 2: Basic human skeleton with joint labels.

two degrees of freedom except for the root joint which has three
degrees of freedom.

This skeleton is a cut version of the one provided by the Kinect
API. We ignore small bones such as thumb or fingers since these
joints usually present heavy noise. We require additional informa-
tion in order to compute forces and torques; mass, length and den-
sity needs to be fixed parameters through all the animation. From
length and weight of the person, we use an anatomical standard
model to represent the inertia of each of the body segments.

Kinect tracking needs to be able to track any kind of human
body therefore, bone lengths are not fixed and may vary during
the recording. Since our model needs to fix these quantities before
starting any recording there is an initial inherent correction to the
skeleton.

In order to correct the skeleton we need a way to detect errors in

22 A. Lopez-Gandia and A. Susin / Physically Based Skeleton Tracking

Torque {N-m}

Time {s)

Figure 3: Torque values for the left shoulder computed from
Kinect’s captured data.

Torque (N-m)

g

Time (s)

Figure 4: Evolution of the torque magnitude of the Left Shoulder
Jjoint versus time without filtering (blue) and filtered (orange).

the tracking system. The Kinect API outputs whether a joint is be-
ing properly detected or inferred however in our experimentation
we found some situations where the joint was marked as tracked
but in fact it was not. For this reason we will use the torque magni-
tude of the joints in order to detect whether a skeleton is properly
tracked. In Fig. 3 we can see the torque values computed for the
trajectory of one joint (the left shoulder in this case) and we can
observe how these values are stable when the trajectory is properly
tracked. When big oscillation on these values is observed, this is
related to a bad behaviour in the tracking procedure.

I Tji |I< Tj+00; 2)

A joint is consider to be a valid one, if the condition of Eq. 2 is
fulfilled, where T is the average value of the torque magnitude of
the animation to be processed, 0 its standard deviation and o is a
parameter to adjust the detection.

Once the wrong values of the torques are detected, the time in-
terval is obtained and in order to correct the torque values, we use
a cubic Hermite polynomial to interpolate those values. In the fig-
ure 4 we show the torque values interpolated in four different time
intervals along the motion.

6. Conclusions

Although more work can be done in this direction, we have shown
that restoration of the joint trajectories in a tracking system can be
done using a dynamical approach.

Torques of the motion are a good feature to describe when a mo-
tion becomes wrong due to the the different limitations of a motion
capture system. The great thing when using a dynamical simula-
tor is that you can simulate the interval of time where you loose
information.

Moreover, using recursive Newton-Euler and Articulated Body
algorithms one can afford a real-time correction that we are not
able to implement yet. This is one of our future work, together with
the exploration of other significant dynamic features that can also
contribute to recover good trajectories.

As another future work, we consider to also use the information
from the RGB Kinect’s camera and consider some other approaches
like [MSS*17] that are able to do body tracking from color cameras
alone.

7. Acknowlegments

Second author is partially supported by TIN2014-52211-C2-1-R.

References

[Feal4] Roy Featherstone 2014, Spatial Vectors and Rigid-Body Dynam-
ics, (http://royfeatherstone.org/spatial)

[Fea08] Featherstone, Roy. Rigid Body Dynamics Algorithms. New
York, Springer, 2008.

[FO00] Featherstone, R., and D. Orin. "Robot Dynamics: Equations
and Algorithms." Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. (DOI:
10.1109/ROBOT.2000.844153)

[GKKO07] Grest, D., Kruger, V., and Koch, R. 2007. Single view motion
tracking by depth and silhouette information. In Proceedings of the 15th
Scandinavian Conference on Image Analysis (SCIA), 719-729.

[Kin13] Kinect, 2013. (https://www.openkinect.org)

[Kok04] Kokkevis E. Practical physics for articulated characters. In Pro-
ceedings of Game Developers Conference 2004.

[MSS*17] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei,
H-P Seidel, W. Xu, D. Casas, C. Theobalt. VNect: Real-time 3D Human
Pose Estimation with a Single RGB Camera. Procc SIGGRAPH 2017.
(DOL: 10.1145/3072959.3073596)

[SM10] Siddiqui, M., and Medioni, G. Human pose estimation from a
single view point, real-time range sensor. Proceed. CVPR-2010. (DOI:
10.1109/CVPRW.2010.5543618)

[SEC*11] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M.,
Moore, R., Kipman, A., and Blake, A. Real-time human pose recogni-
tion in parts from a single depth image. In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 1297-1304.

[WZC12] Wei, X., Zhang, P., Chai, J. 2012. Accurate Realtime Full-body
Motion Capture Using a Single Depth Camera. ACM Trans. Graph. 31,
Article 188.

2
2

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

