Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2004)

0. Deussen, C. Hansen, D.A. Keim, D. Saupe (Editors)

Software Landscapes:
Visualizing the Structure of Large Software Systems

Michael Balzer,1 Andreas Noack,2 Oliver Deussen,1 Claus Lewerentz>

! Department of Computer and Information Science, University of Konstanz, Germany
2 Software Systems Engineering Research Group, Technical University Cottbus, Germany

Abstract

Modern object-oriented programs are hierarchical systems with many thousands of interrelated subsystems.
Visualization helps developers to better comprehend these large and complex systems. This paper presents a
three-dimensional visualization technique that represents the static structure of object-oriented programs using
landscape-like distributions of three-dimensional objects on a two-dimensional plane. The familiar landscape
metaphor facilitates intuitive navigation and comprehension. The visual complexity is reduced by adjusting the
transparency of object surfaces to the distance of the viewpoint. An approach called Hierarchical Net is proposed
for a clear representation of the relationships between the subsystems.

Categories and Subject Descriptors (according to ACM CCS):

D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement; 1.3.8 [Computer Graphics]: Appli-

cations

1. Introduction

Software systems belong to the most complex artifacts. In
many domains of applications, object-oriented systems with
millions of lines of code and many thousands of interrelated
components are constructed. Typically, they go through a
long evolution process, and the expenses for maintenance
and reengineering by far surpass the cost of the original de-
sign and implementation. Visualization can serve in main-
tenance and reengineering to comprehend existing software
more efficiently and accurately.

Software visualization, as a subfield of information visu-
alization, is the use of various forms of imagery to facilitate
the understanding of software systems. There are many visu-
alization approaches showing different aspects of programs,
like the static structure, the runtime behavior, the evolution,
or the development process [Vis02, Sof03]. In this work we
focus on the visualization of the static structure, an aspect
that is commonly used in the comprehension, quality assess-
ment and reengineering of large software systems.

It is central to all visualizations that the visual character-
istics of the emerging images are interpretable with regard

(© The Eurographics Association 2004.

to the characteristics of the visualized information. If infor-
mation is spatially meaningfully arranged and graphically
represented, abilities of the human perception contribute to
the process of understanding. The use of metaphors from the
physical world promises to make this process particularly in-
tuitive and effective, because it allows the viewer to transfer
existing perceptual abilities to the comprehension of the vi-
sualization. We chose the landscape metaphor because it is
familiar and suites the hierarchical structure of software.

Software Landscapes resulted from an exploratory study
of how to visualize the static structure of real-world software
systems with the landscape metaphor. They combine three-
dimensional images of landscape elements, customized lay-
outs, and hierarchical interconnection networks, to represent
program entities, their hierarchy, and their relationships. Dy-
namic transparencies enable the viewer to move seamlessly
between abstract and detailed views.

Before the main part, we discuss related work on software
structure visualization in Section 2, and detail the underlying
model of software systems in Section 3. A description of
Software Landscapes is given in Section 5. It is preceded by
a discussion of the landscape metaphor in Section 4.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Balzer et al. / Software Landscapes

2. Previous Work

Currently, the most popular graphical language in software
engineering is the Unified Modeling Language [Obj03]. In
UML, the static structure of a system is modeled by class
diagrams. Classes can be grouped to packages to obtain di-
agrams at a higher level of abstraction. UML - like other
diagram notations — includes no advanced graphics and vi-
sualization techniques. On the one hand, this facilitates the
drawing of diagrams by humans and the representation of di-
agrams in paper documents. On the other hand, it decreases
information density and control over the level of abstraction,
which limits scalability.

In tools that automatically create visualizations of struc-
tural software models, syntactical restrictions to allow easy
drawing by humans are irrelevant. Usually, such tools
present software entities and their relations as graphs.
Rigi [MOTU93], an early and very influential tool for soft-
ware structure visualization, still creates simple box-and-line
diagrams. However, it provides extensive navigation facil-
ities that allow the user to create views of different parts
of the visualized system on different levels of abstraction.
The more recent tools SHriMP [SM95] and Portable Book-
shelf [FHK*97] provide fisheye views of nested graphs. This
technique presents at the same time the details and the con-
text of a part of the visualized system.

