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Abstract

We present a volume modelling approach based on sequences of two-dimensional ultrasound images. Though
generally applicable to arbitrary freehand ultrasound, our method is designed for the reconstruction of time-
varying volumes from ultrasound images of a human heart. Since the reliability of the reconstructed data depends
very much on the spatial density of ultrasound images, we apply a hierarchical modelling approach. The volume
produced for each time step is represented as adaptive mesh refinement (AMR) data such that regions of low
reliability in the reconstructed volume can be recognized by their coarse resolution.

Keywords: Freehand Ultrasound, Echocardiography,
Volume Reconstruction, Scattered Data Approximation,
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1. Introduction

Ultrasound imaging is commonly used in medicine for diag-
nosis and preventive examinations. It provides an inexpen-
sive, non-invasive way to study vascular and musculoskele-
tal anatomy in real time. Ultrasound is suitable for detect-
ing boundaries of anatomical structures with different sonic
impedance rather than classifying material properties.

Ultrasound waves emitted by a transducer are reflected at
tissue boundaries and recorded by a probe. The reflected in-
tensities of multiple waves are translated into greyscale val-
ues of certain pixels in a two-dimensional ultrasound im-
age. Since the intensity associated with a certain boundary
depends on the sonic impedance difference of intermediate
tissues, it does not behave proportional to certain material
properties. For example, if the transducer is not placed ex-
actly on a patient’s skin, the resulting image will be severely
degraded by the high impedance of the air in between. Sim-
ilar artefacts occur due to air in the lungs. The opposite
occurs if the sound waves hit the ribs, where most of the
sonic energy is reflected, causing extremely overexposed re-
gions, to use a terminology from photography. Both aspects
together extremely limit the paths of unaffected ultrasound

propagation. These reasons motivate the usage of freehand
ultrasound, especially in the field of cardiac ultrasound.

Reconstruction of volumes from sequences of arbitrar-
ily aligned ultrasound images is a problem of recent
interest[BAJ∗, TGP∗02, RN00]. High-resolution ultrasound
images known as B-scans are recorded by a movable probe
of a freehand ultrasound system. The spatial locations of
these B-scans are recorded simultanously by an electromag-
netic or optical tracking sensor, such that the individual im-
ages can be embedded into a volume.

The construction of an interpolating volume is a difficult
task, since the individual ultrasound images are composed
of Gaussian-like speckles rather than a continuous density
function. The distance between adjacent B-scans is typically
much greater than their resolution which makes it difficult
to track features between these scans using, for example,
scattered-data interpolation techniques[RGBT99].

In this paper, we contribute a highly efficient and accu-
rate volume construction method from individual B-scans.
This method is designed for realtime echocardiography (ul-
trasound of a human heart), where a sequence of images is
slowly scanned within a fan-shaped region while the heart
is beating. Out method does not require any triggering dur-
ing the scanning process, neither by the electrocardiogram,
nor by any external synchronisation impulse like the V-sync
signal from a monitor. This way we are able to acquire ex-
tremely dense data with respect to time, i.e. we can use an
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Figure 1: Interpolation between two nearest scans using a
circular arc to locate corresponding points on B-scan slices.

acquisition frequency ranging from 60Hz up to over 100Hz,
depending on the actual image size and the probe frequency
used. The position sampling is done in a de-synchronized
manner for the same reason.

Because of the very short acquisition procedure, the pa-
tients are able to hold breath, so that respiration artefacts are
almost completely avoided. This way the subsequent reg-
istration procedures can, though not being dismissed com-
pletely, simplified. This is extremely advantageous, since
the otherwise necessary full registration is not able to de-
cide between motions introduced by the patient and mo-
tions introduced by the heart itself. The latter would signif-
icantly degrade the data quality during the registration pro-
cess, because the image content has to be altered in contrast
to slightly altering the image positioning.

A second favourable aspect of our acquisition procedure
is, that the patient and the physician as well undergo almost
the same procedure as they are used to conventional 2D ul-
trasound examinations. The main differences are a second
cable attached to the probe and the remote steering of the ul-
trasound device by means of a virtual foot switch. The acqui-
sition itself does not depend on any external signals as they
are known for R-wave triggered acquisition using a frame
grabber [MBPE02].

