
CEIG - Spanish Computer Graphics Conference (2014)
Pere-Pau Vázquez and Adolfo Muñoz (Editors)

CLISKA - An application for physics education in
secondary school

C. Marín-Lora1 and I. García-Fernández2

1ETSE-UV, Valencia, Spain
2Departament d’Informàtica, ETSE-UV, Valencia, Spain

Figure 1: Three simulation scenes of the application CLISKA, presented in this paper.

Abstract
In this paper we present an application for teaching Physics courses in secondary education. It is a web appli-
cation, based on HTML5 and on JavaScript. We rely on the graphical capabilities of this technology, including
rendering on 2D canvas context and SVG rendering, and we develop a framework for simulating physics behavior.
We review other applications with similar features, explaining the motivations of the current development. The
system architecture and the software design are discussed and the simulation techniques are explained. We finish
with a discussion on some possible examples of use for the application and on the future development plans.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications— K.3.8
[Computers and education]: Computer Uses in Education—Computer-assisted instruction

1. Introduction

Education of Physics courses in primary and secondary ed-
ucation comprises many challenges. Educators face lack of
motivation and the difficulty of giving the students the in-
tuition behind the mathematics that formalize the physics
concepts. New paradigms, such as constructivism, potenti-
ate learning by doing as a way to effective learning, in op-
position to lecture-based education, in which the student is a
mere spectator.

The incorporation of new technologies in the classroom
has made possible to provide the students with an active
learning environment. In the case of Physics discipline, by
means of computer simulation the students can interact with
virtual experiments and observe the reaction to different ac-
tions.

In this work we present CLISKA, a web-based application
for the interactive practice of Physics in the classroom. The
application simulates two dimensional rigid and deformable
objects, with collision detection and reaction. It has been
developed with HTML5 and JavaScript and it provides an
adequate web-based framework for interactive simulation. It
has a dedicated physics engine and some additional devel-
opments, such as a user interaction module for the HTML5
Canvas element.

The paper is structured as follows. In Section 2 we moti-
vate our work and review other applications that can be used
in the same context. Section 3 describes the general system
architecture and Sections 4 to 7 describe in more detail de
different modules that compose the application. Section 8
presents some possible usages in the classroom for teaching
Physics. In Section 9 we discuss the capabilities and limi-

c© The Eurographics Association 2014.

DOI: 10.2312/ceig.20141114

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20141114


C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

tations of the software. Finally, in Section 10 we give some
concluding remarks and present the future plans for the ap-
plication.

2. Previous Work

For decades, traditional education has considered the teacher
as the main performer in the process of learning. According
to Nogueira Gustavino, in Spain the educational paradigm
focuses on the teacher, that is, in what the teacher wants to
instruct as basic knowledge, which prevails over what stu-
dent should learn, and [. . . ] in which it takes precedence the
learning by force of all the contents [. . . ] over its effective
comprehension by the students [Nog11].

This approach, however, is suffering from a deep me-
thodological reformation, with the introduction of the con-
structivist paradigm. This paradigm shifts the main action
in education from teaching to learning, and the goal of
the teacher is to facilitate experiences to the students who
build knowledge by means of reflection and action [Kol84,
Nog11].

In this context, tools that help the teacher to provide the
students with the possibility of experimenting are neces-
sary. Nowadays, widespread of Information and Commu-
nication Technologies is a great ally for this goal. Several
projects have been developed in the past to build different
applications aimed to learning by experimenting, not only
in physics, but also in other disciplines [RAJC09, Bod09,
SPB12,LZM12]. In this section we review the most relevant
applications that can be found for helping Physics education.

One of the core components of an application that in-
volves physics simulations is a physics engine that computes
the evolution of virtual objects. There are different physics
engines available for JavaScript that can be used for this pur-
pose. We also discuss them and their main features.

2.1. Applications for Teaching Physics Courses

One of the most popular educational applications for learn-
ing physics is Algodoo [Bod09, Alg13]. It features a set of
systems that can be simulated within an open world environ-
ment. It has a community of users that share simulation sce-
narios. Algodoo can be run on Windows desktop computers,
on MacOS desktop computers and on Apple iPad devices.
The software cannot be run on other operating systems or
through the web.