The use of the third dimension promises an in-
creased information density and larger degree of free-
dom for graph layouts. After the introduction of three-
dimensional graph layouts to software structure visualiza-
tion by Koike [Ko0i92] and Reiss [Rei95], many different
ways of using the third dimension were explored in sys-
tems like Narcissus [HDWB95], NestedVision3D [PFW98],
ArchView [FdJ98], and CrocoCosmos [LNO3]. An interest-
ing aspect of Narcissus and NestedVision3D, is the use of
surfaces with variable transparency to adapt the amount of
details shown.

The results of empirical studies that compare the effec-
tiveness of two-dimensional and three-dimensional graph
layouts are mixed: In some studies, 3D visualizations outper-
formed 2D visualization (e.g. [WF96]), other studies yielded
the opposite result (e.g. [WC99]). In our experience with 3D
layouts of large graphs, individual objects are often occluded
and therefore barely recognizable, and orientation is some-
times intricate.

So called 2.5-dimensional visualizations show three-
dimensional objects arranged on a two-dimensional sur-
face, similar to landscapes. This approach combines the
good orientation and overview of 2D visualizations with
a high information density, and exploits the same per-
ceptual abilities that we use in our physical environ-
ment. Information retrieval systems based on the land-
scape metaphor [Cha93, DHJ*98, CP0O1] mostly visualize
data that has different characteristics than software struc-
tures, for example non-hierarchical data. THEMA [Pl0o97],

Software World [KMO0O0], and Component City [CKTMO02]
use an urban metaphor to visualize software systems. How-
ever, only few software entities are shown and the graphical
representations are very simple. Neither the use of advanced
visualization techniques nor the scalability to programs of
realistic size are addressed in these works.

3. A Structural Model of Object-Oriented Software

A structural model of an object-oriented software system
describes the system’s entities, the containment hierarchy
of the entities, and the relationships between the entities.
Formally, our models are nested directed graphs, where the
nodes of the graph correspond to the software entities, the
edges correspond to the relations, and the inclusion tree cor-
responds to the containment hierarchy. The schema of the
models is shown in Figure 1.

I——<>l package

inherits) ?

class

calls) | Q |

accesses)

| method attribute

Figure 1: Schema for structural models of object-oriented
software systems

The models distinguish four types of software entities:
packages, classes, methods, and attributes. This means that
they abstract from the detailed source code within the meth-
ods, which greatly enhances the scalability to large systems,
and still enables good traceability of the visualization to the
source code.

Each package can contain other packages and classes, and
each class can contain methods and attributes. In Java and
other object-oriented programming languages, classes may
also contain other classes. Because the contained classes are
mostly very simple and tightly coupled to their containing
classes, we decided to collapse each class with their con-
tained classes. We feel that the gain of simplicity (in the
schema and, more importantly, in the visualizations) through
this collapsing by far outweighs the minor loss of precision.

Besides containment, the models distinguish three other
kinds of relationships between the entities: classes can in-
herit from other classes, methods can call methods, and
methods can access attributes.

Such models can be automatically extracted from the
source code of object-oriented software systems. In our
experiments, we used the tools SNiFF+ [Win] and Soto-
graph [Sof] to extract graph models from Java programs.

(© The Eurographics Association 2004.

Balzer et al. / Software Landscapes

The extracted graphs are stored in files in Rigi Standard
Format ([Won98], Section 4.7.1), a simple tuple notation
used by many reverse engineering and reengineering tools.
Through the separation of extraction from visualization, and
the use of a standard exchange format for graphs, Software
Landscapes can visualize data from many sources. In par-
ticular, they can be applied to software in any programming
language for which an appropriate extractor is available.

