CEIG - Spanish Computer Graphics Conference (2014)
Pere-Pau Vizquez and Adolfo Muiioz (Editors)

GPU Visualization and Voxelization of Yarn-Level Cloth

Jorge Lopez-Morenol, Gabriel Cirio!, David Miraut' and Miguel Angel Otaduy1

!'Universidad Rey Juan Carlos, Madrid (Spain)

Abstract

Most popular methods in cloth rendering rely on volumetric data in order to model complex optical phenom-
ena such as sub-surface scattering. Previous work represents yarns as a sequence of identical but rotated cross-
sections. While these approaches are able to produce very realistic illumination models, the required volumetric
representation is difficult to compute and render, forfeiting any interactive feedback. In this paper, we introduce a
method based on the GPU for simultaneous visualization and voxelization, suitable for both interactive and offline

rendering.

Our method can interactively voxelize millions of polygons into a 3D texture, generating a volume with sub-voxel
accuracy which is suitable even for high-density weaving such as linen.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

Cloth simulation and rendering is an active research field.
In the last decade we have seen how the level of simula-
tion has gone from simulating spring-based simple models
on the edges of triangular meshes [BHW94, Pro95] or more
accurate methods based on finite elements [EKS03], to the
computation of highly detailed physical interactions at the
yarn level [KIM0S, MBCN09, KIM10].

This level of detail has created a demand for render
methods which can leverage the data available and deal
with a volumetric representation of the yarns and their con-
stituent fibers. While the complexity of the cloth reflectance
representation has increased over the years, even includ-
ing microCT-captured threedimensional models of the fibers
[ZIMB12], these approaches are limited to a surface-based
representation of the cloth objects and/or stochastic replica-
tion of texture tiles.

Yarns, as a rendering target, were introduced by Xu et
al. [XCL*01]. They included the GPU in the process, ob-
taining very compelling volumetric renderings in less than
an hour of computation. Their representation was used as
input by Jacob et al. [JAM™*10] for more accurate and real-
istic (offline) rendering with volumetric path tracing and the
micro-flakes model.

(© The Eurographics Association 2014.

DOI: 10.2312/ceig.20141115

2. Related Work

Our method relies on a similar representation to Lumislice,
introduced by Xu et al. [XCL*01]. A single yarn is modelled
by a set of cross-sections. At each cross-section, fine level
phenomena such as occlusion, shadowing and multiple scat-
tering is described at fiber level. For Xu et al., the advantage
of working with slices as atomic unit is that, instead of ray
tracing a full volumetric model, they compute all the inter-
actions for each cross-section, store the resulting colors and
transparency values and then rely on hardware-based trans-
parency to do the visibility rendering for them, overlaying all
the slices in alpha-blending mode. We use the same atomic
structure, the slice, but with a different data structure. In their
work, Xu et al. extend the volumetric render approach of
Meyer and Neyret [MMN98], in which slices have access
to all the data, and only transparency rasterization is left to
hardware. In order to leverage the parallelism capabilities
of the GPU, we precompute data for each slice, allowing
for out-of-order rendering and geometry instancing. At the
same time, we take advantage of the recent Shader Model
5 (SM5) which allows random access and 3D-addressing
from the GLSL shader pipeline in order to map these slices
to a voxel grid. The potential of such access for voxeliza-
tion was recently shown by Crassin and Green [CG12]. In
their work they focus on two problems: not missing parts
of geometry due to rasterization and augmenting the stor-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20141115

70 Jorge Lopez-Moreno et al. / GPU Visualization and Voxelization of Yarn-Level Cloth

age capabilities of voxel grids with sparse octree represen-
tations. The present work addresses additional rasterization
problems (see Section 5).

3. Our Method
3.1. Overview

In order to define a yarn, we will rely on a slice represent-
ing the distribution of fiber density (See Figure 1), which is
replicated and rotated along a path following the 3D shape
of the yarn. The size of the slice is equal to the diameter of
the yarn and the separation between consecutive slices will
depend on requirements of the scene as we will see in the
next section.