In contrast to many other approaches based on scattered-
data approximation using three-dimensional basis functions,
our method interpolates for each voxel the data on nearest
B-scans. We found that features between two B-scans are
best propagated along circular arcs. To accommodate to the
varying density of B-scans, we generate adaptive mesh re-
finement (AMR) data[BO84] based on an octree hierarchy.
When sampling the volume at different resolutions, aliasing
needs to be avoided. Therefore, we adapt the resolution of
interpolated B-scan to the local volume resolution using a
mip-mapping method.

Figure 2: Scan conversion (warp) of the original data dur-
ing reconstruction.

The paper is structured as follows: In section 2, we sum-
marize related work. Section 3 provides our volume con-
struction including pre-processing of the raw data, interpo-
lation between B-scans and adaptive mesh refinement based
on spatial reliability. In section 4, we present numerical re-
sults for the reconstruction of three-dimensional ultrasound
of a beating heart. Finally we conclude our work in section
5.

2. Related Work

A variety of approaches for three-dimensional ultrasound
have recently emerged. A comprehensive overview of
freehand ultrasound systems is provided by Treece et
al.[TGP∗02].

The interpolation of pixel values on B-Scans mapped into
a spatial domain, can be solved by scattered-data interpola-
tion methods[FN80]. Rohling et al.[RGBT99] use radial ba-
sis functions (RBF’s) for volume reconstruction. RBF’s are
computationally expensive, despite of recent approaches ac-
celerating their evaluation[BLB00].

Roxborough / Nielson[RN00] use a hierarchy of tetrahe-
dral grids providing locally supported piecewise linear basis
functions for scattered-data approximation. Despite of this
flexibility, their approach requires the solution of a global
least-squares problem slowing down their algorithm. Adap-
tive scattered-data approximation methods based on hierar-
chical B-Splines[BTH03] are more efficient and may also be
used in ultrasound reconstruction.

However, all these methods have in common that they do
not adhere to the structure of given data, which is highly
precise on the B-scan slices with large gaps in between.

Therefore, our approach attempts to propagate data from
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the B-scans into the volume in the most intuitive man-
ner without using prescribed trivariate basis functions. Like
Roxborough / Nielson[RN00], we use an adaptive method
for volume construction. To avoid a large overhead taken
by the meshing structure, we employ AMR [BO84] us-
ing an octree with data values corresponding to each leaf
voxel. Hierarchical data structures of this type are fre-
quently used in visualization and contouring of large-scale
volumes[WKE99, WKL∗03].

3. Volume Construction from Ultrasound Images

In this section the new volume construction approach will be
described. We start with a sequence of B-scans, each defined
by a greyscale image and a transformation into world space.
Since all ultrasound rays virtually emanate from a single
point, the raw data greyscale images are warped on their cor-
responding slices in the volume to fit their real world geome-
try using a scan conversion process, see Figure 2. Greyscale
values associated with points on these B-scan slices are com-
puted by a simple parameter transformation and bilinear in-
terpolation using the four closest pixels.

In the case of echocardiography, we have a fan of B-scans
for each time interval in the heart cycle (there are between
25 and 50 intervals). Each fan consists of up to 100 B-scans
which are selected based on their location in the ECG cy-
cle. The local coordinate system of the ultrasound probe is
aligned such that the x- and y-axes span the plane of the cur-
rent B-scan, where the x-axis corresponds to the ultrasound
(axial) direction and the y-axis points to the right (lateral) on
the B-scan. During the scan acquisition process, the probe
is mainly rotated around the y-axis resulting in a fan of B-
scans, but minor rotations around the x- and z-axis can take
place.

In the case of freehand ultrasound, the probe can be
moved and rotated in arbitrary directions as long as it does
not leave the patient’s skin. Due to the fact that the probe is
held by a human the probe positions alter slightly during a
fan acquisition. In addition the angular velocity changes sig-
nificantly. In consequence there is need for a method which
synchronizes the ECG, the probe tracking information and
the image data and which is able to reorder the slices within
time domain. The result is a sequence of unique B-scans
from which a dynamic volume can be constructed by inter-
polation.

