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Figure 1: Static depiction ofmotion for five example videos createdwith FlowBrush. The images are produced fromvideoswith
a fireplace (top-left), a ship’s propeller under water (top-right), fireworks (bottom-left), a webcam feed with mainly weaving
different objects (center), and motion observed from a highway bridge (bottom-right).

ABSTRACT
The depiction of motion in static representations has a long tradi-
tion in art and science alike. Often, motion is depicted by spatio-
temporal summarizations that try to preserve as much information
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of the original dynamic content as possible. In our approach to
depicting motion, we remove the spatial constraints and generate
new content steered by the temporal changes in motion. Applying
particle steering in combination with the dynamic color palette of
the video content, we can create a wide range of different image
styles. With recorded videos, or by live interaction with a webcam,
one can influence the resulting image. We provide a set of intu-
itive parameters to affect the style of the result, the final image
content depends on the video input. Based on a collection of results
gathered from test users, we discuss example styles that can be
achieved with FlowBrush. In general, our approach provides an
open sandbox for creative people to generate aesthetic images from
any video content they apply.
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1 INTRODUCTION
The display of motion in static pictures has a long tradition in
art [Cutting 2002]. As an example, in the 19th century, paintings
of Claude Monet and Joseph M. W. Turner depicted locomotives
emphasizing their motion with stylistic means. Techniques such as
slit-scan photography and longtime exposure have captured move-
ment on photographs for many years. Later on, the artistic style
of comics and graphic novels applied elements such as action lines
to represent motion. This style was also adapted for video con-
tent [Collomosse et al. 2003]. With increasing digitalization, tech-
niques were established that further increased the possibilities to
capture motion creatively. Motion capture data was transformed for
visual music [Garcia and McGraw 2016]. Wii Motion controls [Lee
et al. 2008] and Microsoft Kinect [Castro et al. 2012; Rodrigues et al.
2013] proved to be convenient and affordable devices to capture
motion for art. Even live performances that take a video stream and
transform it into new video content became affordable this way.

We introduce FlowBrush, a new technique that is based on opti-
cal flow for creating particle paths steered by displacement vectors.
The basic idea of our approach is that for each pixel in the input,
a particle is generated in the output image. Displacement vectors,
describing the motion through a pixel over time, are translated
into line segments for the path of its corresponding particle. The
technique requires just a video input—either from a pre-recorded
source (e.g., YouTube) or a live webcam feed—to interactively cap-
ture movement in an abstracted representation. With FlowBrush,
we provide a means of converting motion patterns into new, ex-
pressive artwork (Figure 1).

Our contributions are a new technique to depict motion from a
video source based on optical flow and particle creation, a general
discussion of the parameter space, and a gallery of diverse artwork
created with the technique. With the potential to create pictures
from any video content, FlowBrush can be deployed for creative
composition of motion either as a new video, or as a new picture.

2 RELATEDWORK
Borgo et al. [2012] present a survey of video-based graphics and
video visualization. The authors provide a classification of existing
techniques by their goals, output data types, input information,
and levels of automation. We see FlowBrush as a method to create
video-based graphics with the goal of artistic presentation, although
future modifications might also enable an application for video vi-
sualization. As output data, we can create another video that shows
the painting process interactively. However, at some point in time,

the result is typically “frozen” in the form of a static image of
the captured motion. The only input information required is the
original video. The transformation of input data into particle trajec-
tories is automated, the control of the video input and parameter
adjustment for different styles are manually controlled by the user.
Applying optical flow estimation methods, we process the original
video by low-level vision techniques that can be applied to any
video.

Video synopsis [Rav-Acha et al. 2006], dynamic stills [Caspi
et al. 2006], slit-scans1, and video collages [Mei et al. 2008] can
be categorized similarly; all these techniques summarize motion
in video content either to a still image, or a shortened video clip.
Partially de-animated clips [Bai et al. 2012; Tompkin et al. 2011] can
also be applied to capture the dynamics of a specific motion in short
video loops. However, the mentioned techniques do not abstract
the content to a degree that original image structures disappear.
We aim to abstract the result from its input, therefore our approach
focuses on the depiction of motion itself as the structuring element
in the result image.