In this paper, we present visualizations of four software
systems, all developed using the programming language
Java: Eclipse 2.02 (an open source software development
platform), JWAM 1.6 excluding test classes (a framework
for interactive business applications), a commercial appli-
cation (called SystemX for anonymity), and CrocoCosmos
(a research tool for software analysis and visualization). Ta-
ble 1 shows their characteristics, where LOC (lines of code)
is the total number of carriage returns in the source code.

System Entities Relations LOC
Eclipse 2.02 112613 339161 1181270
JWAM 1.6 11097 25081 167178
SystemX 8042 19378 78220
CrocoCosmos 1269 2574 16832

Table 1: Visualized software systems

4. The Landscape Metaphor

The challenge in the visualization of complex software sys-
tems lies in the undistorted and comprehensible representa-
tion of the large amount of extracted data. This implies two
goals: First, the information density in the views should be
maximized under the constraint of comprehensibility. How-
ever, even with a large information density, not all details
of the data can be represented in one view. Thus the second
goal is to provide intuitive navigation, which allows the user
to move easily between views on different levels of abstrac-
tion and of different parts of the visualized system.

Clearly, there is a tradeoff between information density
and comprehensibility. Many three-dimensional visualiza-
tions have a high information density, but appear cluttered,
occlude distant information, and provide no global overview.
On the other hand, many two-dimensional visualizations are
very clear but reveal little information. Therefore it is desir-
able to find a compromise that combines information density
and clarity. A promising approach is the use of virtual land-
scapes, where three-dimensional objects are arranged on a
two-dimensional plane.

These landscapes are similar to our physical environment,
namely the (roughly two-dimensional) surface of the earth
with three-dimensional buildings, trees, et cetera. This sim-
ilarity allows us to transfer perceptual abilities acquired in

(© The Eurographics Association 2004.

earlier situations to the comprehension of and orientation in
the visualization, thus reduces the load on conscious infor-
mation processing.

A principal characteristic of the landscape metaphor is
the hierarchy of different abstraction levels. For example,
the world can be divided into continents, the continents into
states, the states again into cities, which in turn consist of ur-
ban districts with many houses. The hierarchical structure of
object-oriented software is naturally mapped to landscapes,
and thus can be represented comprehensibly and with min-
imal distortion. Because we are familiar with the different
levels of abstraction, we can easily navigate between them.

The term landscape metaphor is not to be understood ex-
clusively as a detailed image of reality, but rather stands for
structures that are similar to those of a real landscape. The
concrete representations of the information in the form of
objects of the landscape can possess both, a close-to-reality
and an abstract appearance, e.g. as in maps. The pros and
cons of each deviation from real landscapes must be evalu-
ated carefully. While such deviations potentially confuse the
viewer and lead to misinterpretations, they must be consid-
ered whenever important characteristics of the data cannot
be clearly visualized with realistic objects.

In conclusion, the landscape metaphor offers a good trade-
off between information density and comprehensibility, it is
familiar to us, and its structure is similar to the structure of
software systems. However, we will accept deviations from
real landscapes when this clarifies the visualization.

5. Software Landscapes

This section presents our approach for visualizing the struc-
ture of large software systems. The first subsection intro-
duces methods to generate layouts according to the hierar-
chy of a software system. The visual representation of soft-
ware entities and a level of detail mechanism are addressed
in Subsection 5.2. Finally, the representation of the relations
between entities is discussed in Subsection 5.3.

5.1. Hierarchy Based Layout of Entities

With the visualization of software structures, special atten-
tion is drawn to the production of expressive object arrange-
ments. The layouts in this work are based on the hierarchy
of packages, classes, methods and attributes in the visualized
software system.

The hierarchy of packages, which can be arbitrarily deep,
is represented by nested spheres. The outermost sphere
stands for the root of the package hierarchy. It contains
spheres which represent the packages that are directly con-
tained in the root package. These spheres for the second level
packages again contain spheres for the third level packages,
and so on. The spheres contained in a package are arranged
on a circle within a two-dimensional plane. The size of the

Balzer et al. / Software Landscapes

spheres is adjusted to the size of the available segments of
the circle, so that on one hand, they do not overlap, and on
the other hand they do not form large gaps. Figure 2 illus-
trates the result of this arrangement pattern.