Phyzicle Sandbox an a 2D interactive physics application
that runs on mobile devices [Ago12]. The software has ver-
sions that can run on Android OS, Apple iOS and Black-
Berry OS. The graphic design is simple and visual, follow-
ing what is sought in our work. Among the physical proper-
ties that it can handle, the application can simulate both rigid
bodies and fluids, but it cannot simulate deformable bodies.
During the simulation, it is possible to use the mobile device

accelerometers. However the set of parameters that the user
can adjust for the scene and the bodies is very limited. The
software cannot be run on a desktop computer or through the
web. Moreover, the development of the application seems to
be discontinued, as it has had no updates since 2012.

Yenka is a suite of tools for teaching science in the class-
room [Cro]. It has several modules for experimenting with
physics, mathematics, chemistry or programming. The li-
brary of predefined scenarios is wide and well documented.
However it has several drawbacks. The user interface is com-
plex, it is not very intuitive, and edition of new scenes is also
complicated. Yenka is only provided as a desktop applica-
tion, and does not have mobile device version. Moreover, it
is sold under a license which, depending on the number of
students and the number of modules, which are sold sepa-
rately, can cost a few thousand Euro. This contrasts with the
rest of applications discussed here, which are free.

SketchyPhysics is a physics plug-in for the 3D modeller
Google Sketchup [Ske09]. The physics engine is based on
the Newton Game Dynamics library [JS11], an open source
physics library. This library provides support for scene man-
agement, collision detection and dynamics behaviour with a
deterministic solver. The plug-in is not specifically intended
for setting up simple scenarios to teach physics, but as a
module to introduce physics in the modeller. There is a set
of examples uploaded by users that can be accessed from
the project page. In order to run this plug-in it is necessary
to use Sketchup, which runs on Mac and Windows desk-
top computers. The project seems to be discontinued since
September 2010.

Apart from these standalone applications, we can find sev-
eral web sites that present small plug-ins or web applications
to exemplify or experiment with different physics concepts
and principles [Ló14,Nat13]. However, their degree of inter-
activity varies among them, and none of them presents the
possibility of building custom complex scenarios or of mix-
ing different types of objects or physics principles.

2.2. Physics Libraries in JavaScript

As the capabilities and flexibility of web based applications
increase, new libraries are developed to add different fea-
tures to this technology. Among these libraries we can find
several modules that provide the programmer with a frame-
work for physics simulation.

Newton is a JavaScript library for simulating particle
physics, based on de Newton’s laws [Lof13]. It can simu-
late the application of forces and the definition of some con-
straints on the particles. Particles can be grouped to form
what they call bodies, which are logical entities. However, it
does not consider actual rigid body simulation.

The library Verlet.js [Sub13] features a simple physics en-
gine that simulates particles, a reduced set of solid shapes

c© The Eurographics Association 2014.

60



C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

and cloth. Collision detection and some restrictions on par-
ticles are also available. Another library with a similar set of
features is Matter.js [Bru14].

Apart from these JavaScript Libraries, there exist some
other libraries that are built in different languages but have
JavaScript ports. Box2D [Cat13] is currently one of the most
extended 2D physics engines. It considers rigid body with
contact and friction and includes a complete set of kine-
matic constraints and force actuators. Box2D is written in
C++. Nape [Del12] is another 2D rigid body library, written
in Haxe. It simulates contacts and constraints and it provides
a way of defining new kinematic constraints without modi-
fying source code.

The use of one of these physics engines was considered
during the development of our project. However, support for
deformable bodies is very limited, and it has to be done by
tweaking rigid constraints. Moreover, none of them is able
to simulate fluids or thermodynamics experiments. For this
reason we have decided to develop our own physics module
for the simulator.

3. Application Description

Our intent is to create a physics simulator that can run con-
figurable scenes in an open world where a student can in-
teract and play around with objects and different physical
properties.

We take advantage of the HTML5 standard to build a
platform independent application. It can be installed on any
desktop computer with a compatible browser or, depending
on the availability of Internet access, can be run online. Also,
we chose to develop a web application instead of developing
the tool for mobile devices, because in many cases it would
require the users to make an investment to purchase the ter-
minal, while a PC room is available at most Spanish schools.

For the first version of the tool, which is the version de-
scribed here, we have developed rigid and deformable body
dynamics, with collision detection. An important require-
ment considered is to be able to build different scenarios and
save them to disk, so that the teacher can set up problems
and examples adequate to her didactic interests.

We start describing the basic features of the application
and the overall system architecture. Later, in the next sec-
tions, we review more deeply some of the modules that form
the application.