3.1. Pre-processing the raw data

As mentioned, the individual B-scans are not ordered in
space-time, but only in time and in space. That is, we only
know, that two successive scans were acquired at two suc-
cessive time steps. Caused by the motion of the heart con-
secutive images do not belong to the same heart phase in
general. By the same reason we are not allowed to take se-
quent scans to build a 3D model. As a first step we have to

Figure 3: Geometry of the fan acquired dataset and close-
up of the positions (10 out of 1182 samples)

synchronize the tracking data with the image data. The only
known parametars are the elapsed acquisition time, the fre-
quency of the ultrasound machine and the tracking device
frequency. The start time of the acquisition is not available
because ultrasound devices use FIFO buffers which loose the
earliest information on buffer overflow.

With this information at hand it is possible to juxtapose
image and tracking data. Caused by the in general different
acquisition frequencies of the two devices, the timings be-
tween the respective data samples clearly cannot fit. In order
to get rid of that, new data has to be calculated. It is prefer-
able to change the tracking data only. The main reason is,
that we do not want to degrade any image data by interpola-
tion as long as this is not necessary. A minor reason is that
the generation of new tracking data is much cheaper. A last
point is that the tracking data is severely degraded by noise,
which cannot be avoided in a clinical setting, and which has
to be compensated for. Lower acquisition frequencies of the
tracking device would remedy the situation but on cost of
much fewer samples per time step.

To process the tracking data, two different interpolation
methods are needed for position and orientation data. The
positions are interpolated via a hermite spline fit (1), which
is steered by the normals of the B-scan planes and the re-
spective positions.

Pn =
→
g ·H· →t ,

→
t = (1, t, t2, t3)T ,
→
g = (Pi, Pi+1,

→
z i,

→
z i+1)

T .

(1)

Pn denotes the interpolated point based on the points Pi
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and Pi+1, t is the interpolation parameter which is raised to

the respective power in
→
t and

→
g is the geometry vector com-

posed of the points to be interpolated and the corresponding

normal vectors
→
z ∗. Matrix H is the Hermite basis matrix,

which blends the input data to the respective curve point.

The orientations are interpolated via key framing meth-
ods. We found that the spherical linear interpolation (2) is
appropriate for our needs.

S(P,Q, t) = a ·P + b ·Q,

a =
sin((1− t) ·α)

sinα
,

b =
sin(t ·α)

sinα
,

α = arccos(P ·Q).

(2)

Here P and Q denote the coordinate frames to be inter-
polated and t denotes the same interpolation parameter as in
(1).

After this step we have a single tracking sample for every
single image. Due to the fact that the frequencies are fixed
for both devices during an acquisition, the synchronization
of their output can be calculated reliably.

Having synchronized the image and tracking information,
the next step is the synchronization of this data with the ECG
signal. The sample frequency is fixed to 250Hz for a usual
ECG signal, which is significantly higher than those from
the ultrasound or tracking devices. Here an additional ad-
vantage arises, when the tracking information is adapted to
the image information and not vice versa. Every ECG sam-
ple has its own tag, namely the image number. Because of
the high ECG sample frequency, there are between two and
seven ECG samples per image. This way not only sample
numbers can be assigned to image numbers, but also ECG
features, i.e. there is enough information to decide whether
an image corresponds to an r-wave event or any other heart
phase in scope.

Other heart phases are the p-, q-, s-, t- and u-waves. At
this place it should be mentioned that the t-wave is split up
into two parts due to its temporal duration. Caused by the
flatness of the u-wave in normal ECGs from healthy persons
and the limited resolution of the electric dissipation, its max-
imum cannot be localized in a real robust manner. This fact
encouraged us to introduce fixed time features, which only
depend on surrounding features and a subdivision interval
size. So the u-wave is most often replaced by two or three
virtual features, evenly distributed between t- and p-wave.
The reliable identification of the heart phase features is cru-
cial for reconstruction because the stream of information is
now split up into several parts, namely the single heart cy-
cles.

In a last step the heart cycles are normalized and stacked

Figure 4: Normalization of different ECG-traces. The effect
of the procedure at the t-wave (left) before (right) after the
normalization process.

onto each other. The naive stacking shows severe misalign-
ments within the single ECG traces hence the images them-
selves can not be aligned in an optimal manner, too. There-
fore the ECG trace is resampled with variable time steps
thereby fixing the trace at important features. Examples of
such features can be the r-wave and the t-wave. If the fixa-
tion with two features does not result into a close fit of all
traces, additional features can be introduced as fixed-points.
The resampling results into a much better covering of the
traces and hence an better aligning of the associated images
too, as can be seen in Figure 4. The process of ECG normal-
ization will be described elsewhere.