Our method adapts previous slice models to a GPU
friendly structure in order to handle a larger amount of slices,
performing illumination computations and voxelization on
per-pixel shaders. This will prove to be tricky as a large set
of slices (millions) requires instantiation and asynchronous
rendering and thus each slice will not share any information
with their neighbouring slices. Moreover, our shader-based
approach allows for real time voxelization of each slice at
a pixel level. At every time, we keep a coherent volumetric
representation of the yarns with density and 3D orientation
of each fiber in a 3D texture. This texture is visualized with
a real-time (GPU-based) ray casting method but it can also
be stored in a volumetric file format for posterior offline ren-
dering with more complex methods, such as volumetric path
tracing and the micro-flakes model. We show such results in
Section 4.

Figure 1: Top left: Density distribution of fibers at a given
slice, stored as a texture. Top Right: A stack of rotated slices
conform a single thread section. Bottom: A path defines the
position of these slices

3.2. Input data and smooth interpolation

Most natural fibers are only a few centimeters long. In or-
der to obtain longer yarns, fibers are interlocked through

spinning, with the resulting threads exhibiting desirable me-
chanical properties such as improved resistance and flex-
ibility. Therefore, threads do not bend sharply when they
touch other threads; instead, their shape follows a smooth
curve proper to weaving patterns.Our compact data model
only provides the thread location in contact points and model
boundaries. So, intermediate positions must be devised in or-
der to reproduce the inherited physical behavior from spin-
ning process. Countless books and published papers in Com-
puter Graphics and Industrial Design offer a wide range of
strategies to trace curves through a set of knots. We have
chosen classic Catmull-Rom splines [CR74] because of its
algorithmic simplicity, low computational cost (usually be-
low 2-3 seconds for a million crossings) and good results
with our initial sampling.

Contact points are located at non uniform distances, al-
ternating to one and another side of the fabric. All singu-
lar points are defined as knots in the curve, and we may
consider that our sampling rate is similar to Nyquist one
in a certain sense; since they capture points with maximum
variability and no aliasing artifacts are produced. Catmull-
Rom curves are cubic Hermite splines, so each portion of
the curve traces third-degree polynomial specified by its val-
ues and first derivatives at the end points of the correspond-
ing domain interval. So, sampling points {P|P,...P,} are
easily organized in sequential subsets that are drawn inde-
pendently. It ensures that yarn trajectory is only influenced
by simulation, not by interpolation side effects; ie. if one of
the control points is moved, it just affects the curve locally.
These subsets contain two knots (P; and P;11) and two ex-
tra samples (P, — 1 and P,;,), which are used as a key to
estimate the curve tangent in the knots (see Figure 2). Each
initial sample is shared in four overlapping subsets, where
the sample changes its role (as a clue for the first knot tan-
gent, the first knot, the second knot, and a clue for the second
knot tangent). The tangent to the curve at each control point
is defined to be:

Ppi—P—1 Pa— P
2 ' 2
respectively. As -usually- sequential samples are located in
opposite sides of the fabric, previous definition approximates
the tangent of each surface of the cloth.

The next matrix formulation defines the cubic curve
[Fol96], which represents a piece of the total curve between
two successive control points. It can be applied to all seg-
ments of the curve except for the first and last segments
where tangents must be estimated separately.

0 2 0 0] [P

-1 0 1 0 P;

— 2 3 i
Pey=[1 ¢ ¢ P°l1 0 5 4 P
~1 3 -3 1| [P

The detail in the segment can be tuned by evaluating more

(© The Eurographics Association 2014.

Jorge Lopez-Moreno et al. / GPU Visualization and Voxelization of Yarn-Level Cloth 71

or less ¢ € [0, 1] parameter values in the function. New in-
terpolated samples will lead to a smooth curve, that will
be used as a guide to place billboards. We do not apply
more sophisticated Catmull-Rom schemes, like chordal or
centripetal implementations [YSKO09], because our sampling
does not produce loops or self-intersections with the classic
algorithm.

Figure 2: Top Row: From left to right, increasing zoom lev-
els at input data from visualization. Yarns are represented
by crossing linear segments. Bottom row: A classic Catmull-
Rom spline (green). Control points are interpolated by the
spline, which passes through each knot in a direction paral-
lel to the line between the adjacent points (grey). The jagged
brown line represents a less natural way to trace yarns.

3.3. Placing the yarn slices

In our system the slice will be represented by a quad com-
posed by two triangles and a texture with the albedo values
and the fiber density distribution stored in the alpha chan-
nel (See bottom-left image in Figure 3). In order to reduce
computation costs, those quads are instances with the same
geometry and texture but different attributes such as posi-
tion and orientation (albedo and fiber density distribution
can also be attributes, as textures, but this is left for future
work).

