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Abstract 
Modern graphics cards support occlusion culling in hardware. We present a three pass algorithm, which 
makes efficient use of this feature. Our geo-scientific sub-surface data sets consist typically of a set of high 
resolution height fields, polygonal objects, and volume slices and lenses. For each height field, we compute a 
low and high resolution version in a pre-process and divide both into sets of corresponding tiles. For each 
tile and for the polygonal objects, the first rendering pass computes a z-buffer image using the low resolution 
tiles, the polygonal objects and the non-transparent volume objects. During the second pass, we render the 
same objects against the z-buffer of the first pass while submitting an occlusion query with each object. The 
third pass reads this occlusion information back from the graphics hardware and renders only those high 
resolution objects, for which the corresponding low resolution objects were not completely occluded. To 
avoid fill rate bottle necks, the first two passes may be rendered to a low resolution window. Our 
implementation shows frame rate improvements for all test cases while introducing only a small overhead 
and no or hardly noticeable errors. Our non-conservative approach does not require front to back sorting 
and it works for dynamic scenes. 
 
CR Categories and Subject Descriptors: I.3.3 [Picture/Image Generation]: Viewing Algorithms, Occlusion 
Culling; I.3.5 [Computational Geometry and Object Modeling]: Object Hierarchies; I.3.7 [Three-Dimensional 
Graphics and Realism]: Hidden Line/Surface Removal 
Additional Keywords: Visibility and occlusion culling, large-scale data visualization, geo-scientific data 

 
 
1. Introduction 

Occlusion culling is an important technique for handling 
large data sets with medium to high depth complexity. 
Recently, most graphics cards support occlusion queries, 
which return the number of visible pixels for a rendered 
object. This feature can be used to implement efficient 
occlusion culling techniques.  

In this paper, we present an occlusion culling approach 
adapted for sub-surface models in geo-scientific 
applications with a focus on data sets from the oil and gas 
industry. Our sub-surface models consist of a set of height 
fields, the so called horizons, a set of polygonal objects, the 
faults, and volume slices and volume lenses. Figure 1 
shows a typical data set from the Gullfaks oil field in the 
North Sea. Horizons are generally high resolution height 
fields, e.g. 500x500 points, and they are stacked on top of 
each other, which results in high depth complexity. Faults 
intersect these horizons partially. They are polygonal 
surfaces containing a few thousand to ten thousands of 
triangles. These polygonal objects live inside the 
volumetric seismic volume, the central data type for oil and 
gas exploration. Figure 1 shows a single seismic volume, 
which is the frame of reference for the horizon and fault 
surfaces. The seismic volume is visualized through slices 
and volume rendering techniques. Often only local details 
are visualized through volume lenses such as salt domes or 
former river beds. Geologists often insist on seeing all the 
detail of their horizon and fault surfaces and they do not 
trust mesh decimation techniques. 

F  
s  
s  
a  
a  
t  
i  
v  
p  
h

igure 1: A typical oil exploration data set containing
ubsurface structures, wells, and seismic slices. The
ubsurface model consists of two main structures: horizons
nd faults. Horizons separate two earth layers, and faults
re breaks in the rocks, where one side is moved relative to
he other. Horizons are typically horizontal while faults are
nclined. Three orthogonal slicing planes are used to
isualise the seismic volume. The inline-slice is typically
erpendicular to the main fault direction. The time-slice is
orizontal and the crossline-slice is perpendicular to both. 
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Our approach generates low and high resolution versions of 
the original horizon surfaces in a pre-process. Both 
versions are divided into sets of corresponding tiles (Figure 
2). For each fault there is also a low and high resolution 
version created. The high resolution versions may have the 
original resolution or might be slightly simplified. The low 
resolution objects may be decimated by a factor of 5 to 100 
depending on the actual data. We use a three pass rendering 
process to implement occlusion culling. The first rendering 
pass computes a z-buffer image using the low resolution 
tiles and polygonal objects and the non-transparent volume 
objects. During the second pass, we render the same 
objects against the z-buffer of the first pass while 
submitting an occlusion query with each object. The third 
pass reads this occlusion information back from the 
graphics hardware and renders only those high resolution 
objects, for which the corresponding low resolution objects 
were not completely occluded. To avoid fill rate bottle 
necks, the first two passes may be rendered to a low 
resolution window. 

