Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2004)
0. Deussen, C. D. Hansen, D. A. Keim, D. Saupe (Editors)

Volume Visualization and Visual Queries for Large
High-Dimensional Datasets

G. Reina and T. Ertl

{reina, ertl} @vis.uni-stuttgart.de
VIS Group, University of Stuttgart

Abstract

We propose a flexible approach for the visualization of large, high-dimensional datasets. The raw, high-
dimensional data is mapped into an abstract 3D distance space using the FastMap algorithm, which helps, to-
gether with other linear preprocessing steps, to make changes to the resulting 3D representation within a few
seconds. Thus exploration of such datasets is a less tedious task compared to other techniques. We use volumes
with four components to enable the user to brush an attribute selection onto the volume for inspection. We exploit
multiple transfer functions for displaying these attributes and also to filter one attribute with values of another.
An advantage of this volume sampling approach is that the rendering performance is independent of the dataset
size. The drawback of limited resolution can be overcome by providing a linked detail view for a freely selectable
portion of space. Examples of the inspection and filtering possibilities using a silvicultural dataset illustrate the

strengths of our approach.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3: Interactive Rendering, Large Data, High-

Dimensional Data, Volume Visualization

1. Introduction

Interactive visualization of large data is a current problem
with the tendency of getting worse as the availability of
data increases as well as the possibilities of generating large
datasets in decreasing periods of time with little to no user
interaction required. Examples for this can be found in bio-
chemistry, network traffic analysis, or simulation, just to
name a few examples. Even though at least 5 dimensions are
straightforwardly visualizable (position, color, size being the
most intuitive mapping), the data that has to be visualized
tends to have a dimensionality much higher than that. We
propose to use volume visualization for scattered data, an ap-
proach borrowed from scientific visualization and capable of
interactively visualizing millions of data items without per-
formance degradation. Our approach also tries to alleviate
the curse of dimensionality [Bel61] with an interactive tool
which allows for mapping a selectable subset of the available
dimensions into 3D. We make use of modern graphics hard-
ware to render the dimensions beyond the three positional
ones upon user interaction.

We choose a 3D rendering method for the data because
it provides us with more space to layout the data as well
as benefiting from an additional axis when mapping high-
dimensional data. We also limited ourselves, on the other
hand, to mapping three dimensions to allow for user-
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selectable dimensions to be brushed onto the remaining dis-
play dimensions as will be described in section 4. A major
problem that arises when using 3D rendering techniques is
occlusion of potentially important data. The volume render-
ing approach, however, enables us to alleviate this problem
by using a semi-transparent representation of the scattered
data depending on the density of points in a given portion
of space. Another factor to consider is performance degrada-
tion when choosing a 3D representation over 2D, but volume
rendering comes with the benefit of being reasonably inter-
active on current hardware when choosing moderate vol-
ume resolutions (up to 256%) on the one hand, and being,
on the other hand, performance-wise invariant to the number
of data items that have to be visualized once the volume we
want to render is generated. A handicap of volume render-
ing as a concept is the quantization and binning of the data
that has to be displayed, since basically only discrete voxels
are available in the volume we are rendering. To overcome
this limitation, we make a 3D volume brush and a linked de-
tail view available, which can display the actual data points
contained inside the 3D brush, thereby providing the user
with a volume-rendered context of focused points visible in
a linked 3D scatterplot.The main strength of this approach is
the possibility of interactively visualizing massive datasets
without performance degradation. The user has control over
interactive highlighting and intuitive on-the-fly range-based
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filtering that does not require to know the exact extrema of
the data, since it works relatively to the range of available
values.

2. Previous Work

The visualization of high-dimensional data has seen differ-
ent classical approaches, like parallel coordinates [Ins85],
star glyphs [SFGF72] and icon techniques, like stick fig-
ures [PG88] or chernoff faces [Che73], which however are
strongly limited in respect to large datasets, or scatterplot
matrices [BC87]. More recent approaches include circle
segments [AKK96], and pixel-based visualization of multi-
dimensional data as in recursive patterns [KAK95]. How-
ever, the limits of screen space always force us to either de-
pict large datasets or many dimensions unless resorting to
user interaction for shifting the focus.

A lot of research has been conducted in the area of vol-
ume rendering for scientific visualization, using 2D tex-
tures on PC hardware [BJINN97] or 3D Textures on high-
end workstations [CCF94]. Recent developments improve
the visual quality while not increasing the actual volume res-
olution, but pre-integrate inter-slice data [EKEO1]. Other ap-
proaches make the definition of transfer functions more in-
tuitive [KKHO1] while taking into consideration more infor-
mation (gradients and derivatives), or even enable different
transfer functions and rendering techniques for defined re-
gions of a single volume [HBHO3].