Our general approach can be interpreted as a transformation
of temporal coherence into spatial coherence. This concept is also
commonly applied in scientific flow visualization. In particular, tech-
niques that combine the idea of Line Integral Convolution [Cabral
and Leedom 1993] with image compositing techniques include pro-
cessing steps similar to FlowBrush (e.g., Jobard et al. [2002]; van
Wijk [2002]). Aliasing artifacts resulting from large integration
step sizes are often handled with appropriate counter-strategies
[Weiskopf 2009]. In contrast, we see such artifacts, resulting from
large step sizes and imprecision in the calculated flow, as an addi-
tional stylistic means, similar to single hairs on a brush that do not
follow a perfect path along the main direction.

A subtopic in flow visualization considers the illustrative render-
ing of flow data by emphasizing important features (e.g., Brambilla
et al. [2012]; Browning et al. [2014]; Jones and Ma [2010]; Li and
Shen [2007]), often applying stylistic means from art. In contrast,
our spatial representation of the optical flow is not intended to
support analytical reasoning. With the provided parameter interac-
tion, we rather want to provide means of transforming motion and
colors into a new, abstracted representation of the input.

Artistic applications of flow visualization can be found in the
work by Forbes et al. [2013] and Vehlow et al. [2014]. Both ap-
proaches incorporate fluid simulations that can be influenced by pa-
rameter adjustments and control point interaction. We also provide
a similar, interactive drawing process, however, since our approach
is based on optical flow, the artist can additionally influence the
output by the video input.

When using optical flow in the creation of artistic images, the
work by Ruder et al. [2016] sticks out. It transfers the style of one
image to the contents of a video sequence and is a multi-frame
extension of the work of Gatys et al. [2015], who already applied
style transfer to single images. While the optical flow of the input
video is not the source of the artistic features, it is important to
maintain style consistency between adjacent frames of the output
video. In contrast to our approach, a second input, the image whose
style is transferred, is necessary.

1http://www.flong.com/texts/lists/slit_scan/
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Figure 2: FlowBrush video processing steps: (1) optical flow from to consecutive video frames is calculated, (2) pixel displace-
ment is rendered as a trajectory into a temporary image, and (3) compositing of the temporary image and the output from the
previous time step is performed.

3 TECHNIQUE
The technical procedure to create an image with FlowBrush is
based on three steps, depicted in Figure 2: (1) calculation of the
optical flow, (2) particle steering, and (3) compositing. Trajectories
for individual video pixels are directly rendered on the canvas, the
artist can influence the compositing by an additional filter step and
by adjusting parameters to change the depiction of the trajectories.

Our application prototype is implemented in C++ and OpenCV
with CUDA support for realtime processing of optical flow and
bilateral filtering.

In the following, let Ik be a series of input images at time steps
k and let Ik (x⃗i ) denote the color of pixel i (with i ∈ {1, . . . ,N }) at
location x⃗i in the input coordinate system. Furthermore, let Jk be
a series of output images, where J1 is a blank image, and let T be a
temporary image.

3.1 Optical Flow
For a video, the optical flow describes the spatial correspondence
between pixels in consecutive video frames. This information can
be used for numerous tasks including tracking. Although we do
not track specific semantically coherent regions (e.g., objects), we
make use of flow information to assemble specific motion paths
for creating the output images. To calculate the optical flow be-
tween adjacent frames I t and I t+1, we apply a dense variational
method [Brox et al. 2004], provided by OpenCVwith CUDA support.
We denote the resulting displacement for each pixel i by

w⃗t (x⃗i ) = (ut (x⃗i ),v
t (x⃗i ))

T ,

where ut (x⃗i ) is the horizontal displacement and vt (x⃗i ) is the verti-
cal displacement. Before computing the optical flow, we resize any
input video to a height of 200 pixels and adjust the width in order
to preserve a 4:3 aspect ratio for webcam feeds. For one calculation

step, 5 inner and outer fixed point iterations and 10 solver iterations
were performed. This parameter setting allows us to achieve inter-
active frame rates for calculations even on non-high-end systems.
On a computer with 3.6 GHz Intel i7 CPU and an NVIDIA GeForce
GTX 660 Ti, our painting algorithm performed with an average rate
of 11 frames per second. Reducing the number of iteration steps
can improve the performance but results in a less accurate flow.