3.1. The Application

When the application is loaded on the web browser, it will be
displayed in its document area. The user will find different
controls and an empty space, that contains the simulation
world.

Using the controls, the user can create objects of differ-
ent basic geometric shapes, place them in the scene and

give them different physical properties. When the applica-
tion starts, the simulation is paused, so no action is taken. At
any time the user can run the simulation and during this time
the user can also interact with the objects in the scene and
remove or add new objects.

3.2. System Architecture

The system proposed consist of the following modules: a
simulation engine, an graphical user interface (GUI) and a
render engine. In addition, an export module lets the user
save an scene in xml format. The different modules have
been developed with HTML5 and JavaScript and they run
on the side of the client during the execution of he applica-
tion. Next, we present a brief description of the subsystems.

Render engine

Simulation
engine

File
Import / Export

Data model
GUI SVG

HTML
Canvas

Figure 2: Overall system architecture

The user interface uses HTML5 and CSS3, as they are
standard and most web browsers will be able to display it and
to perform the desired functionality. For the same reason,
the framework that creates and controls the scenes, as well
as the interaction between the elements that compose them,
has been developed using JavaScript.

For displaying the simulation we have developed two dis-
play engines. A display framework that uses Scalable Vec-
tor Graphics and a display framework that uses the HTML5
Canvas element.

Finally, an export module is under development to let the
user save the scenes to a text file. This module makes use of
an XML format to store the description of the scene for later
usage.

4. Graphical User Interface

Our Graphical User Interface (GUI) has been defined with
a modular design and can be modified according to the user
preferences. The main element of the UI is the scene area,
which covers the whole document space in the browser. This
area contains both the simulation and the user controls.

In the basic setup, it shows a side toolbar with main sys-
tem functionalities: new objects, erase objects or access to

c© The Eurographics Association 2014.

61



C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

scene settings, among other options. In the upper part, a sim-
ulation control bar lets the user start, stop and pause the sim-
ulation. Figure 3 shows an image of the initial setup of the
application GUI. As we said previously, the GUI has been
designed with modularity and configurability in mind. Ev-
ery toolbar and panel can be dragged and dropped on any
location of the scene area.

Figure 3: An screen shot of the application GUI in its basic
configuration. Users can redistribute the UI elements to their
convenience.

A scene is formed by one or more geometric figures that
represent solid objects. These objects can be added and re-
moved to the scene. Using the left mouse button, any ob-
ject can be dragged and placed on any location of the scene.
Right mouse click will show the object’s properties panel,
where the user can view, modify or reset the physical proper-
ties of the object. During the simulation, the mouse can also
be used to apply forces to objects, by dragging after clicking
on an object.

A debug mode can be enabled that shows real-time infor-
mation about the whole scene, the selected object and addi-
tional information about the system state or the simulation
control.

5. Render engine

For the graphical display of the scene, the render module
takes the information from all the elements in the simula-
tion and displays them according to their properties. The
use of WebGL [Khr13] was considered, as it is efficient and
powerful. However, finally it was discarded due to compat-
ibility issues with many browsers, specially on mobile de-
vices. Finally, two render systems have been built for ren-
dering purposes. The main render system, which is the de-
fault option in the application, is based on the HTML5 Can-
vas element [W3C13a], which works generating bitmaps. A
secondary render system uses the Scalable Vector Graphics
(SVG) image format [W3C11].

Next we describe the advantages and disadvantages of
both approaches, and justify the decision of building a sec-
ond render engine.

5.1. SVG

The advantage of using SVG is that the output is ren-
dered from a vector graphics description. Most modern web
browsers are capable of rendering such graphics in a native
way, which results in a smooth render, regardless the resolu-
tion of the display and the scale of the image. Moreover, the
standard [W3C11] provides an API that includes many func-
tions for user interaction, including the possibility of using
timers. This makes SVG a very good option both from the
quality and from the programming perspective.

However, once the state of the scene is processed by the
application and an SVG description is generated, this new
representation of the scene has to be processed again by
the web browser to render the final image. For this rea-
son, when simulating complex scenes with many objects the
SVG-based render module can show a low frame rate. This
is not adequate for educational purposes, specially when in-
teraction is one of the main features of the application.

5.2. HTML5 Canvas

In contrast with SVG, which is a graphics description based
on geometric primitives, the Canvas element of the HTML5
recommendation [W3C13a] only provides the programmer
with a bitmap image and an API to draw pixels on it.
Although the image quality can be poorer than the result
achieved with vector graphics, this approach is much faster
than the use of an SVG description of the scene. This higher
performance makes it a good option for generating raster
graphics in real time.

