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Abstract

We propose to integrate information visualization techniques with factor analysis. Specifically, a principal di-
rection derived from a principal component analysis (PCA) of the data is displayed together with the data in a
scatterplot matrix. The direction can be adjusted to coincide with visual trends in the data. Projecting the data
onto the orthogonal subspace allows determining the next direction. The set of directions identified in this way
forms an orthogonal space, which represents most of the variation in the data. We call this process visual com-
ponent analysis (VCA). Furthermore, it is quite simple to integrate VCA with clustering. The user fits poly-lines
to the displayed data, and the poly-lines implicitly define clusters. Per-cluster projection leads to the definition of

per-cluster components.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Visual Data Mining,

Information Visualization

1. Introduction

An important requirement in the exploratory analysis of un-
known data is the identification of main factors accounting
for variances in the data. In general, identifying these factors
leads to a more compressed description of correlations in the
data and, thus, for a better understanding of the underlying
processes that generated the data.

In statistics and data mining, there exist a number of ap-
proaches to identify such main factors. The most important
of these techniques are factor and principal component anal-
ysis (PCA [Jol86]). While factor analysis targets primar-
ily the identification of main factors and their correlation
only, principal component analysis also provides informa-
tion about the kind of influence it takes on the data. Usually,
this influence is described in terms of a direction in the mul-
tivariate data field.

In practice, the application of component analysis and
other traditional forms of factor analysis have proven to be
very difficult [Cli87]. One has to understand the underlying
mathematics in detail to interpret the meaning of the prin-
cipal components and directions. For instance, the principal
component analysis not only provides principal component
vectors but also the influence of a component in terms of so-
called factor loadings. These loadings are usually taken for
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granted as a direct measure for the importance of principal
components. However, it has been shown that the situation is
not that easy and that the real influence of a principal com-
ponent has to be verified on a case-by-case basis.

A fundamental problem of all automatic component anal-
ysis approaches is the consideration of all data elements and
all variables. While the data might have clear trends in some
of the variables others might be uncorrelated and noisy. Be-
cause automatic component analysis has to treat all variables
equally, trends in few variables are not represented accu-
rately due to possible noise in other variables. A particular
incarnation of this problem in the PCA is that it sometimes
produces directions orthogonal to what seems to be the dom-
inant direction. Indeed, statistical theory advises the inspec-
tion of the data and possible rotation of principal direction if
found to be appropriate.

Another problem particular to PCA is the assumption of
global linearity. Oftentimes, processes generating data could
be well described piecewise linear, but a global linear ap-
proximation of the trends is inadequate. For a piecewise lin-
ear description the multi-variate space should first be clus-
tered into components that could be well-approximated us-
ing linear spaces. Note that automatic clustering without a-
priori knowledge about the number of clusters is difficult. As
the PCA itself sometimes generates misleading results, it is
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Figure 1: A scatterplot matrix

even more unlikely that it could be integrated with clustering
techniques to yield a fully automatic data mining solution
that correctly identifies trends, noise, outliers, and clusters.

In this paper, we follow the idea of Visual Data Mining
[Shn02, KWO02] and propose a visual verification, correc-
tion and steering of the determination of principal compo-
nents and clusters. In particular, we use scatterplot matrices
[WB97, Cle94] for the visualization of data, which we en-
hance by the presentation of principal directions. Moreover,
interactive techniques to modify the principal components
are provided.

We apply scatterplots in combination with line graphs
and panel matrices for the visualization of data and
principal components since they are well suited to
display large amounts of data. Many other popu-
lar visualization techniques for multi-variate data (e.g.
glyphs [Che73, PG88, Bed90, RAEM94], parallel coordi-
nates [Ins84, ID90], pixel displays [KKA9S5, Kei00]) lack
the possibility to display principal directions.

2. State of the Art

It is long known that defects in the principal components
could be corrected by visually inspecting them [Cli87]. This
applies obviously only to low-dimensional data and few
components so far. We couple the idea with inferactive in-
formation visualization techniques (for an overview on such
techniques, see [CMS99]).