3.2 Particle Steering
Each pixel i from the input coordinate system is assigned a parti-
cle in the output coordinate system, i.e., we have N particles. At
the beginning, all particles reside in a common seed point a⃗. Af-
terward, particle i is steered by the displacementswk (x⃗i ) that are
estimated in each time step k at the fixed location x⃗i . Please note
that these displacements usually do not form the trajectory of any
object in the input images but belong to different objects that move
through location x⃗i over time. The trace of particle i in the output
image at time step t is the aggregation of the independent motions
w⃗ 1 (x⃗i ), . . . , w⃗ t−1 (x⃗i ) at location x⃗i in the input image.

More formally: Using the seed point a⃗ in the output image, we
set the origin y⃗ 1

i := a⃗ of all visualized traces of the particles i . For
each time step t , the displacement vectors w⃗t (x⃗i ) for all pixels i in
the input are calculated (see Section 3.1), and for each i , they are
finally aggregated in an output pixel position buffer:

y⃗ t
i := y⃗ t−1

i + γ w⃗ t−1 (x⃗i )

= y⃗ 1
i + γ

t−1∑
k=1

w⃗ k (x⃗i ),

where γ is an amplification weight. The temporary image T is
initialized with J t−1 and afterward the path increment of particle i
is rendered intoT by a line between the positions y⃗ t−1

i and y⃗ t
i . The

color of the line is determined by the color I t−1 (x⃗i ). The procedure
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Figure 3: Particle trace for one pixel of the original video
(red) and its corresponding particle (blue). If an objectmoves
through this pixel position, the displacement is drawn as a
line with the current color of the pixel.

is depicted in Figure 3, where red boxes correspond to x⃗i and blue
boxes correspond to y⃗ k

i at the respective time steps k .
Let us have a look at time step t = 2 in Figure 3. The temporary

image T is initialized with the blank output image J1. We now
consider the motion w⃗1 between the first two input images at the
pixel with the red box. As it moves upright and its color in the
first image is blue, we render a blue line upright starting at the
seed point in the temporary image T . Afterward, T is blended with
J1 giving J2 (see Section 3.3). At the next time step t = 3, T is
initialized with J2. The red-boxed pixel is orange and moves left by
2 pixels (w⃗2). Hence, we draw an orange line into T going to the
left by 2 pixels and starting at the end of the last line. Finally, T is
blended with J2, creating J3.

Please note that the displacements only affect the output image
while the positions x⃗i in the input remain unaltered (see red box in
Figure 3). Since both coordinate systems are different, the resolution
of the output image is independent from the input. Hence, our
approach can generate high-resolution images from low-resolution
input. We propose a resolution 4 times the size of the input for a
canvas that can be used for both small and large step sizes of the
trajectory painter.

3.3 Compositing
The compositing step blends the previous output image J t−1 with
the adjusted temporary image T from the current step

J t = αT + (1 − α ) J t−1

with a blending weight α ∈ [0, 1]. This iterative alpha blending
approach is also applied for interactive vector field visualizations.

Only the previous and the current time step are required for com-
putation, which makes this method efficient for real-time applica-
tions [Weiskopf 2009]. In order to modify the style of our image, a
bilateral filter [Tomasi and Manduchi 1998] can be applied on the
temporary image T before blending.

3.4 Parameters
The user can influence two numeric parameters, and three triggers
to enable the bilateral filter, seed point randomization, and an al-
ternative direction-to-color mapping. We choose those parameters
because of their intuitive interpretability.

Blending. Changing the blending parameter α highly influences
the style of the output. The user is free to adjust this parameter
dynamically during the drawing process. Parameter α can be inter-
preted as a metaphor for the amount of paint that is used to draw
on a canvas. Higher values correspond to more color on the brush,
whereas low values change the output in a more subtle way.

Step Size. This parameter represents a multiplier γ ∈ [1, 20] for
adjusting the length of the displacement vector w⃗i , used in the
context of particle steering:

y⃗ t
i = y⃗

t−1
i + γ w⃗ t−1 (x⃗i )

Increasing γ amplifies the motion and distributes the pixels faster
over the output image. This parameter can be interpreted as a
metaphor for the stroke length of a brush. We will further discuss
the influence of this parameter in Section 4.1.