For each stop in the spline path we compute the model
matrix for the corresponding slice. We set as forward-vector
the difference between the position of the current slice and
the following one, the up-vector is set as the perpendicular to
the forward vector at the beginning of each yarn. Then, the
up-vector is rotated w.r.t. the forward-vector incrementally
along the yarn in order to simulate the characteristic twist of
the thread (input parameter to the system). We map all the
model matrices to a buffer (GL_ARRAY_BUFFER) so they
can be included in a vertex attribute array for rendering (GL
function glDrawElementsinstanced).

Additionally, for a correct alpha blending rendering, all
the slices are sorted according to their distance to the cam-
era (their global positions are stored as a column in the cor-
responding model matrices).

(© The Eurographics Association 2014.

3.4. Computing position and orientation at fiber level

At this point we want to have orientation and position in
world coordinates at pixel level which corresponds to a sin-
gle fiber of the yarn cross-section stored in a texture. Each
vertex shader has access to the model matrix of the slice,
passing down to each fragment shader its interpolated posi-
tion and the global orientation of the slice.

The fragment shader has then the position in world coor-
dinates and it can access the slice density distribution stored
in a texture, therefore we know the density of a 3D position
in the world. Orientation is a bit more complicated, as we
have only the orientation of the whole slice. However, the
orientation of each pixel is equal to the tangent of the cor-
responding fiber. To compute this tangent for a point X we
would need to know its next position X + dX between two
consecutive slices (as is done in previous work [XCL*01]),
however the instances are executed out of order and we can-
not access this neighboring information.

Figure 4: Left: Computing the orientation tangent as a dif-
ference of positions between consecutive slices. Right: Tex-
ture with the XY coordinates of the orientation vector in tan-
gent space.

We leverage the fact that we know a priori the exact
amount of rotation between two consecutive slices (9X,9Y
plane in tangent space), and the differential separation be-
tween them along the path (dZ in tangent space) to store this
data and share it among all the instances (See Figure 4). We
compute dX and dY for each pixel of the cross-section for a
given rotating angle o:

Pi=(X,Y)Pyy = (X'Y)

X' = X cos(—a) — Y sin(—a)

Y' = X sin(—a) + Y cos(—a)
(0X,0Y) = (P —Puy) = (X —X' Y -Y')

()]

3.5. Shading

For visualization purposes we compute a simple lambertian
shading based on the albedo colors stored in the texture and

72 Jorge Lopez-Moreno et al. / GPU Visualization and Voxelization of Yarn-Level Cloth

Figure 3: Zoom at a single yarn in our interactive Ul Left: Close up view of fibers and fiber distribution slice used in this
rendering. Middle: Simultaneous visualization of yarn based on alpha blending (bottom), and the volumetric density 3D texture
(top). The 3D texture is ray-casted on the fly from the fragment shader. Right: Close up interactive view of the yarns at the dense

cloth shown in Figure 6.

the orientation computed at each fragment pixel. We assume
parallel light (given the radius of a microfilmer is a safe as-
sumption). We also include pre-computed ambient oclussion
already baked in the albedo texture to increase volume per-
ception.

Additionally, we provide a view of the current voxeliza-
tion (for verification purposes) by means of GPU-based ray
casting on the 3D texture [SSKEOS5]. This single pass shader
has little impact on the GPU performance, encoding values
with a 1D color map (see the white cube in the middle image
in Figure 3).

3.6. Volume Generation

We base the volume generation in the OpenGL rasteriza-
tion pipeline. Since version 4.3 GLSL provides direct access
to images at arbitrary positions from any shader by means
of image_load_store instructions. In the absence of visual-
ization, our approach is similar to the recent voxelization
method proposed by Crassin and Green [CG12]. They raster
each triangle to a 3D texture in three steps:

e First, they choose the maximum projection axis (X,Y or
Z) for the triangle (this operation is done in a geometric
shader).

e Second, they create a viewport matching the dimensions
of the 3D texture lateral view and disable Z rejection.

e Third, they expand and raster the triangle. Each frag-
ment coordinates are mapped to the 3D texture coordi-
nates (s,t,d).