2.1. Scatterplot and panel matrix

A scatterplot displays bivariate data elements as markers in
a two-dimensional coordinate system [CM84]. Panel matri-
ces [Cle94, WB97] are a means to visualize multi-parameter
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data in terms of a set of scatterplot panels, organized in such
that each combination of two parameters is visualized by
an individual scatterplot graph (see Figure 1 for an exam-
ple). The panel matrix has proven to be one of the most
powerful techniques to analyze multi-parameter data visu-
ally. Several extensions have been proposed based on inter-
active techniques such as brushing and focusing & linking
(a tool integrating many of these techniques is XmdvTool
[War94]). None of these extensions, however, is directly tar-
geted to support the identification of principal components
in the data.

2.2. Parallel coordinates

Parallel coordinates [Ins84, ID90] are another technique
which is well-suited to visualize multi-variate data. Here,
each data element is depicted in as a line segment in 2d
space, intersecting the different parallel data axes at the scale
defined by the corresponding attribute value. Parallel coordi-
nates work very well to identify principal components in the
data based on line segment bundles in the graph. On the other
hand, it is unclear how to display the principal direction, as
a line in variable space completely covers all variable values
on all axes. The application of parallel coordinates is typi-
cally limited to few hundred data elements. For larger data
sets, the amount of space required for the display of each in-
dividual data element hinders the identification of elements
(or principal components).

2.3. Icons, Glyphs, and Pixel Displays

Many visualization techniques for multi-variate data try to
find representative visual elements depicting the data ele-
ments. Icons (or glyphs) could be constructed in a variety of
ways (e.g. see [Che73, PG88, Bed90, RAEM94]). The gen-
eral idea is to map the variables in the data to axes in the
feature space of icons. Pixel displays could be interpreted
as specific icons, which map each variable to a pixel using
color-coding [KKA95, Kei00]. The icons or pixels could be
arranged in different ways, either directly reflecting two vari-
ables or minimizing some measure of layout optimization. If
the space of different icons is rich, prominent features in the
data are clearly visible. As with parallel coordinates, it is
unclear how to represent a line in variable space.

2.4. Reducing dimensionality

Our approach to identifying principal components step-by-
step using visual feedback could be seen as a way of reduc-
ing the number of dimensions (i.e. uncorrelated variables) in
the data. In general, the goal of dimension reduction is to
identify projections that lead to minimal loss of information.
This could be the case when data are highly correlated (e.g.
there is a linear mapping from one variable to another) or
highly uncorrelated (because the projection would not intro-
duce any loss of information). Note that we are interested
exclusively in finding trends.
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Dimension reduction has been extensively studied for vi-
sualizing multi-variate data, as most visualization techniques
have a natural limit on the number of variables they can dis-
play. Common techniques (besides factor analysis) are mul-
tidimensional scaling [KW78, CC94] and Kohononen maps
[Koh95]. Integrating dimension reduction with information
visualization has proven to yield to more meaningful visual-
izations of the projected data [YWRHO3].

2.5. Visual Data Mining

While data mining (e.g. [WB98]) and visualization tech-
niques have both been applied for the analysis of data for
a while, there are still few examples for an integration from
techniques of both areas. Mostly, Visual Data Mining ap-
proaches still focus on the application of analytical tech-
niques (e.g. for clustering and segmentation), restricting
the visualization as a method for verifying the results (e.g.
[FGWO1, SD02]). A notable approach towards the integra-
tion of information visualization and clustering is HD-Eye
[HKW99]. An overview on current techniques in informa-
tion visualization as well as on current approaches in Visual
Data Mining can be found in [KWO02].

3. Notation and PCA

Let the multivariate data be described by vectors x; € Rd, i€
{1,...,n} in a linear space of d dimensions. Then the set of
data {x;} is represented by a matrix

X1

X = X e RP*" (1

Xn

The mean X can be written in matrix notation as X =
(1/n,...,1/n)X. A matrix X consisting of mean vectors can
be formed with the outer product, i.e. X = (1,...,1)"%. The
deviation of the data from the mean is thus ¥ = X — X. Note
that Y has zero mean — we have shifted the mean to the origin
of the system.