Figure 2: Representation of the package hierarchy of the
software system 'JWAM 1.6’ using nested spheres

After arranging the packages, the positions of the classes
are defined. Therefore a platform is inserted into each sphere
on which the classes are arranged. Every platform repre-
sents its own unique landscape. If a package does not con-
tain classes, the representation of the platform in the re-
spective sphere is discarded. Each class is represented as
a circle with a surface area related to the number of con-
tained methods and attributes. The circles are distributed on
the platform with the help of the relaxation of Voronoi dia-
grams [HKL*99, DHvS00]. This method is also used to ar-
range the method and attribute objects on the class circles.

5.2. Visual Representation of Entities

As already explained in Section 5.1, nested spheres are used
for the arrangement of packages. Pursuant to [RG93] the
representation of the spheres takes place with the help of
transparencies. Thus a view into the system is possible,
while at the same time the presented amount of informa-
tion is reduced. If the surfaces of the spheres would be com-
pletely transparent, i.e. only the silhouettes are drawn, it
would be difficult to interpret the visualization due to the
overabundance of information. If the surfaces were perfectly
opaque, objects within or outside the presently viewed pack-
ages would be invisible. The use of transparencies solves
both problems.

Contrary to [RG93] the degree of transparency is not fixed
in advance, but adapts dynamically to the position of the
viewer. If the distance of the viewpoint to a sphere is more
than five times the sphere’s radius, then the sphere is drawn
perfectly opaque. If the distance of the viewpoint is less than
two times the sphere’s radius, then the sphere is completely

transparent. Between these two distances, infinitely variable
cross fading takes place (see Figure 3). On account of fad-
ing out distant levels it is possible to clearly represent also
scenes with a very deep hierarchy. This level of detail tech-
nique also improves the rendering performance of the visu-
alization, because the inside of completely opaque spheres
does not have to be drawn, and normally more than 90 per-
cent of all spheres are completely opaque.

S

e § &°

posgp oo

. grap @
intemal
‘cm

Figure 3: Changing sphere transparencies when zoom-
ing into the package hierarchy of the software system
"Eclipse 2.02°; Far upper left: Overview of the entire soft-
ware system; Far lower right: Closeup view of selected pack-
ages of the software system

Circular discs are used for the representation of classes.
Methods and attributes are positioned on these discs in the
form of cuboids. The objects typifying the methods are
larger and have a different coloration than the attribute ob-
jects. Figure 4 shows a resulting visualization.

5.3. Visual Representation of Relations

Aside from the hierarchy of the entities, the relations be-
tween the entities are an important part of the structure of
software systems. Our models distinguish three types of re-
lations: inheritance between classes, method calls, and ac-
cesses on attributes. If these relations would be represented
as simple direct line connections between the entities of a
given two-dimensional level, very unclear representations
with many overlappings and occlusions would result, which
make a differentiation and a closer investigation of the in-
dividual relations almost not possible. In the realm of this

(© The Eurographics Association 2004.

Balzer et al. / Software Landscapes

XrefQuaryManagen

XrefifenuManager

XrefTableMenuProvider

Figure 4: Closeup view of the software system ’SystemX’
containing 52 packages, 546 classes, 4856 methods and
2588 attributes

work, it was first attempted to solve the problem in the
two-dimensional space. Based on diverse criteria the rela-
tions were summarized, occlusions were avoided and over-
lappings were reduced. The results for a few objects and re-
lations were satisfactory, but a large number of participant
entities and relations resulted in unsatisfactory representa-
tions. The conclusion was that for a clear representation of
the relations, the third dimension has to be used.