In our case, we want to take advantage of the user visual-
ization of the mesh, substituting the first two steps of Crassin
and Green’s method with the rastering already computed by
the visualization itself. Therefore, we will render the frag-
ments directly called by the viewport of the user camera.

This means that when the user is far away from the object,
the triangles will be small for the viewport resolution and the
texture details will be lost. However, as the user zooms into
the object, additional details (at the texture level) are visi-
ble to the camera, generating fragment calls with resolution
above the voxel accuracy.

In Crassin and Green’s method, fragment coordinates are
used for the mapping of the slices to a 3D volume. In our
method, the position in world coordinates of each slice is
passed from the vertex shader and interpolated at each frag-
ment shader in order to map the raster fragment to the cor-
responding grid position. This decouples the fragment co-
ordinates from the target 3D texture allowing for on the fly
changes in the voxel resolution and hierarchical structures
like octrees. If the user desires to focus in an area, the 3D
texture resolution can be adapted to the viewport volume,
storing a particular cloth area at a higher resolution.

4. Results

In Figure 6 we show screen captures of our interactive visu-
alization. The method can process interactively very dense
models (around a million yarns), yielding the volumetric
data used to render the vest shown in Figure 7 and 5, and
the shirt in Figure 8. All the offline render results shown
in this paper are generated with the Mitsuba raytracing en-
gine [Jak10], using a volumetric path tracer and the micro-
flakes model [JAM*10]. Our volumetric textures are trans-
lated into the offline format with one byte for density and
two bytes for orientation (discrete polar coordinates 6 and

).

Our voxelization approach relies on the rastering pipeline
to generate fragment calls at the pixels inside each slice.
Crassin and Green [CG12] proposed to raster each triangle

(© The Eurographics Association 2014.

Jorge Lopez-Moreno et al. / GPU Visualization and Voxelization of Yarn-Level Cloth 73

Figure 6: From left to right: Screenshots of our user interface at different zoom levels for a shirt model. Fibers are noticeable
only ant the closest distances, but their local radiance affects the overall aspect of the cloth.

‘

Figure 7: Offline renderings pathtraced with the micro-flakes model (stdev = 0.3) for a dense cloth model (410k crossings).
Our slice representation is rendered with 82 millions of triangles (41 million slices) and a 1857 x 1127 x 952 voxel grid

from their maximum projection axis (constrained to X,y and
z axes), that is, the plane where the projection of the triangle
covers the maximum area. This maximizes the probability
of generating fragments, however in our approach we allow
the user to navigate freely around the mesh, generating frag-
ments (and thus voxels) on the fly. In several cases this trans-
lates in tilted planes with a worst case: slices perpendicular
to the camera plane. In this situation, the fragment computa-
tion produces wrong data when interpolating the world co-
ordinates from the vertex shader, thus placing the voxels in
wrong positions (see Figure 9). To avoid such problems, it
is recommended to use antialiasing methods (a x32 filtering
on the GPU is enough in our case) which have a negligible
impact on the method.

One of the limitations of the current implementation
is the depth sorting of slice quads, based on single-CPU
(std::sort). For dense models this step could imply sorting an
array with millions of model matrices, which takes around
two seconds per frame in our case. While it is not required
for volume generation, it would improve the user interactive
navigation (we deactivate it during camera movements, com-
puting it when the user stops at a given view) and it is good

(© The Eurographics Association 2014.

candidate for a multi-thread or GPU parallel implementa-
tion.

One problem which arises from rastering sub-pixel poly-
gons with alpha blending mode is that at mid-range dis-
tances, only the highest mip maps of their corresponding
textures will be accessed. At those levels, the interpolated
alpha values are so blurred that the polygon will be almost
transparent (see Figure 10). For that reason, we deactivate
mip-mapping. In the Figure 6 we can observe how conser-
vative rasterization at level O of the texture produces yarns
which look thinner as they are further away from the camera
(specially visible in the the leftmost image). This is due to
the small probability of rastering a fragment pixel which is
fully opaque in the fiber density distribution texture of the
slice. This could be avoided with customized mipmapping
(manually creating more suitable density texture levels, re-
moving transparency at the highest levels), however in that
case the 3D volume voxelization will not be coherent any-
more, requiring a special treatment (e.g.: updating only when
the fragment shader is accessing level O textures).