2. Related Work 

The standard hierarchical occlusion culling algorithm [3] 
based on a hardware supported occlusion culling flag [5] is 
often combined with a basic view frustum culling 
algorithm [2]. The basic idea of these approaches is to 
hierarchically render the scene objects inside the viewing 
frustum in a front to back order. For each object, the 
bounding box is rendered first in an occlusion culling 
mode, which does not affect the frame buffer or z-buffer. 
The graphics hardware returns the number of visible pixels 
or simply a flag that states if any pixel of the bounding box 
is visible or not. If the bounding box is visible, the 
contained object is rendered or the subtree is treated in a 
similar fashion. The rendering has to happen in this 
interleaved way, first the bounding box and then the 
contained object. The problem with this interleaved 
approach is that the rendering pipeline is stalled every time 
the occlusion flag is read back from the graphics card, 
since the flag can only be computed after the bounding box 
is rasterized and the contained object can only be submitted 
to the graphics card if the flag is known. A consequence is 
that the graphics card achieves only a fraction of its 
maximal performance. In addition, rendering bounding 
boxes may affect the fill rate requirements significantly. 

We present an approach for occlusion culling in geo-
scientific environments, which is very easy to implement. 
Our approach makes efficient use of the occlusion culling 
support provided by modern graphics hardware. We do not 
require a particular rendering order and handle moving 
objects without special treatment. We have tested our 
approach on large geo-scientific data sets and show that it 
improves frame rates in all cases while introducing a very 
small overhead. There is also potential for extending this 
approach beyond the rendering of sub-surface structures. 
The main requirement is that the occlusion relationships of 
low resolution models are equivalent to those of the high 
resolution models. The main limitation of our approach is 
the size of the low resolution data set. If this data set 
exceeds a certain size, it will become impractical to pre-
render the low resolution models twice. Modern graphics 
cards are pushing this limit higher and higher. The pre-
rendering stage does not require texturing or lighting and 
we found that current graphics cards are capable to render 
more than 100 million such triangles per second on a 
standard PC. 

Conservative occlusion culling techniques do not introduce 
image errors. Approximate occlusion culling techniques 
[7][8][9] accept small image artifacts for speeding up the 
rendering process. Our approach belongs to this category 
since we use a low resolution model to determine the 
visibility of high resolution objects. 

Andujar et al. [1] combine level-of-detail rendering with 
occlusion culling. Their “hardly visible sets” (HVS)  are 
subsets of the potentially visible cells that contributes only 
a small number of pixels to the overall picture. Their 
rendering framework uses a user defined error bound to 
choose from a fixed set of level-of detail representations 
based on the HVS error estimates. El-Sana et al. [6] have 
presented a novel approach for incorporating occlusion 
culling within the framework of view-dependent rendering. 
Their idea is based on estimating an occlusion probability 
instead of computing exact visibility. This occlusion 
probability and the view-parameters determine the 
appropriate level of detail for each frame. Our approach 
uses a simple level-of-detail approach in combination with 
hardware supported occlusion flags, but has only been 
tested for geo-scientific data sets. 

Law and Tan [4] incorporate level of detail techniques with 
occlusion culling. In particular they suggest the use of 
simplified geometry as virtual occluders. We also use 
simplified geometry for our occlusion computations, but 
our approach is based on the idea that the occlusion 
relationships in between objects of the simplified model are 
similar to those of objects of the original model.  

3. Algorithm 

Our approach is divided into a pre-processing phase and 
the actual rendering phase, where data exploration and 
manipulation takes place. 

Figure 2: Horizons are divided into tiles. The light blue 
tile in the middle of the image is the high resolution ver-
sion. The other tiles around it are low resolution versions. 



3.1. Data preparation 

Horizon and fault surfaces are manually or partially 
automatically created polygonal data sets, which are based 
on seismic data, well log data (data measured down a drill 
hole), and other data sources. 

Horizon surfaces are height fields, which are represented as 
sets of triangles. From the original data, we generate a low 
resolution and a high resolution version. The high 
resolution version represents often the original data, 
sometimes the data is slightly reduced by a factor of two to 
three to achieve interactive frame rates. We use an adaptive 
simplification technique, such as Michael Garland’s qslim 
software [11], for the mesh reduction process. The low and 
high resolution version of each horizon are then divided 
into a set of equally sized tiles, e.g. 5x5 or 7x7 tiles. 