After the described procedure a four-dimensional dataset
of the heart has been constructed, which is then stored into a
special data format we call the ETS format. ETS is an abbre-
viation for <E>cg <T>agged <S>equence. There are differ-
ent blocks each representing a 3D data set of the entire heart.
The 25 to 50 blocks in total represent the beating heart, i.e.
the heart cycle has been split into 25 to 50 parts. The num-
ber of parts can be chosen more or less arbitrary but one has
to keep in mind, that the more time steps are introduced the
less image information is available for every step. The cho-
sen interval respects the common image repetition standard
in video processing, which is 25 images per second with re-
spect to a range of 60 to 120 bpm heart frequency during the
examination.

However, splitting the stream information into several 3D
data sets at different time intervals introduces gaps into each
3D data set. Assuming a time resolution of 25 blocks per
cycle and a very smooth acquisition with constant angu-
lar velocity, it is obvious that splitting the data stream into
25 different parts results in a reduction per part down to
4% of the original amount of data. Fortunately, the data is
spread almost homogenous over the spatial domain, so that
a reconstruction is still possible. The complexity of the pre-
processing step is O(n) where n is the number of B-scans.

It should be mentioned explicitely that until now the orig-
inal ultrasound image data is still unaltered. There has been
neither scan conversion nor interpolation of the grey val-
ues obtained during the acquisition. This fact is important
in contrast to other acquisition procedures, which degrade
the information first by scan converting them to the carte-
sian domain and second due to the 24-Bit video grabbing of
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Figure 5: Parametric situation for the interpolation of a
single data point.

8-Bit data. Applying the scan conversion too early implies a
significant loss in resolution especially near the scan tip. The
unavoidable quantization of the 8-Bit grey level data over 24
bits of colour data during the frame grabbing on a colour
video device again introduces unnecessary data degradation.

3.2. Interpolation of B-scans

From the pre-processed sequence of B-scans, an interpolat-
ing trivariate scalar field needs to be constructed within the
smallest bounding box of the scans. As a first approach we
use a uniform hexahedral grid from which the scalar field
can be evaluated by trilinear interpolation. An adaptive ap-
proach is described in the next section.

In principle, for every voxel the two adjacent B-scans are
determined. If the planes of these scans are not parallel, they
can be mapped into each other by a rotation around their
intersection line. Under the assumption of rotational move-
ment, a circular arc around the intersection line is the op-
timal interpolating curve. Even in the case of freehand ul-
trasound, this circular arc is a good approximation for the
normal movement of the scanning plane, since it is a smooth
curve orthogonally intersecting both scan planes and the vir-
tual reconstruction plane. Figure 5 gives an impression of

Figure 6: Filling spaces between slices by interpolation
along spherical arcs. (l) small, (m) medium, and (c) large
angles between sucessive slices.

the parametric situation for the interpolation of a single data
point. We note that only the normal component of an oblique
movement is relevant for interpolation purposes. Tangential
movement does not change the location of features in the
volume (despite of their translation on the B-scan image).

The greyscale value cv of the voxel’s midpoint v is deter-
mined from the data located at the intersection points a and
b of the circular arc with the two B-scan planes, weighted by
their distance (da, db respectively) from v:

cv = db
da+db

ca + da
da+db

cb,

da = ||a−v||,
db = ||b−v||.

(3)

In the case of a small rotation angle or parallel scanning
planes, we choose a and b to be the closest points with re-
spect to v on the scanning planes. For bigger angles we offer
the choice between the approximation as in (3) and the re-
spective arclengths:

da = ||v−n|| · arccos( v−n
||v−n|| ·

→
x a),

db = ||v−n|| · arccos( v−n
||v−n|| ·

→
x b),

(4)

choosing
→
x a and

→
x b as the directions of insonification and

n as the nadir point, i.e. the centre of the interpolation circle.

In the case that a or b is located outside the B-scan image
on the plane, zero (black color) is used for ca or cb, respec-
tively. This way, the grey intensity is faded out at the bound-
aries of the scanned region. An example for this interpolation
scheme is depicted in Figure 6.