However, it lacks an API for any user interaction or for
animation events. For this reason it was necessary to build
an API on top of the standard HTML5 Canvas to extend it
to have timer events and user action events, for interactive
scene manipulation.

The first extension to Canvas that has been implemented is
the decision whether a point is inside a polygon, described
by its vertexes. This first extension has been later used for
other features.

Other methods that have been implemented have been se-
lection and dragging of objects. This basic feature is not
available in the Canvas element, as it is bitmap based.

Another feature that can be found in the SVG display that
is not present in the Canvas element is the use of timers that
fire events at fixed intervals. For this reason, our Canvas
based display uses the requestAnimationFrame()
method [W3C13b]. Another method, setInterval(),
which calls a function after a fixed time interval, seemed the

c© The Eurographics Association 2014.

62



C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

natural option, but was discarded as it caused flickering in
the display refresh.

Motivated by the lower quality of the Canvas display,
compared to SVG display, we have implemented a dropped
shadow which improves the aesthetic result of the geometric
shapes. Despite the simplicity of this improvement, it pro-
duces a noticeably better result, specially when objects are
in movement.

Figure 4: In order to improve the visual result when using
Canvas-based viewer the objects drop a soft shadow.

6. Simulation Engine

The core module of the application is the simulation en-
gine. It is a set of routines that compute the evolution of the
scene according to physics laws using numerical methods.
Our scene will consist of an empty space in which the user
can place objects of different types. The types of physical
objects that can be created are the following:

• Particles: point objects that have mass but do not have spa-
tial extent.

• Rigid bodies: rigid objects with geometries and associ-
ated materials. We can vary their position and orientation.
Their geometry is fixed.

• Deformable bodies: As rigid bodies, we can vary their po-
sition and orientation. In addition, their geometry is flexi-
ble.

• Force Fields: They are values of force acting on a given
region of space.

In addition to the previous types of objects, currently
some other models are being developed to simulate:

• Fluids: They are formed by particles. With no geometry,
they adapt to the shape of the container.

• Constraints: Physics limitations. They limit the range of
movement and force some dynamics behaviours on the
objects. Some of them are springs and joints. They reduce
the degrees of freedom of a system.

6.1. Data Model

Our simulation is based on a simplified scene graph, with a
root node representing the virtual world and nodes that are
inserted in the graph when they are created. We consider no
hierarchy among the physics objects, and we use a list struc-
ture to store all the systems in the scene.

The basic entity of our model is an abstract object that
has a position and orientation, a geometry and a material de-
scription. The material description includes the mass and in-
ertia, if applicable, and other properties that can be used for
drawing the object or for its collision properties. Our geom-
etry description is based on vertexes; the geometry of any
object is defined as a list of vertexes to build closed poly-
gons.

A rigid body has a geometric description, that determines
the inertia tensor. On the contrary, a particle has neither a
geometric description nor an orientation, but just mass and a
position, and also lacks an inertia tensor. Deformable objects
are modelled by means of the Mass-Spring Model, so they
are described as sets of particles, with springs that link them.

For the implementation of the simulation step, every
model has its own numerical integrator that is run in the up-
date process. This integrator is implemented as a method of
the corresponding class in JavaScript.

Although fluid simulation is not yet complete, the descrip-
tion of a fluid object is straightforward if a Lagrangian ap-
proach is used. Our implementation will be based on the
SPH model [MCG03] that will be implemented as an ad-
ditional particle system, with the corresponding update pro-
cess.

6.2. Collisions

Collision detection and reaction is a key feature in simu-
lation of physics based models. An adequate response to
contacts between two bodies is necessary for a realistic be-
haviour.

In our application, we perform collision detection in
two steps, following the classical approach. First, a broad
phase is performed in order to discard any pair of objects
that are too far apart to be colliding. By doing this step,
we avoid computing a huge number of collision detection
tests [Eri05]. For this phase, we use axis aligned bounding
boxes and discard any pair of objects whose bounding boxes
do not overlap.

All the pairs of objects that have not been discarded are
considered to be potentially colliding. Then, we compute a
narrow phase collision detection to determine if they are ac-
tually colliding and, in case of collision, we determine a con-
tact point and a normal direction [Eri05]. Taking advantage
of the geometric description of the shapes, based on a list of
vertexes, this narrow phase is done by detecting if any vertex

c© The Eurographics Association 2014.