We propose a solution called Hierarchical Net. Thereby
the relations are represented not as direct connections be-
tween the involved objects, but routed according to the hi-
erarchy levels of the software entities. For example, if a re-
lation exists between a class X in package A and a class ¥
in package B, and furthermore, the packages A and B are
contained in package C, then the connection is routed from
class X to package A, to package C, then to package B, and
lastly to class Y. For this purpose a point is defined above
every object, where the connections of the objects of the
lower hierarchy levels are combined and forwarded to the
next level. This point always rests within a fixed relative dis-
tance above the center of the considered object. Since the
objects at higher hierarchy levels are larger, this results in a
three-dimensional tree of connections, as shown in Figure 5.

The type and direction of the relations is shown by the
color and brightness gradient of the corresponding lines.
Connections of the same type and direction, and with the
same start and end points, are combined to one connection.
Thereby their quantity is mapped to the width of the new
line, so that thicker lines stand for a larger quantity of rep-
resented connections. Because only lines of the same type
and direction are combined, occlusion still appears, making
thinner lines sometimes hard to recognize. In order to avoid
this, lines are sorted by width and rendered in descending
sequence. Thus it is possible to differentiate between the dif-
ferent line types and line directions despite mutual covering.

(© The Eurographics Association 2004.

Figure 5: Visualization of 2574 relations between 1269 en-
tities within the software system ’CrocoCosmos’ using a Hi-
erarchical Net

In order to analyze the relations the user can control the
visualization. The first possibility is to select only specified
types of relations, e.g. the user can solely view all inheri-
tances. The second is to choose an entity, whereby a list with
all connected relations is presented, and additionally only
relations connected to this entity are drawn in the visualiza-
tion. These two alternatives enable the better traceability of
the relations.

6. Conclusions and Future Work

This work only represents a first step for the visualization
of the structure of large software systems with the land-
scape metaphor. It introduced a layout technique for con-
tainment hierarchies, dynamic transparencies to reduce the
visual complexity, and Hierarchical Nets to clearly represent
the relations in large software systems.

In future works, more possibilities of the landscape
metaphor in the context of software visualization are to be
examined. One direction will be the examination of layout
methods which are not only based on the hierarchy of the
software system, but also involve the relations in the layout
generation process. The information density in the visualiza-
tions can be further improved by mapping the values of soft-
ware metrics on landscape objects. For example, the height
of the objects that represent methods could be proportional
to the size of the methods, as measured by the number of
lines of code.

References

[Cha93] CHALMERS M.: Using a landscape metaphor
to represent a corpus of documents. In Pro-
ceedings of the International Conference on
Spatial Information Theory (COSIT) (1993),

LNCS 716, Springer-Verlag, pp. 377-390.

[CKTMO2]

[CPOI1]

[DHJ*98]

[DHvS00]

[FdJ98]

[FHK*97]

[HDWBI5]

[HKL*99]

[KMOO0]

[Koi92]

[LNO3]

[MOTU93]

Balzer et al. / Software Landscapes

CHARTERS S., KNIGHT C., THOMAS N.,
MUNRO M.: Visualisation for informed deci-
sion making; from code to components. In Pro-
ceedings of the 14th International Conference
on Software Engineering and Knowledge Engi-
neering (SEKE) (2002), ACM, pp. 765-772.

CHEN C., PAUL R.: Visualizing a knowledge
domain’s intellectual structure. IEEE Com-
puter 34,3 (2001), 65-71.

DAVIDSON G., HENDRICKSON B., JOHNSON
D., MEYERS C., WYLIE B.: Knowledge min-
ing with VxInsight: Discovery through interac-
tion. Journal of Intelligent Information Systems
11,3 (1998), 259-285.

DEUSSEN O., HILLER S., VAN OVERVELD
C., STROTHOTTE T.: Floating points: A
method for computing stipple drawings. Com-
puter Graphics Forum 19, 3 (2000), 40-51.

FEUS L., DE JONG R.: 3d visualization of

software architectures. Communications of the
ACM 41,12 (1998), 73-78.