The variance of a variable describes how close the data
is to the mean in this variable. This is described as the sum
of squares of differences to the mean. The co-variance is
the sum over products of differences between two variables.
Both, variances and co-variances, are represented in the co-
variance matrix

T =Y"y diag(1/n) = (X — X)" (X — X) diag(1/n) (2)

Given zero mean data Y, we might be interested in cer-
tain linear subspaces that represent almost all of the varia-
tion in the data. A one-dimensional subspace that represents
most of the variation in the data is called principal compo-
nent, and we denote it ¢;. Because of the goal to represent
the data (and its variation), ¢ is a linear combination of the
data vectors {x;} weighted appropriately with w; € R", i.e.
¢| = Yw;. The weight vector represents a line in the space of
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variables and is called principal direction. This principal di-
rection is represented with the unit length vector ||w;|| = 1.
Given this normalization, it is feasible to maximize the vari-
ance c% of ¢;.

Note that c% has the matrix representation

c% = cchl = wlTYTle = wlTTwl.

3)

To maximize ¢7 subject to the constraint ||w;|| = 1, we in-
troduce a Lagrange multiplier A; and equivalently maximize
wlTw 1— leTwl. The maximum can be determined by set-
ting the gradient Tw; — A;w to zero and solving for wj.
Thus, wy is an eigenvector of YTy and because we wanted to
maximize, it is the eigenvector corresponding to the largest
eigenvalue.

One might want to determine additional components
c,...,¢;,z2 < d, so that {c;} represents most of the varia-
tion in the data. It is natural to ask that these components are
mutually uncorrelated. In the linear setting with zero mean
data this means the direction vectors are orthogonal. Another
look at this is to find first ¢; and then project the data onto
the subspace orthogonal to wy, i.e.

Y =Y -Ywiwl

“

The data in Y’ represents ¥ without the variation that is
described by ¢;. Computing the principal component of Y;
yields ¢;. Note that Y'TY’ has the same eigenvectors as Y Ty
except for wy, which corresponds to a zero eigenvalue in
Y'TY’. Thus, W is an eigenvector of ¥ Ty and it corresponds
to the second largest eigenvalue. More generally, the w; are
eigenvectors of YTy sorted according to the eigenvalues.

In practice, we compute the principal components of ¥
using the singular value decomposition (SVD). The SVD
factors Y directly into ¥ = CA’W, where C represents the
components ¢; and W the directions w;.

4. Visual Component Analysis

Factoring given data by means of the PCA can reveal trends
in the data only, if the underlying processes generating the
data are free from noise. Especially outliers can have sig-
nificant influence on the principle components because the
analysis accounts for all data in the same way. If some
knowledge about the process introducing outliers and noise
is given, there are mathematical ways to adapt the PCA. In
most practical cases, however, we are lacking such informa-
tion.

The main point of Visual Component Analysis (VCA) is
to facilitate the human visual system for identifying prin-
cipal components. An ideal way of presenting the data and
the principal direction visually is a scatterplot matrix (see
2.1). In addition to the data points, the user can interactively
modify a two-dimensional projection of the current principal
direction.
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Projection of data along main directions
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Figure 2: Principal and visual component analysis of data in a scatterplot matrix. The left column shows the principal direction
corresponding to the principal component of the data and the projection along this direction onto the orthogonal subspace. In
the right column, the user has corrected the direction based on the trend apparent in the middle block of the panel matrix. In
the projection (lower right), the main variation of the data in the middle part is removed.
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Note that many other visualization techniques lack the
possibility to display a line, or more generally, a family of
data values. In space of icons or glyphs, a line would be rep-
resented by infinitely many such objects. It is unclear how to
display this family. A line through variable space in parallel
coordinates would simply span the whole coordinate system.

The overall process of VCA works like this: Given data
X, this data is visualized using a scatterplot matrix. Note that
this data might have non-zero mean. The mean and the prin-
cipal component are computed and displayed as lines in the
scatterplots. The user can now move the lines in each scat-
terplot. Note that moving the lines modifies the mean as well
as the principal direction. We will explain the mapping from
user interaction to vectors later in more detail.

Once the first component ¢; is determined, the data are
projected onto the subspace orthogonal to wy (cf Eq. 4). This
projected data is displayed using the same scatterplot matrix
as before. Again, the user can interactively specity direction
and mean, however, now the direction is also projected onto
the remaining subspace. This forces the specification of or-
thogonal directions (or uncorrelated components) as desired.