63



C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

of one geometry is inside the other geometry, and contact is
always considered as a vertex-edge contact (see Figure 5).

n

b1 b2

p

Figure 5: Every object is described as a list of vertexes.
Collision detection is performed checking if any vertex of
body b1 is inside the shape of body b2.

For every contact, an impulse is computed so that the rel-
ative velocity of bodies at contact point is not pointing in the
direction that causes interpenetration. If interpenetration has
already happened, it is corrected before the simulation runs
the next step. The impulse and a friction force are computed
according to [ESHD05]. In Figure 6 a set of shapes has been
dropped and they have formed an object stack.

Figure 6: An object stacking formed by objects of different
shapes.

Prior to clearing the forces after the simulation step, for
every object we check if both velocity and applied forces are
smaller than given thresholds. If that is the case, the object
is put to sleep, and it is not integrated in the next simula-
tion step. This strategy, used by many physics engine, helps
saving computations and also prevents object drift.

6.3. Implementation of the Simulation Step

The simulation step is launched as an event during the draw-
ing process. Before drawing a scene, the simulation loop is
called to compute the new state. When called, it performs a

series of substeps, ending with a new set of positions and ve-
locities for all the objects in the scene [RD11]. The steps that
are executed during the simulation update are the following:

1. Collision detection
2. Inter-penetration correction
3. Force computations
4. Numerical integration of velocities and positions
5. Impulse computation and application

The equations of motion of the different objects depend
on their type. However in most cases they reduce to the Sec-
ond Newton Law [ESHD05]. The numerical integration of
the system is done using a Verlet scheme with a fixed time
step [HNW93,ESHD05]. Depending on the frame rate of the
drawing process, several integration steps can be performed
to guarantee a real-time behaviour and a stable simulation.

7. Scene Export

An export module is necessary to save scenes for later usage.
In order to use this feature, the user can set up a scene and let
it evolve until the desired state, e.g., a rest state. Then, with
the simulation in pause, the scene can be saved to file.

When the user decides to save the scene, the different
data structures that contain the scene information are trans-
ferred to a new data structure using the JavaScript Data Ob-
ject Model [W3C09]. Then, this structure is saved to disk in
a XML file. When the user needs to restore the simulation
state, the XML file is loaded and the scene is created with
the data stored therein.

This module is currently under development. When it is
fully operative, this module will let the users build a library
of scenes and examples that will be helpful for the educa-
tional purpose of the application. Moreover, when the mod-
ule is complete, the application will include a sample library
of scenes corresponding to concepts taught at different pri-
mary and secondary school courses.

8. Usage Examples

The application has been designed to have a flexible be-
haviour, so that it has very few constraints in what regards its
usage. Users, either professors or students, can define their
own work-flow to fit their needs. Next we present a proposal
of a set of possible usage scenarios.

A first possible usage of the application is as a tool to be
used by the professor during lectures to support theoretical
concepts. Together with the explanation of a physics princi-
ple, the professor can launch the application with an scene
that presents one or more examples of the concept that is
being introduced. The application can also be used as a vir-
tual physics laboratory. The professor can propose activities
and a set of questions to the students, and the students must
use the application to reproduce the experiments and answer

c© The Eurographics Association 2014.

64



C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

the questionnaire. Another possible use is to compare typ-
ical physics exercises related to mechanics with the results
obtained in the simulator. The students would solve a set of
exercises on paper, using calculus, and then would simulate
a set of scenes that reproduce the same exercises to observe
and manipulate the results.

Next we present a small set of sample exercises that can
be developed using CLISKA, for the courses on Science
(Ciencias Naturales) and Physics (Física). They have been
designed considering the contents that are taught in sec-
ondary school in Spain, according to the applicable regu-
lations [Min07]. For every exercise we present its goal, the
scenario that is used and a description of the activity.

Ballistic shot. The goal of this exercise is to put into prac-
tice the scientific method.

Scenario. A single object is placed at one side of the sce-
nario. The student sets the starting velocity in magnitude and
angle using the object’s properties.

Exercise. The student has to set a hypothesis about the
reach of the shot. Then, by experimentation, she has to test
the hypothesis and validate or discard it. The exercise can
be followed by an analytical approach, to compare with the
experimental results. An additional concept that is involved
is the usage of proper units of measure.

