
Occlusion Culling for Sub-Surface Models
in Geo-Scientific Applications

John Plate1 Anselm Grundhoefer2 Benjamin Schmidt2 Bernd Froehlich2

1Fraunhofer IMK St. Augustin 2Bauhaus-Universitaet Weimar

Abstract
Modern graphics cards support occlusion culling in hardware. We present a three pass algorithm, which
makes efficient use of this feature. Our geo-scientific sub-surface data sets consist typically of a set of high
resolution height fields, polygonal objects, and volume slices and lenses. For each height field, we compute a
low and high resolution version in a pre-process and divide both into sets of corresponding tiles. For each
tile and for the polygonal objects, the first rendering pass computes a z-buffer image using the low resolution
tiles, the polygonal objects and the non-transparent volume objects. During the second pass, we render the
same objects against the z-buffer of the first pass while submitting an occlusion query with each object. The
third pass reads this occlusion information back from the graphics hardware and renders only those high
resolution objects, for which the corresponding low resolution objects were not completely occluded. To
avoid fill rate bottle necks, the first two passes may be rendered to a low resolution window. Our
implementation shows frame rate improvements for all test cases while introducing only a small overhead
and no or hardly noticeable errors. Our non-conservative approach does not require front to back sorting
and it works for dynamic scenes.

CR Categories and Subject Descriptors: I.3.3 [Picture/Image Generation]: Viewing Algorithms, Occlusion
Culling; I.3.5 [Computational Geometry and Object Modeling]: Object Hierarchies; I.3.7 [Three-Dimensional
Graphics and Realism]: Hidden Line/Surface Removal
Additional Keywords: Visibility and occlusion culling, large-scale data visualization, geo-scientific data

1. Introduction

Occlusion culling is an important technique for handling
large data sets with medium to high depth complexity.
Recently, most graphics cards support occlusion queries,
which return the number of visible pixels for a rendered
object. This feature can be used to implement efficient
occlusion culling techniques.

In this paper, we present an occlusion culling approach
adapted for sub-surface models in geo-scientific
applications with a focus on data sets from the oil and gas
industry. Our sub-surface models consist of a set of height
fields, the so called horizons, a set of polygonal objects, the
faults, and volume slices and volume lenses. Figure 1
shows a typical data set from the Gullfaks oil field in the
North Sea. Horizons are generally high resolution height
fields, e.g. 500x500 points, and they are stacked on top of
each other, which results in high depth complexity. Faults
intersect these horizons partially. They are polygonal
surfaces containing a few thousand to ten thousands of
triangles. These polygonal objects live inside the
volumetric seismic volume, the central data type for oil and
gas exploration. Figure 1 shows a single seismic volume,
which is the frame of reference for the horizon and fault
surfaces. The seismic volume is visualized through slices
and volume rendering techniques. Often only local details
are visualized through volume lenses such as salt domes or
former river beds. Geologists often insist on seeing all the
detail of their horizon and fault surfaces and they do not
trust mesh decimation techniques.

F
s
s
a
a
t
i
v
p
h

igure 1: A typical oil exploration data set containing
ubsurface structures, wells, and seismic slices. The
ubsurface model consists of two main structures: horizons
nd faults. Horizons separate two earth layers, and faults
re breaks in the rocks, where one side is moved relative to
he other. Horizons are typically horizontal while faults are
nclined. Three orthogonal slicing planes are used to
isualise the seismic volume. The inline-slice is typically
erpendicular to the main fault direction. The time-slice is
orizontal and the crossline-slice is perpendicular to both.

http://www.eg.org
http://diglib.eg.org

Our approach generates low and high resolution versions of
the original horizon surfaces in a pre-process. Both
versions are divided into sets of corresponding tiles (Figure
2). For each fault there is also a low and high resolution
version created. The high resolution versions may have the
original resolution or might be slightly simplified. The low
resolution objects may be decimated by a factor of 5 to 100
depending on the actual data. We use a three pass rendering
process to implement occlusion culling. The first rendering
pass computes a z-buffer image using the low resolution
tiles and polygonal objects and the non-transparent volume
objects. During the second pass, we render the same
objects against the z-buffer of the first pass while
submitting an occlusion query with each object. The third
pass reads this occlusion information back from the
graphics hardware and renders only those high resolution
objects, for which the corresponding low resolution objects
were not completely occluded. To avoid fill rate bottle
necks, the first two passes may be rendered to a low
resolution window.