If the two scans in scope are parallel, the circular arc de-
generates to a line that is the radius becomes infinite. In
this case the interpolation becomes a simple linear interpola-
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tion between the scans, based on the bilinearly sampled scan
data.

It should be mentioned, that the points a and b are defined
in cartesian co-ordinates, whereas the image data is given
in the polar domain. In order to reference the image data
an appropriate transformation is necessary. Aliasing arte-
facts in this process are minimized by bilinear interpolation
of four neighbouring data values in the image data domain.
This way the complete amount of data can be used, which is
especially advantageous if the mean scan orientation is not
parallel to one of the coordinate axes of the reconstruction
volume.

The naive algorithm for a uniform grid works as follows:
For every consecutive pair of B-scans, all rows of the volume
are traversed and the greyscale values of voxel centres lo-
cated between these scans are computed, as described above.
To avoid traversing the entire volume for every pair of slices,
we intersect for each row of voxels a horizontal line with the
bounding volume of the scanning planes. This way, only the
voxels between the two intersection points need to be tra-
versed. Additionally we use a frame cache, which stores the
indices of those slices which are currently active. Because
we linearly traverse the volume, a direct hit occurs in most
cases. If no hit is encountered we can identify the new active
slices in O(1) time, since we simply have to test the next
left and right frames. Even if we traversed the bounding vol-
ume the new slices can be calculated in constant time. If the
traversal is perpendicular to the scan planes, the new start in-
dex will equal the old one. In case of a parallel traversal, we
again have to check the two adjacent slices, only. The time
complexity of this algorithm is O(m + n) based on n voxels
and m B-scans.

3.3. Adaptive Mesh Refinement

In most cases, the B-scans are not uniformly distributed
within the volume. If there are large gaps between B-scans,
the reliability of the data computed in these regions is lower
than in a close neighbourhood of the scans. Based on this
fact it is not necessary to interpolate a grey value for every
single voxel, but the resolution of the volume can be locally
adapted to save computation time. Additionally, the volume
resolution then exposes the local data accuracy to the user,
for example when visualizing the data set by volume render-
ing techniques. These facts lead to AMR methods.

AMR originates from the solution of partial differential
equations, representing simulation data on a hierarchy of
grids adapted to the geometric complexity. AMR data is de-
fined on a regular grid with dyadic refinement in regions of
high complexity.

To embed AMR into the algorithm we use an octree,
which is built up as follows: starting with the entire bounding
box of the volume as seed voxel, we subdivide every voxel

Figure 7: Excerpt of a MIP stack. Top: original frame, mid-
dle: frame at level 4, bottom: frame at level 7

into eight subvoxels, until one of the following conditions is
satisfied:

• The fine target resolution is reached.
• There is no B-scan slice located within a distance of r

from the voxel centre.

For the radius r we choose the diameter of the current voxel.
The target resolution is chosen in advance by minimum
voxel size. It should be somewhat finer than the resolution
of B-scans to avoid aliasing artefacts.

Aliasing may occur in coarse regions of the mesh, where
consecutive voxels are interpolated from a sequence of
points on a particular B-scan, whose distance is greater than
one pixel. To avoid aliasing, we employ mip-mapping (mul-
tum in parvo mapping), a filtering method used for texture
mapping. Therefore, we compute a hierarchy of greyscale
images for every B-scan by averaging four pixels into one,
each time the image is coarsened (this corresponds to the
low-pass filtering performed by the Haar wavelet). When
sampling the B-scan for interpolation purposes, its resolu-
tion is adapted to the height in the octree where the cor-
responding voxel is located. Figure 7 shows an ultrasound
frame at different MIP levels.

Of course there is no need to implement the MIP levels
corresponding to the Haar wavelet transform, but also the
filtering with appropriate Gaussian kernels is possible. This
way the localization of the image content is spread much
more uniform in contrast to the blocky appearance of the
averaging process. In Figure 7 the upper halves of the middle
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# slices time [sec] # interpolations

86 13 2322785
10 8 1899731
4 8 999831

Table 1: Processing times. Shown are the number of slices,
the processing time itself and the number of interpolations
necessary to reconstruct the volume. The image resolution
of the original slices is 420×144 pixels.

and bottom images were calculated using the simple mean,
whereas the lower halves were calculated using a Gaussian
as low-pass filter.

