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1 PLACEMENT STRATEGY

To support a wide variety of placement strategies, we use a general
“placement function", p : R2 → R, which takes higher values at
preferred placement locations.

p is updated after every element placement so that its values de-
crease. Once max{p} reaches 0 or falls below, we are done.

1.1 Notation

We formulate algebraic expressions of individual functions rep-
resenting user input and the current system state with the usual
mathematical operations on functions, with the following additions:

For functions fa , fb : R2 → R, fc : R2 → R2, we notate

fa � fb (x ,y) := fa (x ,y) · fb (x ,y) (1)

for the point-wise multiplication, and

fa ◦ fc := ( fa ◦ fc ) (x ,y) = fa ( fc (x ,y)) (2)

for concatenation. For a set A of functions of the same type, we
construct the point-wise minimum as

MinA := min
f ∈A

f (x ,y). (3)

The function E : (R2 → R) → R, fa 7→ E ( fa ) denotes the Eu-
clidean distance transform of fa , that is, the function that maps
every coordinate (x ,y) in the plane to its minimal distance to the
zero set of fa . As examples of this notation, the characteristic func-
tion of all pre-placed element locations within the stencil is Is � c ,
and the distance map to the union of all placed elements and the
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stencil border is Min{E (1 − д),E (Is )} (see the following section for
the de�nitions).

1.2 Components

We construct p out of the following building blocks:

User-speci�ed input: the artists choose a binary stencil Is :
R2 → {0, 1} that de�nes the area the ornament will occupy, with
permissable areas marked with 1.

They may provide a gray-level image Ie , which can be used to
control aspects like an element’s size.

With scalar constants (greek letters in the formulae), they can
control trade-o�s, for example between equidistant and symmetric
distributions.

Desired symmetries are speci�ed using a symmetry group T of
planar isomorphisms t : R2 → R2, which, for each point in the
plane, map to the location of a corresponding point according to
the symmetry (e.g. re�ection across a straight line or rotation). The
artists can optionally provide a map Ia of preferred locations that
emphasize the symmetry (e.g. a symmetry axis).

Internal data structures: we store the locations of placed ele-
ments in two ways:

• as the characteristic function of their centers of mass c :
R2 → {0, 1} (that is, c (x ,y) = 1 i� an element was placed
there) and

• a map д : R2 → {0, 1} that keeps rasterized geometric
proxies for the element. In order to be robust to resampling,
c is in practice implemented with 3 × 3-sized splats.

The distinction between c and д is necessary, as c can be used to
drive symmetric placement of elements of di�erent sizes and shapes,
while д drives the balanced distribution of arbitrarily-shaped ele-
ments.

In the next sections, we will describe how to combine these building
blocks to express di�erent design goals, e.g. an equilibrium between
desired symmetry and required density.

1.3 Balanced Element Distribution Inside the
Stencil

Our placement function p supports the simplest geometric con-
straint of �lling an artist-de�ned space as de�ned by a stencil Is .
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Wong et al. show that a balanced element distribution can be ob-
tained by maximizing the distances between elements and between
elements and the stencil border. We formulate this as

pdist :=Min{E (Is ),E (1 − c )}
� Min{1,E (1 − д) − δmin} (4)

A placement is considered optimal if it maximizes the distance to
the union of the stencil and previously placed element locations,
provided we stay a minimal distance of δmin pixels away from
already-placed elements. As a result of the greedy search for maxi-
mal spaces, larger elements are placed before smaller elements. This
creates the visible order hierarchy that is characteristic for many
ornamental styles, but fails to produce symmetry consistently in
the presence of pre-placed elements.

1.4 Creating Symmetry

A placement is considered symmetric if a placed element can be
mapped to itself by an isomorphism t belonging to a nontrivial sym-
metry group T , e.g., a geometric transformation such as re�ection
across an axis, or rotation by a rational fraction of the unit circle.
For instance, the locations of elements are symmetric with respect
to t if c = c ◦ t , i.e. c (x ,y) = c (t (x ,y)),∀ (x ,y) ∈ R2.