In terms of memory management, the 3D textures are the
main limitation. We handle up to 6GB in three textures, for a

74 Jorge Lopez-Moreno et al. / GPU Visualization and Voxelization of Yarn-Level Cloth

Figure 8: Offline renderings of our volumetric data. Left, middle: two views of a low yarn count shirt (5.006 million slices).
Right: Same model with different micro-flake distribution to simulate shinier fibers (stdev = 0.1)

Figure 9: The problem of aliasing. Left: Lateral view of a single yarn in OpenGL. In green, fragments produced by aliasing
which store at wrong 3D coordinates. Right: Volumetric view of the yarn and projection of the voxels created in XZ plane. In
red, wrong voxel positions produced by aliasing. The resulting volumes are noisy as shown on the shoulder in the right image

(pathtraced render).

maximum size of 2GB per texture and 2048 voxels of maxi-
mum size for any axis (limited by the graphic card, a Geforce
GTX 670). In memory we keep an array with a 4x4 model
view matrix per slice (up to 2.62GB for 41 million slices).
Setting up both structures implies a warm-up of a few sec-
onds per frame for the biggest models, but no impact after-
wards, as it is only read for visualization.

As for yarns, the 2D textures for fiber distribution have no
impact in performance, given that they are instantiated and
shared among all the fibers. We have tested both 1024x1024
and 32x32 sizes in the present work with no influence in
the final render, although mipmapping, if activated, does
have a visible effect making the cloth almost transparent for
1024x1024 textures when observed from a long distance. In
the table below (Table 1) we show computation times for
both a light and dense model and two different zoom levels.
For the first level we use 25 slices between yarn crossings
(1mm, 1/40 of the pixel width) and we increase it to 50 for
the closest view. We also increase the 3D texture resolution
to the maximum available(6GB).

There is no available data for previous methods for com-
parison purposes. The only exception is the method by Xu et
al. [XCL*01], however their numbers are outdated (over 31
minutes for the rendering of 368k slices).

5. Discussion and Future Work

The real time shading of fibers in our system is currently
lambertian, however our system is a good candidate for tech-
niques such as screen space subsurface scattering [JG10]
orany volumetric illumination model [JSYR14]. Also phe-
nomena like translucency could be precomputed, given that
the distances at each slide are previously known. In the fu-
ture we would like to explore the adaptation of these meth-
ods to our framework, combining deferred shading and 3D
texture direct access.

We have not addressed the limitation of memory space. In
our renderings we store regular voxel grids of arbitrary size
up to 2GB of storage size. In order to save space for higher
resolution levels we would need both sparse, mipmapped

(© The Eurographics Association 2014.

Jorge Lopez-Moreno et al. / GPU Visualization and Voxelization of Yarn-Level Cloth 75

Low density cloth High density cloth Low density Close-up High density Close-up
Number of slices 2.5M 17.6M 4.08GB 35.2M
CPU memory 1.8GB 7.2GB 9GB 12GB
GPU memory 2.06GB 3GB 4GB+2GB(shared) 4GB+2GB(shared)
Initialization time 2s 16s 5.4s 35s
Per frame time 71ms 150ms 120ms 400ms

Table 1: Performance and computation times of our method with two models at two different levels of detail.

-

Figure 5: Very dense model(17.6M slices), rendered at
medium level of detail (25 slices per crossing, 1152 voxels
in maximum axis). The volumetric data was generated with
our method automatically in 30 seconds. Rendered offline
with Mitsuba(stdev 0.1).

Figure 10: From left to right: GPU automatic mipmapping
(nearest neighbours) of a fiber density distribution texture,
starting at level 0 (no filtering). Notice how the last map is
almost transparent.

representations and compression of the 3D textures. The
overhead of decoding the texture for non-coherent memory
access is still a challenge for real time applications. How-
ever, this is an active field of research [BRGIG™ 14] and re-
cent advances suggest that this should be studied for future
improvements of this work.

We believe that the present work has a great potential to
simulate complex visual aspects of the cloth under deforma-
tions (such as stretching). In these cases, fiber distribution
could be updated (at texture level) producing a novel distri-

(© The Eurographics Association 2014.

bution which modifies the BSDF of the volumetric model
(E.g.: under stretching, the torsion is diminished and fibers
are condensed and aligned along the yarn path, increasing
anisotropic reflectivity).