In summary, our hierarchical algorithm works as follows:
First, the octree is refined until the leaf voxels are reached.
For every leaf voxel, the data corresponding to the voxel
centre is interpolated as described in 3.2. The output of our
method is a grid hierarchy with data associated to every grid
cell. If no AMR-based rendering method is available, the oc-
tree can be further refined to the target resolution where the
sub-voxels inherit the data values of their parent voxels.

Due to the different resolutions in the voxel hierarchy, it
is not straightforward to efficiently locate the neighbouring
B-scans for every voxel centre. When traversing the tree (for
example in pre-order), we observe that large sequences of
consecutive voxels are located between the same B-scans.
Hence, we first examine the sampling planes used for the
previous voxel before starting a linear search determining
the B-scans to be used for interpolation.

Caused by the huge amount of interpolations it appears
advantageous to use the special configuration of the scans,
i.e. their spatial arrangement. Using this information it is
possible to reduce the number of scans to be searched by
an average of 50% simply by testing the signed distance.
Within the tree we store an additional hint during construc-
tion, namely the index of the frame which caused the respec-
tive splitting.

4. Results

Using the presented method it is possible to construct high
resolution four dimensional ultrasound datasets within short
time. The method is robust and works for all types of acqui-
sition, i.e. it is not limited to fan acquisition. Especially cone
acquisition is supported, where we expect a big impact of
the hierarchical method and a perfectly suited interpolation
path. Nevertheless the method works for parallel slices, as
well. Table 1 gives an impression of the calculation times.
The computer used was a standard PC with less than 2 GHz
clock frequency.

By applying the adaptive refinement mesh approach the

# slices standard octree
|εn| |εn|/N[%] |εo| |εo|/N[%]

44 2567 0.379 13428 2.107
30 3541 0.523 13538 2.124
16 8936 1.320 14923 2.232
10 11007 1.634 14884 2.235
4 17757 2.686 19480 2.980

Table 2: Errors of reduced data sets. The absolute and rela-
tive errors of the standard and the octree based method are
summarized. The resolution of the reconstruction was 5123

voxels.

procedure was not only speeded up significantly, but addi-
tionally this approach enables to check the quality of the re-
construction based on the resolution of the mesh. A compar-
ison between the completely calculated data and that from
the octree shows, that the errors introduced are negligible si-
multaneously to a significant reduction in calculation time
as can be seen from Tables 1 and 2. Figure 8 gives a visual
impression of the error.

Table 2 shows the errors produced due to slice reduction
and hierarchical implementation. |ε∗| indicates the absolute
error for the whole volume, |ε∗|/N indicates the mean er-
ror per voxel. The subscripts indicate the normal and octree
method respectively. The errors were calculated using

|ε∗| =
√

∑(Bi −Ti)2 (5)

where Bi are the voxels of the original data set we test
against and Ti are the voxels from the test data set. Here
we clearly state that only those portions of the volumes are
tested, where new data was inserted. We did not incorporate

any blank voxels, so that |ε∗|
|ε∗|/N is the defacto number of

interpolated voxels. Of course the octree voxels from lower
levels are counted with their respective multiplicity.

The volumes are compared against a volume which was
calculated at full cost with all available frames using the
interpolation method in scope. Although the octree intro-
duces a relative high error when used with dense data, the
advantage becomes obvious when the frame number drops
down below 20 frames per volume. Here the time sav-
ings are tremendous, whereas the error difference keeps low
(0.3−0.9%).

Table 3 shows the impact of the octree. Even if the slice
density is very high, the amount of interpolations is reduced
significantly. Summing over all levels shows, that only 20%
of all possible leaves are used, including those from higher
levels.

It should be mentioned at this place, that the octree orga-
nization overhead might outperform the time savings, espe-
cially if the ultrasound data is extremely dense. In this case
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Figure 8: Signed errors for different basis resolutions. From left to right, top to bottom the images show a volume rendering
of the data set based on 14 frames, a slice from the reconstructed data set based on 10 (4) frames, the same slice from the
reconstruction based on all 86 frames, and the difference images between the full resolution reconstruction and the 10 (4) slice
based reconstruction.