2. Related Work

The standard hierarchical occlusion culling algorithm [3]
based on a hardware supported occlusion culling flag [5] is
often combined with a basic view frustum culling
algorithm [2]. The basic idea of these approaches is to
hierarchically render the scene objects inside the viewing
frustum in a front to back order. For each object, the
bounding box is rendered first in an occlusion culling
mode, which does not affect the frame buffer or z-buffer.
The graphics hardware returns the number of visible pixels
or simply a flag that states if any pixel of the bounding box
is visible or not. If the bounding box is visible, the
contained object is rendered or the subtree is treated in a
similar fashion. The rendering has to happen in this
interleaved way, first the bounding box and then the
contained object. The problem with this interleaved
approach is that the rendering pipeline is stalled every time
the occlusion flag is read back from the graphics card,
since the flag can only be computed after the bounding box
is rasterized and the contained object can only be submitted
to the graphics card if the flag is known. A consequence is
that the graphics card achieves only a fraction of its
maximal performance. In addition, rendering bounding
boxes may affect the fill rate requirements significantly.

We present an approach for occlusion culling in geo-
scientific environments, which is very easy to implement.
Our approach makes efficient use of the occlusion culling
support provided by modern graphics hardware. We do not
require a particular rendering order and handle moving
objects without special treatment. We have tested our
approach on large geo-scientific data sets and show that it
improves frame rates in all cases while introducing a very
small overhead. There is also potential for extending this
approach beyond the rendering of sub-surface structures.
The main requirement is that the occlusion relationships of
low resolution models are equivalent to those of the high
resolution models. The main limitation of our approach is
the size of the low resolution data set. If this data set
exceeds a certain size, it will become impractical to pre-
render the low resolution models twice. Modern graphics
cards are pushing this limit higher and higher. The pre-
rendering stage does not require texturing or lighting and
we found that current graphics cards are capable to render
more than 100 million such triangles per second on a
standard PC.

Conservative occlusion culling techniques do not introduce
image errors. Approximate occlusion culling techniques
[7][8][9] accept small image artifacts for speeding up the
rendering process. Our approach belongs to this category
since we use a low resolution model to determine the
visibility of high resolution objects.

Andujar et al. [1] combine level-of-detail rendering with
occlusion culling. Their “hardly visible sets” (HVS) are
subsets of the potentially visible cells that contributes only
a small number of pixels to the overall picture. Their
rendering framework uses a user defined error bound to
choose from a fixed set of level-of detail representations
based on the HVS error estimates. El-Sana et al. [6] have
presented a novel approach for incorporating occlusion
culling within the framework of view-dependent rendering.
Their idea is based on estimating an occlusion probability
instead of computing exact visibility. This occlusion
probability and the view-parameters determine the
appropriate level of detail for each frame. Our approach
uses a simple level-of-detail approach in combination with
hardware supported occlusion flags, but has only been
tested for geo-scientific data sets.

Law and Tan [4] incorporate level of detail techniques with
occlusion culling. In particular they suggest the use of
simplified geometry as virtual occluders. We also use
simplified geometry for our occlusion computations, but
our approach is based on the idea that the occlusion
relationships in between objects of the simplified model are
similar to those of objects of the original model.

3. Algorithm

Our approach is divided into a pre-processing phase and
the actual rendering phase, where data exploration and
manipulation takes place.

Figure 2: Horizons are divided into tiles. The light blue
tile in the middle of the image is the high resolution ver-
sion. The other tiles around it are low resolution versions.

3.1. Data preparation

Horizon and fault surfaces are manually or partially
automatically created polygonal data sets, which are based
on seismic data, well log data (data measured down a drill
hole), and other data sources.