Acknowledgements

This research is supported in part by the Spanish Min-
istry of Economy (TIN2012-35840) and by the European
Research Council(ERC-2011-StG-280135 Animetrics).The
work of Gabriel Cirio was funded by the Spanish Ministry
of Science and Education through a Juan de la Cierva Fel-
lowship.

References

[BHW94] BREEN D. E., HOUSE D. H., WOozNY M. J.: Predict-
ing the drape of woven cloth using interacting particles. In Pro-
ceedings of the 21st Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 1994), SIG-
GRAPH ’94, ACM, pp. 365-372. 1

[BRGIG*14] BALSA RODRIGUEZ M., GOBBETTI E., IGLE-
SIAS GUITIAN J., MAKHINYA M., MARTON F., PAJAROLA R.,
SUTER S.: State-of-the-art in compressed gpu-based direct vol-
ume rendering. Computer Graphics Forum (2014). 7

[CG12] CRASSIN C., GREEN S.: OpenGL Insights. CRC Press,
Patrick Cozzi and Christophe Riccio, 2012, ch. Octree-Based
Sparse Voxelization Using the GPU Hardware Rasterizer. 1, 4

[CR74] CATMULL E., ROM R.: A class of local interpolating
splines. Computer aided geometric design 74 (1974), 317-326.
2

[EKS03] ETzMUsSs O., KECKEISEN M., STRASSER W.: A fast
finite element solution for cloth modelling. In Computer Graph-
ics and Applications, 2003. Proceedings. 11th Pacific Conference
on (2003), pp. 244-251. 1

[Fol96] FOLEY J.: Computer Graphics: Principles and Practice.
Addison-Wesley systems programming series. Addison-Wesley,
1996. 2

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 4

[JAM*10] JAKOB W., ARBREE A., MOON J. T., BALA K.,
MARSCHNER S.: A radiative transfer framework for rendering
materials with anisotropic structure. ACM Trans. Graph. 29, 4
(July 2010), 53:1-53:13. 1, 4

[JG10] JIMENEZ J., GUTIERREZ D.: GPU Pro: Advanced Ren-
dering Techniques. AK Peters Ltd., 2010, ch. Screen-Space Sub-
surface Scattering, pp. 335-351. 6

76 Jorge Lopez-Moreno et al. / GPU Visualization and Voxelization of Yarn-Level Cloth

[JSYR14] JONSSON D., SUNDEN E., YNNERMAN A., ROPIN-
SKI T.: A survey of volumetric illumination techniques for in-
teractive volume rendering. Computer Graphics Forum 33, 1
(2014),27-51. 6

[KIMO8] KALDOR J. M., JAMES D. L., MARSCHNER S.: Sim-
ulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3
(2008), 65:1U65:9. 1

[KIM10] KALDOR J. M., JAMES D. L., MARSCHNER S.: Effi-
cient yarn-based cloth with adaptive contact linearization. ACM
Transactions on Graphics 29, 4 (July 2010), 105:1-105:10. 1

[MBCN(09] METAAPHANON N., BANDO Y., CHEN B.-Y,,
NISHITA T.: Simulation of tearing cloth with frayed edges. Com-
put. Graph. Forum, 7 (2009), 1837-1844. 1

[MMNO98] MEYER A., MEYER R., NEYRET F.: Interactive volu-
metric textures. In In Eurographics Rendering Workshop (1998),
Eurographics, Springer Wein. ISBN, pp. 157-168. 1

[Pro95] PRrRovoT X.: Deformation constraints in a mass-spring
model to describe rigid cloth behavior. In In Graphics Interface
(1995), pp. 147-154. 1

[SSKEO5] STEGMAIER S., STRENGERT M., KLEIN T., ERTL T.:
A simple and flexible volume rendering framework for graphics-
hardware-based raycasting. In Proceedings of the Fourth Euro-
graphics / IEEE VGTC Conference on Volume Graphics (Aire-
la-Ville, Switzerland, Switzerland, 2005), VG’05, Eurographics
Association, pp. 187-195. 4

[XCL*01] XU Y.-Q., CHEN Y., LIN S., ZHONG H., WU E.,
Guo B., SHUM H.-Y.: Photorealistic rendering of knitwear us-
ing the lumislice. In Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques (New York,
NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 391-398. 1, 3, 6