Faults are polygonal surfaces typically represented as 
triangle sets. Faults consist of a few thousand to a few ten 
thousand triangles. We use in general the original version 
of the faults as the high resolution representation. The low 
resolution is typically decimated by a factor 5 to 10. With 
our current implementation, we do not split faults into tiles, 
since they are typically much smaller than horizons, which 
makes it less worthwhile. Faults might occlude large parts 
of the horizon surfaces depending on the actual view point. 

Seismic volumes represent the subsurface structure. They 
are acquired by sending acoustic shock waves into the 
ground where they are reflected and refracted. The 
amplitudes and travel times of acoustic waves returning to 
the surface are measured and processed into regular three-
dimensional scalar grids. These volumes vary widely in 
size. Small volumes are in the range of tens of megabytes, 
large volumes may reach into the hundreds of gigabytes. 
We use Octreemizer[10], our hierarchical volume roaming 
toolkit, for rendering slices and volume lenses of such large 
data sets. Octreemizer allows roaming through very large 
volumes using a hierarchical two-level paging approach, 
which pages volume bricks from the hard disk into main 
memory and from main memory into texture memory. 
Slices through the seismic volume often occlude a 
substantial part of the horizons or faults, but they are rarely 
occluded. Volume lenses extend typically only across a 
small part of the total volume and show local features. 
They consist of a stack of slices, which is rendered in back 
to front order. They are typically rendered in a semi-
transparent mode and do not occlude other objects, but they 
might be occluded – at least partially. Our current 
implementation does not test for occlusion of volume 
rendering lenses, but uses volume slices as potential 
occluders. 

3.2 Three pass algorithm 

We implemented a three pass algorithm for rendering our 
data sets with occlusion culling. During the pre-processing 
step, we generated low and high resolution versions for 
each tile of each horizon and for each fault. The low 
resolution versions are used for the first two rendering 
passes – the pre-rendering stage - and the high resolution 
versions are used for the third rendering pass. In pseudo 
code, the three rendering loops look like this: 

/* first pass */ 
turn lighting, shading, and texturing off; 
clear z-buffer; 
disable framebuffer_writes; // no need to write 
for each horizon h          // to the framebuffer 
  for each tile t of h 
    render low res version of tile t; 

for each fault f 
  render low res version of fault f; 

for each volume slice s 
  render slice s; 

/* second pass */ 
disable z-buffer writes; 
for each horizon h 
  for each tile t of h 
    begin occlusion query; 
      render low res version of tile t; 
    end occlusion query; 

for each fault f 
  begin occlusion query; 
    render low res version of fault f; 
  end occlusion query; 

/* third pass */ 
turn lighting, shading, and texturing on; 
enable z-buffer and frame buffer writes; 
clear frame buffer and z-buffer; 
for each horizon h 
  for each tile t of h 
    read back occlusion result for low res t; 
    if (low res t was visible) 
      render high res version of tile t; 

for each fault f 
  read back occlusion result for low res f; 
  if (low res fault f was visible)  
    render high res version of fault f; 

for each volume slice s 
  render slice s; 

During the first rendering pass, all the objects potentially 
occluding other objects are rendered. These are the non-
transparent horizons, faults, and volume slices. Transparent 
objects would be excluded from this pass. The first pass 
does not need to render to the frame buffer, we are only 
interested in a z-buffer image. We also turn lighting, 
texturing, and shading off for the first pass. If the rendering 
process becomes fill limited, we could render the first and 
second pass to a lower resolution view port than the final 
render pass. 

For the second pass, we need to explain how the occlusion 
query extension for NVIDIA and ATI graphics cards work. 
There are basically several different occlusion operations. 
For each occlusion query, the user needs to generate an 
occlusion ID, which is associated with the occlusion query. 
In OpenGL, an  occlusion query is started with a 
glBeginOcclusionQueryNV(ID), then the objects are 
rendered, and the occlusion query is closed with 
glEndOcclusionQuery(). The rendering in between the 
glBeginOcclusionQueryNV and glEndOcclusionQuery 
does not affect the frame buffer or the z-buffer. The 
occlusion ID is then used to check if the occlusion query 
results are ready and to fetch the occlusion results. The 
occlusion results are therefore computed completely 
asynchronously to the host’s rendering process. The 
occlusion results could either be the number of visible 
pixels of an object or just a flag. The occlusion do not need 
to be fetched right after the occlusion query as it was the 



case with the original HP occlusion query 
implementation[5]. In fact, fetching the occlusion results 
right after submitting an occlusion query stalls the graphics 
pipeline, since the submitted object needs to be rasterized 
before the occlusion results can be computed.  