Rotating the axes according to the currently determined
directions and reducing the dimensions of the matrix is usu-
ally not a good idea, because the correspondence between
axes and data variables is lost.

The process is repeated until the data shows no recog-
nizable trend. After the process, the user has extracted a set
of mutually uncorrelated principal components that describe
the major variation in the data accounting for noise, outliers,
or other known non-linear process affecting the data. Fig-
ure 2 shows a scatterplot matrix of data in 4 variables, its
main components, the scatterplots of the data after removal
of the main component, and the remaining principal compo-
nents. The benefit from visually correcting the main compo-
nent can be clearly observed.

We will now describe the details of determining a single
component ¢, resp. direction w.

4.1. Scatterplot matrix setup

For each of the d variables maximum and minimum values
(i.e. min and max of columns in X) are computed to define
the scales of the axes. A row in the scatterplot matrix has
identical variables mapped to the horizontal axes, likewise,
a column has mapped the same variables to the vertical axes.
The mean X and the principal component ¢ (resp. the direc-
tion w) are computed using the SVD. A line with parametric
form X + rw shows the resulting principal direction. In ad-
dition, the mean can be displayed in the graph to provide
additional hints on the structure of the data.
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4.2. 2D line user interaction

The user can modify the line in each scatterplot by moving
its endpoints. Each user interaction induces a change to X
and w. As w describes a direction we keep it unit length, i.e.
||w|| = 1. Assume the line in scatterplot (k,/) is modified to
have endpoints px, py and gx,qy. Then we map this change
to X and w as follows.

The mean necessarily lies somewhere on the line. We
found it is best to restrict the movement of the mean due
to the movement of the line to one dimension, i.e. only in
the vertical direction of the scatterplot. The other dimension
is accessible in scatterplot (/,k) (as this has the same axes
as (k,l), however, reversed). Restricting the movement of
the mean to one dimension avoids that the line representing
the pair (X,w) changes in all scatterplots. Instead, the line
changes only in one column of the matrix. Specifically, we
change only the k-the component of X to

-/

o=

4x — Px

qy — Py) (5)

The direction of w is essentially described by the ratios of
its elements. We let the user control the ratio of the length
of the k-th and [/-th element relative to the remaining el-
ements. During modification of the line segment w% + le
(and, thus, also ||w||) is fixed. We provide a separate interac-
tion for changing (w7 +w?) relative to ||w||. Thus, mapping
during line modification is determined by

2 2
wi;+w
wi = (gx — px) — 3 ©)
(gx—px)"+(gy — py)
and
2 2
wi; +w
W; = (qy — py) b : 7

2 2
(ax—px)"+ (gy — py)
Note that changing the slope of a line in one of the scatter-

plots introduces changes in row k and column / of the scat-
terplot matrix.

5. Clustering

Oftentimes, the process generating the data X is non-linear.
Trying to find a linear subspace that represents the data is,
therefore, infeasible. One could try, however, to model the
process (and, thus, the data) in a piecewise linear fashion.
This leads to the idea of clustering the data and performing a
PCA on each of the clusters. Figure 3 shows data in a single
scatterplot that benefits from representing it with three line
segments instead of only one.

Automatic methods for the combination of clustering and
PCA have been used in the area of neural computation
[KL94, KL.97, TB99] and have recently been introduced to
the graphics community [SHHSO03]. It is clear, however, that
finding trends in noisy data requires a careful selection of
clusters and principal components at the same time — a task



134

Bolia
Column 1

1442
1842

Miiller and Alexa / Visual Component Analysis

-

262,18

?

(-
ES

3

i
H

4 Scatterplot for CoffeePrices-1993-1990.csv.
File Mapping Analysis View

20798

4 Scatterplot for CoffecPrices-1993-1999.cs
File Mapping _Analysis View

12033

£ Scatterplot for CoffeePrices-1993-1990.csv.
File Mapping Analysis View

12237

e
Cor 0

o %

11383

o548

108,79 106,21

11052

Colurnir

12537

Figure 3: Data that benefits from a piecewise linear representation. The left column shows the usual representation with a
single line segment. The other two columns show different representations with three line segments. The lower row shows the

data after projecting (each cluster) along the principal directions.

that could hardly be done automatically. On the other hand,
the human visual systems is very good at identifying clus-
ters.