FINNIGAN P., HOLT R., KALAS I., KERR
S., KONTOGIANNIS K., MULLER H., MY-
LOPOULOS J., PERELGUT S., STANLEY M.,
WONG K.: The Software Bookshelf. IBM Sys-
tems Journal 36, 4 (1997), 564-593.

HENDLEY R., DREW N., WOOD A., BEALE
R.: Narcissus: Visualizing information. In Pro-
ceedings of International Symposium on Infor-
mation Visualization (1995), pp. 90-96.

Horr K., KEYSER J., LIN M., MANOCHA
D., CULVER T.: Fast computation of gener-
alized Voronoi diagrams using graphics hard-
ware. In Proceedings of the 26th Annual Con-

ference on Computer Graphics (SIGGRAPH)

(1999), ACM, pp. 277-286.

KNIGHT C., MUNRO M.: Virtual but visible
software. In Proceedings of the International

Conference on Information Visualisation (IV)
(2000), IEEE Computer Society, pp. 198-205.

KoOIKE H.: An application of three-
dimensional visualization to object-oriented
programming. In Proceedings of the Workshop
on Advanced Visual Interfaces (AVI) (1992),
World Scientific, pp. 180-192.

LEWERENTZ C., NOACK A.: CrocoCosmos
— 3d visualization of large object-oriented pro-
grams. In Graph Drawing Software, Junger
M., Mutzel P., (Eds.). Springer-Verlag, 2003,
pp- 279-297.

MULLER H., ORGUN M., TILLEY S., UHL

[Obj03]

[PFW98]

[P1097]

[Rei95]

[RGI3]

[SM95]

[Sof]

[Sof03]

[Vis02]

[WC99]

[WF96]

[Win]

[Won98]

J.: A reverse engineering approach to subsys-
tem structure identification. Journal of Soft-
ware Maintenance: Research and Practice 5, 4
(1993), 181-204.

OBJECT MANAGEMENT GROUP INC.: OMG
Unified Modeling Language Specification,
2003.

PARKER G., FRANCK G., WARE C.: Visual-
ization of large nested graphs in 3d: Navigation
and interaction. Journal of Visual Languages
and Computing 9, 3 (1998), 299-317.

PLoix D.: Observation de programmes par la
combinaison d’analogies. In Actes de la con-
férence Intelligence Artificielle et Complexité
(1997), pp. 150-156.

REISS S. P.: An engine for the 3d visualization
of program information. Journal of Visual Lan-
guages and Computing 6, 3 (1995), 299-323.

REKIMOTO J., GREEN M.: The Information
Cube: Using transparency in 3d information vi-
sualization. In Proceedings of the 3rd Annual
Workshop Information Technologies & Systems
(WITS) (1993), pp. 125-132.

STOREY M.-A., MULLER H.: Manipulat-
ing and documenting software structures us-
ing SHriMP views. In Proceedings of the
International Conference on Software Mainte-
nance (ICSM) (1995), IEEE Computer Society,
pp. 275-284.

SOFTWARE-TOMOGRAPHY GMBH: Soto-
graph. http://www.softwaretomography.com.

Proceedings of the ACM Symposium on Soft-
ware Visualization (SOFTVIS). ACM, 2003.

Proceedings of the 1st International Workshop
on Visualizing Software for Understanding and
Analysis (VISSOFT). IEEE Computer Society,
2002.

Wiss U., CARR D.: An empirical study of
task support in 3d information visualizations.
In Proceedings of the International Conference
on Information Visualisation (IV) (1999), IEEE
Computer Society, pp. 392-399.

WARE C., FRANCK G.: Evaluating stereo and
motion cues for visualizing information nets
in three dimensions. ACM Transactions on
Graphics 15,2 (1996), 121-140.

WIND RIVER SYSTEMS INC.: Sniff+.
http://www.windriver.com/products/sniff_plus/.

WONG K.: Rigi User’s Manual, Version 5.4.4,
1998. http://ftp.rigi.csc.uvic.ca/pub/rigi/doc/.

(© The Eurographics Association 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