Level two slices all slices

0 100.00% 100.00%
1 100.00% 100.00%
2 100.00% 100.00%
3 80.86% 80.86%
4 56.93% 56.93%
5 37.52% 38.25%
6 22.37% 27.02%
7 12.23% 20.88%
8 6.38% 17.45%

Table 3: Octree statistics. Percentage of leafs per level. In
both cases less than 20% of all nodes are used in total.

the tree is filled to a high degree resulting in a significant
overhead due to the fact that our octree implementation is
not optimized.

Figure 9 gives an impression of the reconstructed volume.
The artefacts at the front side and the bottom of the vol-
ume stem from a slight gradient opacity mapping, which en-
hances the voxel structure at the outer borders. The interior
of the volume does not show any such artefacts. Figure 10
shows the same situation for a reconstruction based on only
two of the original slices. Here the octree structure can be
seen very clearly due to the rendering method. Nevertheless
the reconstruction is of quite high fidelity. The artefacts at
the boundaries of the volume again stem from the gradient
opacity mapping this time visualizing the different resolu-
tions depending on the distance from the scans.

To get an impression on the temporal resolution Figure 11
shows a sequence of slices extracted from the reconstructed
volume. The temporal offset is 20% of a heart cycle, which
equals five images out of 25. The unusual form of the ex-
tracted scans is due to the fact that the data isn’t placed par-
allel to any of the coordinate axes, forcing a non symmetric
cross section.

This method has a slight drawback compared to the

c© The Eurographics Association 2004.

   328



Reis et al. / Adaptive Volume Construction from Ultrasound

Figure 9: Volume rendering of a reconstructed ultrasound
data set. The image shows the left ventricle in the long axis
view. (Artefacts at the front and bottom due to gradient opac-
ity mapping during visualization)

gated acquisition method. With gated acquisition the hart is
scanned slice by slice, always acquiring a whole heart cycle
for every slice. This way the temporal decomposition does
not reduce the spatial density of the data. With our method
a continuous sweep is performed, so that there is only a sin-
gle slice for every position and time step, i.e. there are no
two slices, which represent the same plane within the vol-
ume. Thus the temporal decomposition results into virtually
shifted data sets.

The shift depends on the frame acquisition frequency as
well as the angular velocity during the examination. The
greater the angular velocity and the smaller the frame ac-
quisition frequency the greater is the virtual shift. The shift
between two successive volumes is very small, so the user
might recognize a sort of flickering at most, but the situa-
tion gets much worse when we look at the jump between the
last and the first volume within a loop. Here the small shifts
added up into a significant jump. In Figure 11 the virtual
shift can be seen, when looking at the topmost point of the
data, which creeps with vertical direction. The difference be-

Figure 10: Volume rendering of a reconstructed ultrasound
data set at a very coarse level. The image clearly exhibits
the octree structure for a reconstruction based on two slices.
(Artefacts at the sides due to gradient opacity mapping dur-
ing visualization)

tween two successive slices is negligible, but the difference
between the last and the first slice is significant.

To solve the above problem we can use another kind of ac-
quisition procedure in addition to a more complex treatment
of the slices. The acquisition has to be altered in the way that
the probe is swept forward and then backward again. This
way the acquired data is of a quasi spatio-periodical form, so
that the spatial distance of two volumes is minimal when the
temporal distance is maximal. The problem with this kind of
data is, that the slices cannot be ordered in linear space-time
any more, so that the organization of the scans and e.g. the
calculation of the nearest surrounding scans with respect to
a given point becomes much more expensive.

5. Conclusions

We presented a highly efficient and robust volume recon-
struction method from freehand scanned echocardiographic
images. The method is suited for fan acquired data sets,
although it can be applied sucessfully to all kinds of data
configurations, especially the cone acquired ultrasound data.

c© The Eurographics Association 2004.
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Figure 11: Slice sequence of reconstructed volume with a temporal offset of 20% heart cycle.

The original data can be static or time variing. The recon-
structed data sets can be three- or fourdimensional, provid-
ing an extremely high spatial and temporal density.

The computation time can, in contrast to other techniques,
be termed as low thereby not burdening the precision. The
hierarchical approach offers a natural method to verify the
reliability of the recontructed data sets. Additionally, it of-
fers an appropriate data basis for subsequent algorithms like
those for data compression.

We explicitely state at this place that this work is con-
cerned with the reconstruction of the volumetric data sets,
only and not with the visualization of this data. In subsequent
works the aspect of visualizing can be treated in particular.
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