Our second pass submits an occlusion query for each low 
resolution object we are interested in. The occlusion tests 
are performed against the z-buffer from the first pass, 
which results in completely correct occlusion information 
for the low resolution objects. In our example, we do not 
submit occlusion queries for the volume slices, since they 
contain typically very few polygons. Transparent objects 
need to be considered in this pass, since they can not 
occlude, but may be occluded. 

For the third pass, we switch texturing, lighting, and 
shading back on. During this pass we fetch the occlusion 
query results for each low resolution object just before the 
corresponding high resolution object is about to be 
rendered. As the result of the occlusion query we get the 
number of visible pixels of the low resolution object. The 
high resolution object is rendered only if there are more 
pixels visible than a certain threshold. During the third 
pass, we also need to render all the objects that are not 
considered during the second pass. Transparent objects can 
be rendered last in a back to front order using occlusion 
query results from pass two. 

4. Results and discussion 

We implemented our occlusion culling approach in C/C++ 
under Windows XP using the OpenGL graphics library. 
Our implementation works for current NVIDIA and ATI 
cards that support the GL_NV_occlusion_query extension.  

Our implementation was evaluated on a Dell Precision 650 
dual processor PC with 2GB of main memory running 
Windows XP. We compared two graphics cards, an 
NVIDIA Quadro FX2000 and an ATI FireGL X1. Both 
cards as well as the main board support AGP 8x. The 
NVIDIA card has 128MB and the ATI card 256MB of 
unified video and texture memory. For our tests, we used 
the NVIDIA 43.45 drivers, for the ATI card we used the 
10.30 drivers. 

Our test data set (see figure 1) consists of eleven horizons 
and sixteen faults with a total of 3.88 million triangles. The 
volume data set has a resolution of 525x475x751 voxels. 
For the low resolution versions of the faults and horizons 
we used a 1:100 decimated version. For the simplification 
process, we used Michael Garland’s qslim software version 
2.0. For each polygonal object, we generated triangle strips 
and used display lists for faster rendering. The data set was 
illuminated with two positional light sources. 

Figure 3 shows some results for two representative view 
points. We compare rendering the scenario with a different 
number of tiles per horizon on the aforementioned graphics 
cards. The draw time corresponds  to the rendering time for 
the third pass and the cull time is the sum of the rendering 
times for pass one and two. Rendering time reduction is 
basically proportional to the number of occluded triangles 
in relation to the total number of triangles. The overhead 

for the first two rendering passes is in most of our cases 
less than twenty percent, but increases if smaller portions 
of the scene are visible. This is mostly due to the highly 
decimated horizon surfaces, but also due to the fact, that 
unlit and untextured triangle strips can be rendered at a rate 
of more than 100 million triangles per second on both 
graphics cards. Rendering the high resolution objects lit 
with two positional light sources can be rendered at around 
30 million triangles per second, with one directional light 
source it goes up to 55 million triangles per second. Our 
occlusion culling approach does not impact the overall 
rendering performance, since we avoid stalling the graphics 
pipeline for the occlusion queries. 

The NVIDIA and ATI cards show very similar behavior 
with respect to the dependency on the number of tiles used. 
Both graphics cards are performing roughly equal. The 
scale on the y-axis for the bar charts in figure 3 is 
quadratic. For most cases the optimal speedup is reached at 
around 10x10 tiles per horizon surface. If the number is 
lower, the occlusion culling granularity is too coarse. If the 
number is higher, the triangle strips for the low resolution 
versions get shorter and shorter, which decreases the 
rendering efficiency during the pre-rendering stage.  

The approach does not require a static environment. Our 
application scenario requires that objects are sometimes 
moved around or removed. Fault positions need to be 
slightly adjusted or a horizon is moved out of the way to 
see occluded areas. 

Rendering times for the shown data set are decreased by 30 
to 80 percent depending on the actual view point and the 
position of the volume slices. We cannot guarantee a 
certain frame rate, but our approach is always faster than 
rendering without occlusion culling. We also tested diffe-
rent resolutions – up to 2048x1536 – without influence on 
the results. This clearly shows that we are geometry limited 
rather than fill limited. Even the size of the pre-rendering 
viewport did not have any influence on the frame rates. 