First steps have been made in the direction of combining sci-
entific visualization with information visualization, for ex-
ample to visualize large, high dimensional simulation data
[DGHO3], [KSHO3] with focus+context techniques in linked
views. This approach was inspiration for our work, but we
want to give the user access to the dataset as a whole for get-
ting an overall impression and then applying filters, without
the need to decide which features he wants to see before-
hand. Volume visualization of relational data was already
proposed [Bec97], but limited to displaying a single attribute
other than the density and relatively simple filtering. An-
other work [HMO3] details a volume rendering method for
flow simulation which takes into account several dimensions
in addition to the positional ones. A first approach for large
chemical data visualized as volumes has also been developed
[OIEEO1].

3. Volume Generation

Our method for generating the volume that is going to be
visualized makes use of the FastMap algorithm [FL95]. The
process can be considered as a pipeline with several possibil-
ities of feedback through user control, as shown in figure 1.
A subset of the dimensions contained in the source data is in-
ternally mapped from the discovered range onto [0, 1] each
for equalization. String attributes are treated as identifiers
and have their distance modeled as inequality, i.e. a distance
of 0 for equal strings and 1 otherwise. Then a pair of pivot
points is heuristically selected based on the biggest high-

D distance found by randomly seeding a point and choos-
ing the farthest point several times iteratively. These piv-
ots form an axis onto which the remaining points are pro-
jected for finding the coordinate of the first dimension. The
remaining two dimensions are calculated accordingly with a
modified distance measurement taking into account the error
produced on the previous axis. The result of these calcula-
tions are synthetic 3D coordinates that show the similarity
of different data points as proximity. This method is not as
accurate as a classical MDS [BGY97], for example, but has
the advantage of linear complexity. FastMap requires O(N)
compared to an improved hybrid MDS (O(N+/N)), as pro-
posed in [MRCO02]. When working with a data set of 2.3
million points and refining the pivot search 5 times we can
cut processing time down to about 1/80. So the user can,
with acceptable processing times, tweak the dimension sub-
set and the distance calculation method (see below) for opti-
mal results. The computed 3D data, which now represents the
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Figure 1: Visualization pipeline showing the data flow as
arrows, and user adjustments, like filtering, as dashed ar-
rows

whole dataset subject only to the mutual high-dimensional
difference between data points is quantized (binned) into
a 256 volume. We can encode up to 4 attributes for each
voxel using a single 3D volume for data storage in the graph-
ics card. We reserve the first component (R) for the den-
sity (i.e. number of points per voxel), since this information
is most crucial and allows us to assess the distribution of
the data points in distance space (the density can be scaled
logarithmically or linearly). For the remaining three volume
dimensions (G, B, A) the user can choose any dimension
of particular interest and map different statistical per-voxel
measures into them, like mean, variance, minimum or max-
imum. This decision is crucial for the ensuing interpretation
of the visualization, as for the most part one voxel has to rep-
resent several distinct data items which cannot be visually
distinguished in the volume rendered representation. Since
FastMap is used for the spatial distribution of the points in
3D, one could assume that points inside one voxel are sim-
ilar enough to have their attributes averaged, but this will
not apply for every single attribute we can choose. Espe-
cially categorical values pose a problem, since calculating
a mean from different categories conveys wrong informa-
tion. The mean can only be applied to categories in com-
bination with a variance lens as to discover the areas with
uniform data. What usually would be searched for when in-
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vestigating categories themselves is the category with the
highest number of representants in a voxel, but this value is
either very memory-intensive or slow to calculate. The time-
intensive variant would be iterating the volume and process-
ing all points for each voxel to find the category with most
representants (with a cost of |V |+ N, |V| being the number of
voxels). The memory-intensive variant would be processing
all points once and counting occurences per voxel and cat-
egory (requiring |C| = |V| of space, |C| being the number of
categories).

The user must realize that he can only retrieve the exact data
from the detail view in any case and choose the calculated
value per voxel on the basis of what kind of features he wants
to detect in the dataset.

Figure 2: Comparison of linear interpolation (left) and
nearest neighbor (right) when displaying categorical values.
On the left one can clearly see the artifacts of a different
color introduced in areas of otherwise uniform color.

4. Rendering of the Attributed Volume

We want to be able let the user choose which attribute (point
density or one of the 3 freely definable dimensions) is going
to be visualized for determined areas. There are two different
tools for the user to define these areas:

e Volume primitives like boxes or spheres for a rough seg-
mentation of the dataset. These primitives are software-
rasterized into a 3D-volume as IDs, or better component
indices of the RGBA data volume, as to define object-
space regions for each. This manipulation is afflicted with
some delay by the clearing, rasterization and uploading of
a 256° texture. However this happens only after releas-
ing the mouse button; as long as the button is held, a 643
volume is used.

e The user can also utilize image-space lenses which can be
freely moved in real time as a particular kind of brush to
override object-space segmentation for a determined area
and display the associated attribute. These lenses are ren-
dered into a 2D mask texture which is used to hold the
component index for the different regions.