Bilateral Filter. Without any additional filtering, we call the
style of our output images the plain style, drawing all trajecto-
ries straight into the image, with individual traces clearly visible.
By applying a bilateral filter [Tomasi and Manduchi 1998] to the
temporary image T , we provide a second style that smooths areas
into homogeneous regions while preserving edges, an artistic ef-
fect similar to artificially generated oil paintings. Its parameters
(σcolor = 30,σspace = 20) are chosen empirically and kept fixed. The
remaining choice is to enable or disable it.

Direction to Color. Generally, the color of painted trajectory seg-
ments depends on the currently visible colors in the input. As an
alternative, we provide a direction-to-color mapping as it is com-
monly applied in illustrations of dense, optical flow. Since every
direction is assigned to another color, this feature can be applied
to influence the result by grouping motion in similar directions
together in the composition to achieve more homogeneous colored
regions. Additionally, not all environmental settings might provide
a satisfying color palette (e.g., low light settings) and the alterna-
tive color mapping is not influenced by this factor. Figure 4 shows
examples of the color coding for four example videos that will be
discussed in detail in Section 4.1.

Random Seed. Without the random seed enabled, the pixels begin
to distribute over the output, creating a noise pattern that conveys
less motion patterns than at the beginning. Therefore, all pixels
have to be reset to a new seed point. This seed point can either be
set manually, by clicking on an image position with the mouse, or
randomly, after a specific number of processed frames.
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Figure 4: Direction-to-color mapping for four example videos.

4 RESULTS
We discuss our results on two different levels. First, we investigate
the parameter space and how changes in the aforementioned param-
eters influence the resulting image. Second, we provide examples
of how different video input results in various images of different
style and expression.

4.1 Parameter Space Exploration
Figure 5 shows parameter series for the blending parameter α and
the step size γ . The presented examples are from four different
videos with continuous motion patterns. For each video, a sample
of 700 frames was processed to create an output image for seven
seed points, distributed over the canvas. Additionally, the results
for the bilateral filter are included for α = 1.0 for direct comparison.

Figure 5a results from a video with a fireplace. The continuous
upward motion of the flames creates an output that also resembles
a fire. Figure 5b results from a ship’s propeller filmed under water.
The same video was also applied to create the image in Figure 1.
Figure 5c was created with a video from a rotating spiral. The
resulting image reflects this motion pattern. Figure 5d shows the
result of a water vortex, filmed from top. As in Figure 5b, this video
alters between different flow velocities, resulting in different shapes
at the seed points (see γ = 1).

The blending parameter influences how fast new time steps will
become visible in the output image. No or small motion leaves
pixels at their old positions and the pixels become better visible
over time for a small α value. We suggest applying small values to
create diffuse background textures, or nebular structures that begin
to show details if the motion stops abruptly (see Section 4.2). Vice
versa, a high α value composes new pixels and their trajectories
directly into the image, analog to a brush with much paint on it.

Increasing the step size γ results in an amplified displacement,
so that even small motion has a significant influence on the output
image. In combination with increasing α values, individual trajecto-
ries appear more prominent. Larger step sizes lead to more chaotic
results, which can be an interesting aspect for artistic expression.

The bilateral filter shows the smallest effect on Figure 5c. This is
mainly due to the fact that the spiral motion overwrites results of
old time steps faster and the compositing requires some iterations
to fully incorporate the filter results. For the other three series, the
filter effect becomes clearly visible, especially for small step sizes
(γ = 1). Regions of similar color become homogeneous and salient
edges remain in the image, preventing it from becoming blurred.

4.2 Examples
We provided our tool to a testing group, asking them to try out
the application and feel free to experiment with the creation of
images. We asked them to send us back resulting images along with
a questionnaire on how they created the results. As a result, we
received 34 images. Combined with our own experimental results,
we want to provide a glimpse into the vast amount of creative
possibilities that can be realized with FlowBrush.

Filtered Images. The bilateral filter can be applied to add an
alternative artistic style to the result. Depending on α , this can
either resemble oil paintings (Figure 6a, α > 0.3) or aquarelles
(Figure 6b, α < 0.1).