Horizon surfaces are height fields, which are represented as
sets of triangles. From the original data, we generate a low
resolution and a high resolution version. The high
resolution version represents often the original data,
sometimes the data is slightly reduced by a factor of two to
three to achieve interactive frame rates. We use an adaptive
simplification technique, such as Michael Garland’s qslim
software [11], for the mesh reduction process. The low and
high resolution version of each horizon are then divided
into a set of equally sized tiles, e.g. 5x5 or 7x7 tiles.

Faults are polygonal surfaces typically represented as
triangle sets. Faults consist of a few thousand to a few ten
thousand triangles. We use in general the original version
of the faults as the high resolution representation. The low
resolution is typically decimated by a factor 5 to 10. With
our current implementation, we do not split faults into tiles,
since they are typically much smaller than horizons, which
makes it less worthwhile. Faults might occlude large parts
of the horizon surfaces depending on the actual view point.

Seismic volumes represent the subsurface structure. They
are acquired by sending acoustic shock waves into the
ground where they are reflected and refracted. The
amplitudes and travel times of acoustic waves returning to
the surface are measured and processed into regular three-
dimensional scalar grids. These volumes vary widely in
size. Small volumes are in the range of tens of megabytes,
large volumes may reach into the hundreds of gigabytes.
We use Octreemizer[10], our hierarchical volume roaming
toolkit, for rendering slices and volume lenses of such large
data sets. Octreemizer allows roaming through very large
volumes using a hierarchical two-level paging approach,
which pages volume bricks from the hard disk into main
memory and from main memory into texture memory.
Slices through the seismic volume often occlude a
substantial part of the horizons or faults, but they are rarely
occluded. Volume lenses extend typically only across a
small part of the total volume and show local features.
They consist of a stack of slices, which is rendered in back
to front order. They are typically rendered in a semi-
transparent mode and do not occlude other objects, but they
might be occluded – at least partially. Our current
implementation does not test for occlusion of volume
rendering lenses, but uses volume slices as potential
occluders.

3.2 Three pass algorithm

We implemented a three pass algorithm for rendering our
data sets with occlusion culling. During the pre-processing
step, we generated low and high resolution versions for
each tile of each horizon and for each fault. The low
resolution versions are used for the first two rendering
passes – the pre-rendering stage - and the high resolution
versions are used for the third rendering pass. In pseudo
code, the three rendering loops look like this:

/* first pass */
turn lighting, shading, and texturing off;
clear z-buffer;
disable framebuffer_writes; // no need to write
for each horizon h // to the framebuffer
 for each tile t of h
 render low res version of tile t;

for each fault f
 render low res version of fault f;

for each volume slice s
 render slice s;

/* second pass */
disable z-buffer writes;
for each horizon h
 for each tile t of h
 begin occlusion query;
 render low res version of tile t;
 end occlusion query;

for each fault f
 begin occlusion query;
 render low res version of fault f;
 end occlusion query;

/* third pass */
turn lighting, shading, and texturing on;
enable z-buffer and frame buffer writes;
clear frame buffer and z-buffer;
for each horizon h
 for each tile t of h
 read back occlusion result for low res t;
 if (low res t was visible)
 render high res version of tile t;

for each fault f
 read back occlusion result for low res f;
 if (low res fault f was visible)
 render high res version of fault f;

for each volume slice s
 render slice s;

During the first rendering pass, all the objects potentially
occluding other objects are rendered. These are the non-
transparent horizons, faults, and volume slices. Transparent
objects would be excluded from this pass. The first pass
does not need to render to the frame buffer, we are only
interested in a z-buffer image. We also turn lighting,
texturing, and shading off for the first pass. If the rendering
process becomes fill limited, we could render the first and
second pass to a lower resolution view port than the final
render pass.