Our technique is non-conservative and might incorrectly 
classify objects as visible or invisible. There are two main 
sources for incorrect classification: the pixel threshold and 
the use of the simplified model for determining occlusion. 

The occlusion queries return the number of visible pixels 
for each object. A pixel threshold is used to classify barely 
visible objects as invisible. This threshold depends directly 
on the size of the pre-rendering view port, which might be 
smaller than the viewport for the final rendering pass. We 
have experimented with various thresholds in a 1280x1024 
resolution window and found that a 10 pixel threshold 
results in hardly visible errors for our test scenario. Figure 
4 shows the same view onto the high resolution data for 
pixel thresholds of 0 and 50 pixels. Even for 50 pixels it is 
hard to spot the difference. Higher pixel thresholds result 
typically in significant speed ups, since less objects are 
rendered. For the 50 pixel threshold we achieve a rendering 
time reduction of nearly 50% compared to the 0 pixel 
threshold for this particular case. We use a 10 pixel 
threshold as a default, which does not result in popping 
artifacts or obviously missing tiles for our example. 



The use of simplified models for determining the visibility 
of an object may introduce severe errors, since in general 
the simplification does not preserve the occlusion 
relationships of the original model. However, we found 
that for our case the approach was rather robust. Figure 5 
shows an example for simplification by a factor of 25 and 
400. The original model consists of 3.8 million polygons. 
For factors of 25 and 100 (not shown), it is hard to find any 
errors. The number of rendered triangles in the third pass 
differs only by 1 percent, which explains the visual 
similarity. For a simplification factor of 400, some objects 
are clearly missing. The effect of the simplification factor 
depends strongly on the type of data. In addition, different 
simplification algorithms may preserve occlusion 
relationships between the simplified and the original model 
to a different degree. 

5. Conclusions and future work 

We presented an non-conservative occlusion culling 
approach for geo-scientific sub-surface data sets, which is 
easy to implement. We make efficient use of occlusion 
culling support provided by modern graphics hardware. 
Our technique does not require a particular rendering order 
and works for dynamic scenes as well. We have tested our 
approach on large geo-scientific data sets and show that it 
improves frame rates in all cases while introducing only a 
very small overhead in most cases. The main disadvantage 
of this approach is that it needs to pre-render the whole 
scene in low resolution during the first two passes. This 
approach will not scale beyond a certain depth complexity 
and it will not handle very large scenes beyond tens of 
millions of triangles.  

Currently, we use only two levels of detail – a coarse level 
and a fine level. Using more levels of detail or even 
adaptive level of detail techniques for the final pass as well 
as for the pre-rendering stage could improve the scalability 
of the whole approach significantly. Pre-rendering 
correctness could be traded for pre-rendering time 
consumption. From another point of view it is a 
challenging research topic to develop occlusion 
relationship preserving mesh simplification algorithms and 
measures that predict potential occlusion errors. 

Our current implementation is not yet perfectly integrated 
with Octreemizer, our volume roaming tool kit. The 
volume bricks for occluded parts of volume lenses or slices 
are currently still downloaded into the graphics card and 
rendered. We plan to integrate our occlusion culling 
approach tightly with Octreemizer. The octree structure of 
the volume representation integrates perfectly with our 
occlusion culling approach. 

We have only tested our approach in the context of sub 
surface data. We plan to look at other application fields 
trying to extend the applicability of this work. Potential 
application domains include game engines and CAD data 
visualization. 
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Figure 4: The effect of the pixel threshold (0 pixels on top 
and 50 pixels on bottom) on the final image. For a 
threshold of 0 pixels 940k triangles are rendered, and for 
50 pixels 476k. Some of the errors are marked. In these 
areas there are typically complete horizon tiles missing in 
the lower image. The colors are just arbitrarily chosen such 
that the horizon surface can be visually differentiated. 

Figure 5: The effect of different simplification factors (25 
on top and 400 on bottom) on the final image. For a 
simplification factor of 25 there are 1388k triangles 
rendered for the final image, and for a factor of 400 there 
are 1280k triangles rendered. The pictures are enlarged 
versions of the critical areas and some errors are marked, 
where horizon tiles are missing. 
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Figure 3: Two representative views onto the data. Both graphics cards behave pretty similar overall.  