Use of a balance. The goal of this exercise is to practice the
usage of measurement devices.

Scenario. A simple balance is built using bodies and link-
ages. Several small bodies are also set as masses.

Exercise. The student creates a body and sets its mass us-
ing the properties dialogue. Then, the body must be weighted
using the balance, by placing it on one plate and moving the
masses and placing them in the opposite plate. An additional
concepts that are involved are the lever and the units of mea-
sure.

Coordinate system. The goal of this exercise is to practice
the use of Cartesian coordinates.

Scenario. An empty scenario is used.

Exercise. The students are given a picture with some ob-
jects placed on a rectangular area. Using a ruler, they have
to measure their coordinates from reference system. Then,
they have to create objects in the application and place them
in the corresponding locations.

Inclined plane. The goal of this exercise is to understand
force decomposition and the Newton Laws.

Scenario. A box is placed on an inclined plane without
friction.

Exercise. The student predicts analytically the time that
the box needs to reach the end of the plane and compares it

with experimental results for different angle values. Forces
are drawn during the exercise. The students will also practice
the scientific method and the experimental process.

Inclined plane with friction. The goal of this exercise is to
understand the concept of friction.

Scenario. A box is placed on an inclined plane with fric-
tion.

Exercise. After studying the concept of friction the student
hypothesize the behaviour of the box on the plane. Then they
simulate the scenario for different plane angles and friction
values, comparing the results with the theoretical prediction.
Later, the experiment is repeated using a sphere. The effect
of friction on the rolling movement of the sphere is discussed
and tested experimentally. The students will also practice the
scientific method.

Harmonic oscillator. The goal of this exercise is to under-
stand Hooke’s law and periodic movement.

Scenario. A single object is placed attached to a spring.

Exercise. The student has to displace the object away from
the rest position and let it oscillate. The students can be re-
quested to measure the period of oscillation manually and to
relate it with the spring constant. In addition, the concepts of
kinetic and potential energy are also involved.

This is just a sample of some of the activities that can be
carried out using the simulator. Moreover, in the future, the
application will be extended to consider additional concepts,
related to thermodynamics, electricity or fluids, among oth-
ers. Then, it will be possible to extend the set of exercises
using new objects and practising new course contents.

9. Results

The application that is presented in this paper is a small sim-
ulator for educational purposes that runs on a web browser.
A running version of the system can be found at http:
//www.cliska.com. We have tested the application in
the following web browsers: Microsoft IE, Firefox, Chrome,
Safari and Opera, in their desktop versions.

We have done some tests on an AMD Turion X2 Ul-
tra Dual-Core, Mobile, ZM-82, with 4GB RAM and the
Chrome web browser. In Figure 1 three of these tests are
shown. From left to right, a ball rolling down an inclined
plane, a block construction castle and a pool full of objects.
For these tests we have evaluated the average number of con-
tacts processed during a time step and the average frame rate
(rounded to integer value) for the two render methods. The
frame rate was synced to a maximum of 60Hz. In Table 1 we
show the results for these tests. The pool example has been
run with two values for the number of objects.

The results indicate that the application can run at inter-
active frame rates for scenes up to about 50 objects with

c© The Eurographics Association 2014.

65

http://www.cliska.com
http://www.cliska.com


C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

Scene Objects Avg. Cols. fpsc fpsS

Inclined Plane 4 7 60 60
Blocks Castle 32 85 60 55
Pool 1 130 250 40 15
Pool 2 200 630 15 1

Table 1: Results of tests with different scenes. Columns
show the number of objects in the scene, the average number
of collisions per simulation step and the average frame rate
for both the canvas (fpsc) and the SVG (fpsS) render engines.

both render engines. This is a satisfactory result, consider-
ing that most scenes in an educational context can involve
about tens of objects. In addition, the table shows that the
implementation of the canvas render method has extended
the range of scenarios that can be simulated. From the ta-
ble we can also assume that the frame rate degrades as the
number of collisions increase. This result is reasonable, as
collision detection involves a considerable number of com-
putations. However, more tests need to be done to decide if
the computations involved in every module are the expected
ones, and what are the possible bottlenecks.

The application currently has the limitation that cannot
run on a mobile device or tablet, as it cannot handle properly
the events related to gestures. Also, the application does not
interpret mobile gestures that can be an alternative to typical
desktop events such as, right click. We have also found some
difficulties on some of the browsers tested. While Chrome
and Firefox run the application without remarkable issues,
the requestAnimationFrame() method is only im-
plemented in the newest versions of Safari, IE and Opera.
Versions of IE prior to 9 do not have Canvas and SVG im-
plemented at all, and Safari shows refresh rate problems even
in its newest version.