For the second pass, we need to explain how the occlusion
query extension for NVIDIA and ATI graphics cards work.
There are basically several different occlusion operations.
For each occlusion query, the user needs to generate an
occlusion ID, which is associated with the occlusion query.
In OpenGL, an occlusion query is started with a
glBeginOcclusionQueryNV(ID), then the objects are
rendered, and the occlusion query is closed with
glEndOcclusionQuery(). The rendering in between the
glBeginOcclusionQueryNV and glEndOcclusionQuery
does not affect the frame buffer or the z-buffer. The
occlusion ID is then used to check if the occlusion query
results are ready and to fetch the occlusion results. The
occlusion results are therefore computed completely
asynchronously to the host’s rendering process. The
occlusion results could either be the number of visible
pixels of an object or just a flag. The occlusion do not need
to be fetched right after the occlusion query as it was the

case with the original HP occlusion query
implementation[5]. In fact, fetching the occlusion results
right after submitting an occlusion query stalls the graphics
pipeline, since the submitted object needs to be rasterized
before the occlusion results can be computed.

Our second pass submits an occlusion query for each low
resolution object we are interested in. The occlusion tests
are performed against the z-buffer from the first pass,
which results in completely correct occlusion information
for the low resolution objects. In our example, we do not
submit occlusion queries for the volume slices, since they
contain typically very few polygons. Transparent objects
need to be considered in this pass, since they can not
occlude, but may be occluded.

For the third pass, we switch texturing, lighting, and
shading back on. During this pass we fetch the occlusion
query results for each low resolution object just before the
corresponding high resolution object is about to be
rendered. As the result of the occlusion query we get the
number of visible pixels of the low resolution object. The
high resolution object is rendered only if there are more
pixels visible than a certain threshold. During the third
pass, we also need to render all the objects that are not
considered during the second pass. Transparent objects can
be rendered last in a back to front order using occlusion
query results from pass two.

4. Results and discussion

We implemented our occlusion culling approach in C/C++
under Windows XP using the OpenGL graphics library.
Our implementation works for current NVIDIA and ATI
cards that support the GL_NV_occlusion_query extension.

Our implementation was evaluated on a Dell Precision 650
dual processor PC with 2GB of main memory running
Windows XP. We compared two graphics cards, an
NVIDIA Quadro FX2000 and an ATI FireGL X1. Both
cards as well as the main board support AGP 8x. The
NVIDIA card has 128MB and the ATI card 256MB of
unified video and texture memory. For our tests, we used
the NVIDIA 43.45 drivers, for the ATI card we used the
10.30 drivers.

Our test data set (see figure 1) consists of eleven horizons
and sixteen faults with a total of 3.88 million triangles. The
volume data set has a resolution of 525x475x751 voxels.
For the low resolution versions of the faults and horizons
we used a 1:100 decimated version. For the simplification
process, we used Michael Garland’s qslim software version
2.0. For each polygonal object, we generated triangle strips
and used display lists for faster rendering. The data set was
illuminated with two positional light sources.

Figure 3 shows some results for two representative view
points. We compare rendering the scenario with a different
number of tiles per horizon on the aforementioned graphics
cards. The draw time corresponds to the rendering time for
the third pass and the cull time is the sum of the rendering
times for pass one and two. Rendering time reduction is
basically proportional to the number of occluded triangles
in relation to the total number of triangles. The overhead

for the first two rendering passes is in most of our cases
less than twenty percent, but increases if smaller portions
of the scene are visible. This is mostly due to the highly
decimated horizon surfaces, but also due to the fact, that
unlit and untextured triangle strips can be rendered at a rate
of more than 100 million triangles per second on both
graphics cards. Rendering the high resolution objects lit
with two positional light sources can be rendered at around
30 million triangles per second, with one directional light
source it goes up to 55 million triangles per second. Our
occlusion culling approach does not impact the overall
rendering performance, since we avoid stalling the graphics
pipeline for the occlusion queries.

The NVIDIA and ATI cards show very similar behavior
with respect to the dependency on the number of tiles used.
Both graphics cards are performing roughly equal. The
scale on the y-axis for the bar charts in figure 3 is
quadratic. For most cases the optimal speedup is reached at
around 10x10 tiles per horizon surface. If the number is
lower, the occlusion culling granularity is too coarse. If the
number is higher, the triangle strips for the low resolution
versions get shorter and shorter, which decreases the
rendering efficiency during the pre-rendering stage.