We combine our idea of VCA with clustering. Instead of
allowing the user to place only one line segment to represent
the data, a poly-line could be fitted. This poly-line represents
the linear components as well as the clustering of the data.

The clustering is performed as follows: The poly-line with
s segments is represented by d-dimensional points p,; €
RY m € {1,...,5+ 1}. These control points are projected
into the scatterplots and connected to form a poly-line. Each
segment (Pm, Pm+1) defines a cluster Cpy, a per-cluster mean
%™, and a per-cluster principal direction w”, exactly as de-
scribed for a single line in Section 4.2.

Clustering is performed based on Euclidean distances to
the line segments. For each data vector x; we compute the
distance to the segments

dn(x) =[x = Pm — tm (X) (Prnr1 — Pm) |l ®)
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where
tm(X) = min(1,max(0, (X = pm) (Pmr1—Pm))),  9)
and define a cluster as
Cn = {xild(xi)m < (1+eq)d(Xi)i,k #m}.  (10)

Note that for £; > 0 there is some overlap between clusters,
i.e. some data vectors belong to more than one cluster. The
idea is that points around the “joint” of the poly-line cannot
be attributed clearly to one or the other cluster.

Using these definitions, the process of defining a poly-
line proceeds analogous to to defining a single line. Once
the poly-line is determined, all points need to be projected
onto the appropriate orthogonal subspaces.

6. Projecting clustered data

All data vectors x; that belong to only one cluster Cy, are
projected as explained before, however using mean " and
direction w™. For data vectors belonging to more than one
cluster we need to adapt the procedure.
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Let x; belong to the set of clusters {C, }. We can define a
projection of x; per cluster as usual:

m_mT

X' =x; —x;w'w

(1)

We will represent the projection as a linear combination of
per-cluster projections

/ m_m
X; =0 X; .

12)

For determining reasonable weights ® we like to exploit the
distance information, however, so that the weighting contin-
uously varies between the clusters. We define intermediate
weights

1/#{k
gn — I Hed) (M dic(x0) " — (1)
l £d k)
which have the property that they are zero for the bound-
aries of the intersection of cluster areas. These weights are

normalized to yield the (affine independent) weights
mj _ 671,
i Zk e:’"k :
Using these weights the projection of each data vector is
uniquely determined. Note that the weights are in general
only Y functions. While we have found this to be accept-

able in applications, weights with higher order of continuity
could certainly be constructed.

13)

(14)

7. Conclusions

We introduce an approach to the visual determination of
principal components in unknown multi-variate data. It in-
tegrates basic techniques from the field of multivariate anal-
ysis with interactive information visualization. We call this
approach Visual Component Analysis to stress the impor-
tance of interaction and visualization for the resulting com-
ponents, which could be understand as “visually optimized”
principal components.

A panel matrix is used to visualize both data and initial
candidates for principal components calculated in an analy-
sis step. Based on this visualization, it is possible to inspect
and verify principal components interactively. For instance,
one can evaluate the importance of principal components
and rotate them in case of an orthogonal result from the anal-
ysis step. Also, the weight of outliers in the data can directly
be adjusted.

Our system also allows the easy integration of clustering
in the analysis step. The data are then represented piecewise
linear by a poly-line. For data resulting from non-linear pro-
cesses, poly-lines provide a simple and powerful primitive
for sketching trends in the data. Defining a poly-line auto-
matically defines clusters based on distances to the line seg-
ments. This form of clustering is much more intuitive during
the search for principal trends in the data.

The analysis is done in a loop, where the component with
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main variation is removed from the data by projecting along
the principal direction. This leads to an iterative process, in
which the main variations (and directions) in the data are
identified.

We see this work as an initial step that demonstrates the
effectiveness of integrating the human visual system into
well-established multivariate analysis tools. While not all vi-
sualization techniques are equally adequate, it is clear that
the general idea could probably be applied to other infor-
mation visualization techniques or other analysis tools. This
seems to be an interesting avenue for future research.
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