Associated with each visualizable attribute is a separate
transfer function, so the user can map the value range of the
density and the extra attributes to different color and alpha
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gradients.
When coming to the 3D texture lookup for the final ren-
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Figure 3: Fragment program diagram. The attribute IDs are
combined ("), prioritizing the image space mask, to select
(&) one of the four volume components for each slab end.
The ID also serves as Z coordinate for the transfer function
lookup.

dering, we must consider the problem categorical attributes
pose, as mentioned in section 3. If sampling with nearest
neighbor, we can clearly see the artifacts produced by the in-
tersection of the volume with the view-aligned slices when
zooming in. Still, we can only safely interpolate when in-
specting attributes with a continuous range (see figure 2).
The pixel shader we used is capable of pre-integrated volume
rendering (algorithm as in [EKEO1]). Since pre-integration
substitutes a linear interpolation between pairs of the ren-
dered slices, it causes the same problems as linearly interpo-
lated sampling from the texture, at least for categorical val-
ues. If paired with interpolated lookup, it can, however, im-
prove the visual quality when rendering the density of data
items. Because of this, the user can toggle interpolation and
pre-integration on and off.

In the shader (also shown schematically in figure 3), we first
look up the attribute from the image-space mask and the at-
tribute from the tag volume, discarding the latter if an at-
tribute lens is in place. This ID is used as the z-value for a
3D transfer function lookup, the different pre-integrated 2D
lookup textures being stacked along the z/r-axis of a 3D vol-
ume. We then get the values for both ends of the current slab
from the volume. These values complete the transfer func-
tion lookup by providing x and y coordinates. If applied to

Figure 4: Effect of 5 different transfer functions. The carp
is segmented into two halves using a segmentation primitive,
4 lenses apply 4 different transfer functions in image space.
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scientific visualization, the approach yields a result as in fig-
ure 4. The tag volume segments the carp in two halves for the
first and second transfer functions, the second transfer func-
tion is also associated with the lens near the carp’s mouth.
For this example we used a luminance volume instead of a
RGBA volume since the dataset only has a density compo-
nent.

5. Features

We want to enable the user to assess the global distribution
of the data items with respect to their similarity and high-
light determined attributes and/or filter them, so he can drill
down into the data in the regions he deems most interesting
and access the exact data located there. To facilitate this, our
prototype provides a GUI consisting of 5 components: the
context view consisting of the whole dataset rendered as a
volume, a table where the user can choose the dimensions to
map, a toolbar for switching interaction modes and a linked
detail view plus a second table displaying data points ex-
tracted from the context view. The user can move a brush
box around in the context view to select the points that will
be rendered in the linked detail view and shown alongside
their attributes in the second table. The user can click inside
the point cloud to select points, which are then highlighted
in the table as well and vice versa (see figure 5).

The context view can be used for visual data mining because
we integrated the additional dimensions to allow the user to
inspect them by brushing in object space (with volumes) or
image space (with a special kind of lens). The table showing
the different attributes (and their ranges) present in a dataset
allows the user to distribute the 3 available lenses to three of
these attributes. Additionally, for each of these lenses there
is a corresponding lens volume which can be positioned as
to segment the data in object space — as long as there is no
overlapping lens, since it has a higher priority. This allows
for detection of regions of interest for different attributes at
once by moving the lenses to regions which the user wants
to inspect for (ir)regularities or extreme range values. Ex-
plorative mining can also be performed making use of the
detail view to probe into the data and inspecting the neigh-
borhood which will yield similar data because of FastMap.
Since we also associated a transfer function with every lens,
the source data range can be mapped to different gradients
per lens/attribute, but we also gain the capability of filtering
the visualization directly by using the transfer function. The
user can use the alpha output of the transfer function to fil-
ter parts of the range of a single attribute without needing to
know the exact limits and he also has real-time feedback on
the effect of such an exclusion.