The approach does not require a static environment. Our
application scenario requires that objects are sometimes
moved around or removed. Fault positions need to be
slightly adjusted or a horizon is moved out of the way to
see occluded areas.

Rendering times for the shown data set are decreased by 30
to 80 percent depending on the actual view point and the
position of the volume slices. We cannot guarantee a
certain frame rate, but our approach is always faster than
rendering without occlusion culling. We also tested diffe-
rent resolutions – up to 2048x1536 – without influence on
the results. This clearly shows that we are geometry limited
rather than fill limited. Even the size of the pre-rendering
viewport did not have any influence on the frame rates.

Our technique is non-conservative and might incorrectly
classify objects as visible or invisible. There are two main
sources for incorrect classification: the pixel threshold and
the use of the simplified model for determining occlusion.

The occlusion queries return the number of visible pixels
for each object. A pixel threshold is used to classify barely
visible objects as invisible. This threshold depends directly
on the size of the pre-rendering view port, which might be
smaller than the viewport for the final rendering pass. We
have experimented with various thresholds in a 1280x1024
resolution window and found that a 10 pixel threshold
results in hardly visible errors for our test scenario. Figure
4 shows the same view onto the high resolution data for
pixel thresholds of 0 and 50 pixels. Even for 50 pixels it is
hard to spot the difference. Higher pixel thresholds result
typically in significant speed ups, since less objects are
rendered. For the 50 pixel threshold we achieve a rendering
time reduction of nearly 50% compared to the 0 pixel
threshold for this particular case. We use a 10 pixel
threshold as a default, which does not result in popping
artifacts or obviously missing tiles for our example.

The use of simplified models for determining the visibility
of an object may introduce severe errors, since in general
the simplification does not preserve the occlusion
relationships of the original model. However, we found
that for our case the approach was rather robust. Figure 5
shows an example for simplification by a factor of 25 and
400. The original model consists of 3.8 million polygons.
For factors of 25 and 100 (not shown), it is hard to find any
errors. The number of rendered triangles in the third pass
differs only by 1 percent, which explains the visual
similarity. For a simplification factor of 400, some objects
are clearly missing. The effect of the simplification factor
depends strongly on the type of data. In addition, different
simplification algorithms may preserve occlusion
relationships between the simplified and the original model
to a different degree.

5. Conclusions and future work

We presented an non-conservative occlusion culling
approach for geo-scientific sub-surface data sets, which is
easy to implement. We make efficient use of occlusion
culling support provided by modern graphics hardware.
Our technique does not require a particular rendering order
and works for dynamic scenes as well. We have tested our
approach on large geo-scientific data sets and show that it
improves frame rates in all cases while introducing only a
very small overhead in most cases. The main disadvantage
of this approach is that it needs to pre-render the whole
scene in low resolution during the first two passes. This
approach will not scale beyond a certain depth complexity
and it will not handle very large scenes beyond tens of
millions of triangles.

Currently, we use only two levels of detail – a coarse level
and a fine level. Using more levels of detail or even
adaptive level of detail techniques for the final pass as well
as for the pre-rendering stage could improve the scalability
of the whole approach significantly. Pre-rendering
correctness could be traded for pre-rendering time
consumption. From another point of view it is a
challenging research topic to develop occlusion
relationship preserving mesh simplification algorithms and
measures that predict potential occlusion errors.

Our current implementation is not yet perfectly integrated
with Octreemizer, our volume roaming tool kit. The
volume bricks for occluded parts of volume lenses or slices
are currently still downloaded into the graphics card and
rendered. We plan to integrate our occlusion culling
approach tightly with Octreemizer. The octree structure of
the volume representation integrates perfectly with our
occlusion culling approach.

We have only tested our approach in the context of sub
surface data. We plan to look at other application fields
trying to extend the applicability of this work. Potential
application domains include game engines and CAD data
visualization.