[YSKO9] YUKSEL C., SCHAEFER S., KEYSER J.: On the pa-
rameterization of catmull-rom curves. In 2009 SIAM/ACM Joint
Conference on Geometric and Physical Modeling (2009), ACM,
pp. 47-53. 3

[ZIMB12] ZHAO S., JAKOB W., MARSCHNER S., BALA K.:
Structure-aware synthesis for predictive woven fabric appear-
ance. ACM Trans. Graph. 31, 4 (July 2012), 75:1-75:10. 1

Appendix A: Shader code
Vertex Shader

MVleft= model_matrix[0];
MVup= model_matrix[1];
MVforward= model_matrix[2];
MVtrans= model_matrix[3];
//UV coordinates for textures
UV = vertexUV;

Fragment Shader

#version 430 core

// Input vertex data, different for all executions.
layout(location = 0) in vec3 vertexPosition_modelspace;
layout(location = 1) in vec2 vertexUV;

layout(location = 2) in mat4 model_matrix;

/! Output data ; will be interpolated for each fragment.
out vec3 Position_worldspace;

out vec2 UV;

out vec4 MvVleft;

out vec4 MVup;

out vec4 MVforward;

out vec4 MvVtrans;

// Values that stay constant for the whole mesh.
uniform mat4 P;
uniform mat4 V;

void main(){

// Transform position by the model—view matrix

// and then by the projection matrix.

gl_Position = P * ((V * model_matrix) * vecd (<«
vertexPosition_modelspace,1));

// Worldspace vertex position: M % position

Position_worldspace = (mat4(model_matrix) * vecd (<«
vertexPosition_modelspace,l)).xyz;

#version 430 core

/! Interpolated values from the vertex shaders
in vec3 Position_worldspace;

in vec2 UV;

in vecd4 MvVleft;

in vec4 MVup;

in vec4 Mvforward;
in vec4 MVtrans;

/! Ouput data
out vec4 color;

// Values that stay constant for the whole mesh.
uniform sampler2D DiffuseTextureSampler;

uniform sampler2D OrientationTextureSampler;
uniform int voxelDims;

layout(r8, location = 1) uniform image3D Vol3D;
layout(r8, location = 3) uniform image3D Theta3D;
layout(r8, location = 4) uniform image3D Phi3D;

void main() {
float PI = 3.14159265358979323846264¢;
// Access Level 0 texture
vec4d MaterialDiffuseColor = textureLod (<«
DiffuseTextureSampler, UV,0).rgba;

// activate this one for smoother RT visualization
//vec4 MaterialDiffuseColor = texture2D (<«
DiffuseTextureSampler , UV).rgba;
int x3D;
int y3D;
int z3D;

x3D= int(Position_worldspace.x*voxelDims) ;
y3D= int(Position_worldspace.y*voxelDims);
z3D= int(Position_worldspace.z*voxelDims);

vec4d accumCol= imageLoad(Vol3D, ivec3(x3D, y3D, <+
z3D));

imageStore(Vol3D, ivec3(x3D, y3D,z3D), vecd(max(<+
MaterialDiffuseColor.a,accumCol.x)));

// Compute ORIENTATION—Store as polar coords.

vec3 dOrient = texture2D (+
OrientationTextureSampler, UV).xyz;

vecd gOrient= vec4(normalize ((dOrient.x*MVleft +<—
dOrient.y*MVup + dOrient.z#MVforward).xyz) ,<=
1.0£);

float theta, phi;

theta = acos(gOrient.z);

theta = theta/PI; //for theta in —pi, pi

if (gOrient.x == 0.0f)({
phi = 0.0f;
telse{

phi = atan(gOrient.y, gOrient.x);
phi= (phi+PI)/(2%PI);
}

imageStore(Theta3D, ivec3(x3D, y3D, z3D), vecd(+
theta)); //theta

imageStore(Phi3D, ivec3(x3D, y3D, z3D), vec4d(phi)<+
); // phi

// Final COLOR

float dotp =dot(normalize(vec3(1.0£,—1.0£,0.0£)) ,+
gOrient.xyz);

color=vec4 (1.5 fxdotp*MaterialDiffuseColor.xyz, <
MaterialDiffuseColor.a);

(© The Eurographics Association 2014.