Space-Filling Images. Small α values and large step sizes γ are
suitable to fill the output image completely while smoothing the
transition between individual trajectories. The resulting images
(Figures 6c and 6d) cover the canvas completely. This style could
also be used to create backgrounds for a painting.

Nebular Structures. Values of α < 0.05 lead to subtle changes in
the result, similar to the dry-brush painting technique. Fast motion
leads to nebular structures. If a motion is abruptly ended and the
input stands still, the pixels at the end positions become visible,
creating edges and points in the image (Figures 6e and 6f).

Images Colored by Direction. Results applying the direction-to-
color mapping were rare. However, one test user claimed that his
setting at home did not provide good colors, so he switched to the
alternative mode (Figures 6g and 6h).

Repetitive Motion Images. As we presented in the parameter se-
ries (Figure 5), repetitive motion can result in images resembling
the source video. As an additional example, Figure 7a shows the
result of a video from a waterfall.

Seed Point Compositions. Some users did not rely on the seed
point randomization. They manually set seed points on the canvas
to compose an image from the flow. The source was either addi-
tionally influenced from a webcam (Figure 7b) or a pre-recorded
video (Figures 7c and 7d).

Structure Preserving Images. Starting from an initial seed point,
zooming motion can create a pixel distribution that partially re-
sembles the original video content, allowing the artist to include
real-world content into the motion patterns. Figures 7e and 7f show
two examples with faces, composited into the resulting image. Both
images were created with α < 0.3, and step size γ < 3. Figure 7f
was created with additional bilateral filtering.
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(a) Parameter series for a fireplace video.
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(b) Parameter series for a ship propeller video.
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(c) Parameter series for a video with a rotating spiral.
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(d) Parameter series for a video of a water vortex.

Figure 5: Parameter series for different video sources. A set of 7 seed points, each switched after 100 frames, was used to depict
the influence of the blending parameter and the step size.
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(a) Title: “The Hunt”, artist: ©jokkurt (b) Title: “In Bloom”, artist: anonymous

(c) Title: “A glimmer of hope”, artist: ©TheVall (d) Title: “Komorebi”, artist: ©TheVall

(e) Title: “Dark Angel”, artist: ©FlowMaster (f) Title: “Electric Storm”, artist: anonymous

(g) Title: “pic6-covering-camera”, artist: ©Grego (h) Title: “pic7-covering-camera”, artist: ©Grego

Figure 6: Examples of images created with FlowBrush.



CAe’17, July 28-29, 2017, Los Angeles, CA, USA K. Kurzhals et. al.

(a) Title: “To the Mountains”, artist: anonymous (b) Title: “Nodding Starfish”, artist: anonymous

(c) Title: “Cave Entrance”, artist: ©Guen the Cat (d) Title: “Lijiang Impression”, artist: ©TeaMonster

(e) Title: “Thought Patterns”, artist: ©jokkurt (f) Title: “The Shoggoth”, artist: ©jokkurt

Figure 7: Examples of images created with FlowBrush.
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Figure 8: Live interaction bywebcam to create an imagewith
FlowBrush. (Opticalmarkers are not necessary for our appli-
cation.)

5 CONCLUSION
We presented a new technique to depict motion from a video source
by artistic images created with optical flow and particle steering.
The CUDA-based implementation of the relevant calculation steps
allows a deployment of the application for live performances (Fig-
ure 8) and interaction with an audience, for example in art gal-
leries, open house events, or as individual art projects in general.
The source code is available on our website2. For systems without
CUDA support, we provide an alternative, CPU-based calculation
method for optical flow.

Future extensions could incorporate more computer vision sup-
port. Spatial image segmentation could be applied to use FlowBrush
as a coloring book, allowing one to draw only in specific segments
at a time. Temporal segmentation, for example by scene detection,
could be applied to generate a sequence of output images each cov-
ering consistent content. Object detection could help steer specific
particles directly. For example, detection and tracking of individual
hands could be applied to map the hand motion to specific parti-
cles. This would result in a painting process similar to other virtual
painting devices. Furthermore, the proposed approach for particle
steering is only one of many possible computational models. Fu-
ture work could evaluate how different approaches (e.g., based on
pathlines) influence the result.

We see FlowBrush as a conversion tool that transforms motion
input into artistic images. What the artist chooses for video input
is completely free, leading to an infinite design space for new ideas
to create content.
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