6. Results

The volume visualization of a dataset can be used to visually
detect clusters of similar data and outliers which can be con-
sidered for further analysis. In Figure 6 we can see the cov—
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Figure 5: Picking linked between windows: The selection
can be made in the detail view or in the corresponding table,
the highlight is spanned across the windows.

type 54D dataset from the UCI Machine Learning Repos-
itory with several visually separable clusters. The dataset
consists of 581,012 entries of 7 tree types located in four
wilderness areas in the Roosevelt National Forest of northern
Colorado. Each entry has several attributes, like a soil type
classification, wilderness location, ground elevation, slope,
shade, distances to hydrology etc. The four different wilder-
nesses which were investigated form several clusters each,
the shapes of which can be seen in figure 7 on the left, where
the effect of using 4 different lenses for filtering the binary
wilderness flags is collaged. If we use fractional distances
(instead of euclidean) for calculating the FastMap, we can
benefit from the better measurement quality [AHKO1] and
get more homogenous clusters for the wildernesses (figure 7
right). This also shows that quality of our approach depends
significantly on the quality of the dimensionality reduction.
From the accompanying description we have the information
that the wilderness with the highest mean elevation is Neota.
To define a range-based filter, we set the transparency output
of the transfer function accordingly. Since every lens comes
with its own transfer function, we can just filter out the lower
85 percent of the data points inside the lens by setting alpha
to O (see figure 6 right). Even more interesting data mining

Figure 6: Before (left) and after (right) filtering the trees
having an elevation lower than 85% of the elevation range.

possibilities arise with a slightly modified fragment program
which allows for modulation of a transfer function assigned
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Figure 7: Collage of 4 wilderness clusters, FastMap with
euclidean distances to the left (higher fragmentation), frac-
tional distances (f = 0.3) to the right (better defined clus-
ters)

by using a segmentation volume brush with a filtering lens.
If we use the first volume and set the transfer function in
such a way that each of the different trees gets a distinct
color (then averaged per voxel), we get a result as in figure
8. We can then assign a transfer function filtering out low el-
evations to visually discover the most common trees for high
elevations (see figure 9. Another example would be to only
display the tree population for a certain wilderness, in this
case of Rawah (see figure 11). We must keep in mind, how-
ever, that these filtering tools work only on a voxel basis, so
the results depend on whether we sampled the mean or min-
imum etc. of all data points in a determined voxel. To get the
exact data, we still have to use the detail view (figure 10) to
see exactly which kinds of trees live at the higher elevations,
in this case it would be exclusively Krummholz. However
this kind of data mining process only makes sense as long as
the user can apply filtering and highlighting to the volume
view since otherwise the user would have to inspect every
possible subvolume of the data to find regions of interest.

Figure 8: Trees colored by type with a transfer function
divided in 7 parts (see color plate).

7. Performance

As with all volume rendering approaches, the performance
of our rendering approach is limited by the fill rate, i.e. mem-
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Figure 9: Trees colored by type, filtered by a second transfer
function making all trees beneath 85% elevation transparent

Figure 10: A detail view of the actual trees in regions of high
elevation, coloring taken over from the transfer function in
figure 9.

ory bandwidth of the graphics card used. Furthermore, we
need to use two rendering passes because of the 5 texture
lookups we need (slab front, slab rear, lens mask, id volume
and transfer function, the last one dependent on all previ-
ous ones and a number of calculations). Depending on the
viewed size, on a Radeon 9700 Pro, this yields an average of
7.5fps in a 600% window (averaged over all viewing angles,
since 3D texture organization in ATI hardware causes slow-
downs when inspecting the volume from the 'rear’). The ex-
ecution of FastMap on 580K points in 54D takes about 132
seconds on an intel P4-2.8Ghz Machine, while 2.3M points
in 9D take 248 seconds. The updating of the additional di-
mensions including texture upload takes about 3 and 5 sec-
onds (without particularly optimized algorithms), so it is safe
to say that the user can experiment interactively with the pro-
totypical implementation. The performance of the scatterplot
is not critical, since only a small portion of the available data
has to be rendered at any one time.
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Figure 11: Showing the trees of wilderness Rawah. Hue
is produced by one transfer function on the tree type at-
tribute and modulated by the transfer function filtering out
the wilderness.

8. Conclusions and Future Work

We have presented a novel technique for the visualization
of large, high-dimensional datasets by employing dimen-
sionality reduction and volume rendering. Additional dimen-
sions can be brushed onto the volume by user interaction for
highlighting or filtering. Our approach works well for large
datasets, which we proved by showing the performance and
results using a dataset with 580K entries. Future Work could
include the integration of more advanced Detail Views, i.e.
high-dimensional visualization approaches like those men-
tioned in section 2, instead of the simpler 3D scatterplot.
A user study could be conducted to investigate the accep-
tance of our approach and further improve our solution. Fi-
nally, advanced techniques from scientific volume visualiza-
tion could be adapted for handling certain filtering aspects,
for example the clipping method presented in [WEEOQ2] for
volume filtering in 3D similarity space.
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Figure 12: Comparison of linear interpolation (left) and Figure 13: Trees colored by type with a transfer function
nearest neighbor (right) when displaying categorical val- divided in 7 parts.

ues. On the left one can clearly see the artifacts of a differ-

ent color introduced in areas of otherwise uniform color.
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