Regarding the physics engine, the main limitation found
in the working features affects collision response. We have
detected that when there is a large number of bodies in con-
tact, the impulses that are computed cannot prevent com-
pletely the intersection of objects. This issue can be observed
in some of the pictures presented.

10. Conclusions and future work

In this paper we have presented CLISKA, a web application
for education of physics courses in primary and secondary
school. It is a tool that helps the comprehension of physics
laws by experimentation and reproduction of examples.

The system has been developed in a modular manner, so
that the display of the system is independent of the physics
engine. Moreover, the display module has been implemented
using two different approaches, that can be selected by the
user; a vector representation and a bitmap representation
of the scene. The former provides a higher quality image,

which requires more processing, while the latter provides a
faster representation, adequate for complex scenes.

The application is highly flexible, as the starting point is
an empty scene that the user can arbitrarily populate with
objects. For this reason, the system can be used for a wide
range of situations that can arise in typical education activi-
ties.

The project is still work in progress, as there are many
additional features and physics properties that can be added.
Currently the export module is being developed to complete
the capability of saving and loading scenes. This will also
allow to create a library of pre-defined scenes and examples.

The physics engine is capable of simulating rigid and flex-
ible bodies and particle systems. A fluid dynamics module
is being developed using the SPH discretization. Moreover,
we have plans to develop modules to simulate concepts re-
lated to thermodynamics, electricity and electronics, optics
or chemistry, among others.

Compatibility with old versions of browsers is not actu-
ally an issue, as both Firefox and Chrome are free and can
be updated with no cost. However, some work needs to be
done to guarantee compatibility with some web browsers,
specially to handle properly events generated in mobile ver-
sions. In the long term, the application could be rebuilt to run
natively on mobile devices and to use the different sensors
they carry, such as accelerometers or clinometers.

References

[Ago12] AGOP SHIRINIAN: Phyzicle sandbox. Soft-
ware package, 2012. Accessed March 2014. URL:
https://play.google.com/store/apps/details?
id=com.nullular.phyzicle. 2

[Alg13] ALGORYX: Algodoo. Software package, 2013. Accessed
March 2014. URL: http://www.algodoo.com/. 2

[Bod09] BODIN M.: Creative interactive environment for doing
physics. In MPTL 14 International Workshop on Multimedia in
Physics Teaching and Learning, 23-25 September 2009, Univer-
sity of Udine, Italy (2009). 2

[Bru14] BRUMMITT L.: Matter.js. HTML5 JavaScript physics
engine. Software package, 2014. Accessed May 2014. URL:
http://brm.io/matter-js/. 3

[Cat13] CATTO E.: Box2d. a 2d physics engine for games.
Software package, 2013. Accessed May 2014. URL: http:
//box2d.org/. 3

[Cro] CROCODILE CLIPS LTD.: Yenca. Software package. Ac-
cessed March 2014. URL: http://www.yenka.com/. 2

[Del12] DELTODESCO L.: Nape physics engine. Software pack-
age, 2012. Accessed May 2014. URL: http://napephys.
com/. 3

[Eri05] ERICSON C.: Real-Time Collision Detection. Morgan
Kaufmann, 2005. 5

[ESHD05] ERLEBEN K., SPORRING J., HENRIKSEN K.,
DOHLMANN H.: Physics-based animation. Charles River Me-
dia, 2005. 6

c© The Eurographics Association 2014.

66

https://play.google.com/store/apps/details?id=com.nullular.phyzicle
https://play.google.com/store/apps/details?id=com.nullular.phyzicle
http://www.algodoo.com/
http://brm.io/matter-js/
http://box2d.org/
http://box2d.org/
http://www.yenka.com/
http://napephys.com/
http://napephys.com/


C. Marín-Lora & I. García-Fernández / CLISKA - An application for physics education

[HNW93] HAIRER N., NORSET S. P., WANNER G.: Solving
ordinary differential equations 1: Nonstiff problems. Springer,
Berlin, 1993. 6

[JS11] JEREZ J., SUERO A.: Newton physics engine. Soft-
ware package, 2011. Accessed March 2014. URL: http:
//newtondynamics.com/. 2