To approximate that goal, we de�ne a placement function psym that
implements a set of heuristics,

psym := (αsym ·
∑
t ∈T

c ◦ t

+Mint ∈T {E (Is ),E (1 − c ◦ t )}
+ βsym · Ia )

� Min{1,E (1 − д) − δmin} � Is (5)

The heuristics work as follows, row by row of Equation 5:

(1) If an element was placed at some location (x ,y), we need
to preferentially place new elements in locations as dic-
tated by the symmetry operation (for instance, at re�ected
locations) – in more formal terms, �ll its orbit under the
symmetry group. Hence, psym should have the highest val-
ues at transformed locations of previously placed elements,
motivating the expression in the �rst line αsym ·

∑
t ∈T c ◦ t .

The parameter αsym is chosen so that it dominates the
other terms. In all our results, αsym = 500.

(2) If placement at such a location is not possible (for instance,
because the set of placed elements is already closed under
t ), we have some freedom. In addition to keeping a maximal
distance to the stencil, we prefer placing the next element
at a location that permits future symmetric placements in
an optimal way, i.e., we want maximal distance not only
to existing element proxies, but to the set union of their
transformation under t . This is achieved with the summand
Mint ∈T {E (Is ),E (1 − c ◦ t )}.

(3) To deal with cases where the latter summand has many
equally-high maxima, we optionally add a tie-breaker βsym·
Ia . In the axis re�ection results shown (Figure 5), we have

set βsym to 10 on the symmetry axes of T , in the other
results, we have set it to 0.

(4) Finally, we exclude placements that are too close to existing
values or outside the stencil, so we multiply byMin{1,E (1−
д) − δmin} � Is .

For symmetry patterns that involve several simultaneous transfor-
mations (e.g. four-way symmetry with two axes of re�ection), we
construct T as the union of the respective symmetry groups.

1.5 Controlling Placements with Image Data

In order to control the placement with an artist-speci�ed example
image Ie , we specify control parameters αraster and βraster, so that
we can optimize the placement according to

praster := Min{αraster · Ie − βraster,

E (1 − д),E (Is )} (6)

We start placing larger elements at places in the input bitmap with
high intensity values. We then �ll the rest of the target region with
smaller elements. The a�ne transformation of the values of the
input image by αraster and βraster controls the scale of the largest
placed element and the cut-o� value for placement size, leaving the
black parts of the example empty. In order to �ll the space more
densely, the placement function uses the distance to the actually
placed elements E (1 − д), instead of their centers E (1 − c ).

2 ASYMPTOTIC PLACEMENT
PERFORMANCE

Let n be the number of pixels in the stencil we need to �ll, m the
number of placed elements. In the worst case, we use a placement
function that requests elements to be placed in scanline order, and
we need to update O (n ·m) entries to �ll the pattern. However, the
average case is much more amenable. We will show this for the two
most expensive data structures, the Euclidean distance maps and
the maximum pyramid P .

Consider the Euclidean distance: while inserting the i-th element,
we need to update the pixels in the Voronoi cell around it, which, on
average, covers n/i pixels. The total cost of updating the distance
maps for inserting all elements then is

O *
,

∑
i

n

i
+
-
= O *

,
n
∑
i

1
i
+
-
= O (n · logn) (7)

Now consider the maximum pyramid P . In a single step, updating
an area covering a pixels on the lowest region incurs update costs
on logn layers, in total

O *.
,

logn∑
k=0

a

4k
+/
-
= O (a + logn) (8)
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In the worst possible pattern, we �ll the entire plane with single
pixel-sized elements, so a = 1 in each of m = n steps, and we incur
costs of O (n logn) (for higher values of a,m · a cannot exceed n, so
this is still the worst case).

Next, we will put both costs together. We can expect to update, on
average,O ( ni ) pixels, so every step costs O ( ni + logn). In total, this
causes costs of

O *
,

m∑
i=1

(n
i
+ logn

)
+
-

=O *
,
n ·

m∑
i=1

1
i
+m logn+

-
(9)

In the worst case, again, every pixel is �lled with a single element,
m = n, and we obtain total costs of O (n logn).
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