Acknowledgements

This work was supported by the VRGeo consortium –
www.vrgeo.com.

References

[1] C. Andujar, C. Saona-Vazquez, I. Navazo, and P.
Brunet. Integrating occlusion culling and levels of
detail through hardly-visible sets. Computer Graphics
Forum, 19(3): pp. 499–506, August 2000.

[2] D. Bartz, M. Meißner, and T. Huettner. OpenGL-
assisted Occlusion Culling of Large Polygonal
Models. Computers & Graphics, 23(5): pp. 667–679,
1999.

[3] D. Bartz and M. Skalej. VIVENDI - A Virtual
Ventricle Endoscopy System for Virtual Medicine. In
Proceedings of Symposium on Visualization, pp.
155–166, 1999.

[4] F. Law and T. Tan, Preprocessing Occlusion for Real-
Time Selective Refinement, In Proceedings of the
Symposium on Interactive 3D Graphics, pp. 47-54,
ACM SIGGRAPH 1999.

[5] N. Scott, D. Olsen, and E. Gannett. An Overview of
the VISUALIZE fx Graphics Accelerator Hardware.
The Hewlett-Packard Journal, (May), pp. 28–34,
1998.

[6] J. El-Sana, N. Sokolovsky, and C. Silva. Integrating
Occlusion Culling with View-Dependent Rendering.
IEEE Visualization 2001, pp. 371-378, 2001.

[7] J. T. Klosowski and C. T. Silva. Rendering on a
budget: A framework for time-critical rendering. In
IEEE Visualization 99, pp. 115–122, 1999.

[8] J. T. Klosowski and C. T. Silva. The prioritized-
layered projection algorithm for visible set
estimation. IEEE Transactions on Visualization and
Computer Graphics, 6(2): pp. 108–123, 2000.

[9] H. Zhang, D. Manocha, T. Hudson, and K. Hoff III.
Visibility culling using hierarchical occlusion maps.
In Proceedings of SIGGRAPH 1997, pp. 77–88,
August 1997.

[10] J. Plate, M. Tirtasana, R. Carmona and B. Fröhlich.
Octreemizer: a hierarchical approach for interactive
roaming through very large volumes. Proceedings of
the symposium on Data Visualisation 2002, pp. 53ff,
2002

[11] M. Garland and P. Heckbert. Surface Simplification
Using Quadric Error Metrics. PIVC. of ACM
SIGGRAPH, pp. 209-214, 1997.

http://www.vrgeo.com/

Figure 4: The effect of the pixel threshold (0 pixels on top
and 50 pixels on bottom) on the final image. For a
threshold of 0 pixels 940k triangles are rendered, and for
50 pixels 476k. Some of the errors are marked. In these
areas there are typically complete horizon tiles missing in
the lower image. The colors are just arbitrarily chosen such
that the horizon surface can be visually differentiated.

Figure 5: The effect of different simplification factors (25
on top and 400 on bottom) on the final image. For a
simplification factor of 25 there are 1388k triangles
rendered for the final image, and for a factor of 400 there
are 1280k triangles rendered. The pictures are enlarged
versions of the critical areas and some errors are marked,
where horizon tiles are missing.

0 20 40 60 80 100 120

no cull
5x5
6x6
7x7
8x8
9x9

10x10
11x11
12x12

nVidia Draw / ms
nVidia Cull / ms

0 20 40 60 80 100 120

no cull
5x5
6x6
7x7
8x8
9x9

10x10
11x11
12x12

ATI Draw / ms
ATI Cull / ms

0 20 40 60 80 100 120

no cull
5x5
6x6
7x7
8x8
9x9

10x10
11x11
12x12

nVidia Draw / ms
nVidia Cull / ms

0 20 40 60 80 100 120

no cull
5x5
6x6
7x7
8x8
9x9

10x10
11x11
12x12

ATI Draw / ms
ATI Cull / ms

Figure 3: Two representative views onto the data. Both graphics cards behave pretty similar overall.