[Khr13] KHRONOS GROUP: Webgl specification, version 1.0.
Web page, 2013. Accessed May 2014. URL: https://www.
khronos.org/registry/webgl/specs/1.0/. 4

[Kol84] KOLB D. A.: Experiential Learning-Experience as the
Source of Learning and Development. Prentice-Hall, Nova Jer-
sey, 1984. 2

[Lof13] LOFTIS H.: Newton. a playful, particle-based physics
engine. Software package, 2013. Accessed May 2014. URL:
http://hunterloftis.github.io/newton/. 2

[LZM12] LEWIS M. S., ZHAO J., MONTCLARE J. K.: Devel-
opment and implementation of high school chemistry modules
using touch-screen technologies. Journal of Chemical Education
89, 8 (2012), 1012–1018. 2

[Ló14] LÓPEZ J.: La web de física. Web Page, 2014. Accessed
March 2014. URL: http://www.lawebdefisica.com/
nivel/secundaria.php. 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2003), Eurographics Association, pp. 154–
159. 5

[Min07] MINISTERIO DE EDUCACIÓN Y CIENCIA: Real decreto
1631/2006, de 29 de diciembre, por el que se establecen las en-
señanzas mínimas correspondientes a la educación secundaria
obligatoria. Boletín Oficial del Estado, 5 (2007), 677–773. 7

[Nat13] NATIONAL TAIWAN NORMAL UNIVERSITY: Ntnu-
java Virtual Physics Laboratory. Web Page, 2013. Accessed
March 2014. URL: http://www.phy.ntnu.edu.tw/
ntnujava/. 2

[Nog11] NOGUEIRA GUSTAVINO M.: El constructivismo como
base teórica del nuevo método docente y su proyección en los
estudios de derecho del trabajo. Revista General de Derecho del
Trabajo y de la Seguridad Social 27 (2011). 2

[RAJC09] ROVELO G., ABAD F., JUAN M. C., CAMAHORT E.:
Sistema de realidad aumentada para enseñanza de geometría.
In CEIG09: Congreso Español de Informática Gráfica (2009),
pp. 27–36. 2

[RD11] RAMTAL D., DOBRE A.: Physics for Flash Games, Ani-
mation, and Simulations. Friendsof, Apress, 2011. 6

[Ske09] SKETCHYPHYSICS: Sketchyphysics. Soft-
ware package, 2009. Accessed March 2014. URL:
http://sketchyphysics.wikia.com/wiki/
SketchyPhysicsWiki. 2

[SPB12] SAMPEDRO F., PUIG A., BENSENY A.: Modular design
of graph theory based software for scientific applications and ed-
ucation. In CEIG12: Congreso Español de Informática Gráfica
(2012), pp. 167–167. 2

[Sub13] SUB PROTOCOL: Verlet.js. Software package, 2013.
Accessed May 2014. URL: http://subprotocol.com/
verlet-js/. 2

[W3C09] W3CONSORTIUM: JavaScript and HTML DOM Ref-
erence. Web Page, 2009. Accessed March 2014. URL: http:
//www.w3.org/DOM/. 6

[W3C11] W3CONSORTIUM: Scalable vector graphics (SVG).
Web Page, 2011. Accessed March 2014. URL: http://www.
w3.org/Graphics/SVG/. 4

[W3C13a] W3CONSORTIUM: HTML canvas 2D context, level 2.
Web Page, 2013. Accessed March 2014. URL: http://www.
w3.org/TR/2dcontext2/. 4

[W3C13b] W3CONSORTIUM: Timing control for script-based
animations. Web Page, 2013. Accessed March 2013. URL:
http://www.w3.org/TR/animation-timing/. 4

c© The Eurographics Association 2014.

67

http://newtondynamics.com/
http://newtondynamics.com/
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://hunterloftis.github.io/newton/
http://www.lawebdefisica.com/nivel/secundaria.php
http://www.lawebdefisica.com/nivel/secundaria.php
http://www.phy.ntnu.edu.tw/ntnujava/
http://www.phy.ntnu.edu.tw/ntnujava/
http://sketchyphysics.wikia.com/wiki/SketchyPhysicsWiki
http://sketchyphysics.wikia.com/wiki/SketchyPhysicsWiki
http://subprotocol.com/verlet-js/
http://subprotocol.com/verlet-js/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/2dcontext2/
http://www.w3.org/TR/2dcontext2/
http://www.w3.org/TR/animation-timing/

