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Abstract
Accurate determination of the vessel axis is a prerequisite for automated visualization and quantification of artery
diseases. This paper presents an evaluation of different methods for approximating the centerline of the vessel in
a phantom simulating the peripheral arteries. Six algorithms were used to determine the centerline of a synthetic
peripheral arterial vessel. They are based on: ray casting using thresholds and maximum gradient-like stop crite-
rion, pixel motion estimation between successive images called block matching, center of gravity and shape based
segmentation. The Randomized Hough Transform and ellipse fitting have been used as shape based segmentation
techniques. Since in the synthetic data set the centerline is known, an estimation of the error can be calculated in
order to determine the accuracy achieved by a given method.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Blood Vessel]: Centerline detection, Vessel
segmentation, Medical Visualization

1. Introduction

Epidemiological and clinical studies have shown that pe-
ripheral arterial occlusive disease (PAOD) increases the risk
of cardiovascular and cerebrovascular events and mortality
[PGJ03]. CT-angiography (CTA) is a routinely applicable
non-invasive vascular imaging technique for many vascular
territories such as the peripheral (lower extremity) arteries.
Accurate identification of the vessel centerline in CTA data
sets is highly desirable, because of its crucial role in ves-
sel visualization (e.g., through curved planar reformations -
CPR [KPF∗01]) and automated vessel analysis and quantifi-
cation.

The vessel centerline is widely used for 3D reconstruc-
tion and modelling of vessel structures. It has been used as
a basis for several vessel segmentation techniques [KQ00],
and as starting point for a geometric model definition of
vascular structures [BFC03]. The skeletonization of a vas-
cular structure is a method widely used for centerline de-
tection [Pui98]. Several methods based on the skeletoniza-
tion use thresholds and object connectivity [NKSK93], dis-
tance field calculation [Pui98], mathematical morphology
based on dilation, erosion, opening and closing operators
[TKN∗95]. These approaches have been applied on differ-
ent image modalities (e.g., MRI, CTA) and vascular struc-

tures. Many of them have been applied on a specific part
of the vessel structure, for example, cerebrovascular struc-
tures [Pui98], coronary arteries from biplane angiograms
[CRC92] or aorta [WNV00]. These techniques and methods
have not been applied to the centerline detection of periph-
eral vessels, where the level of intensity decreases from top
to bottom, from aorta to pedal (tibial and fibular arteries).
For peripheral arteries, an accurate detection of the center-
line is very difficult, specifically where the diameter can be
between only two to four voxels. The partial volume effect
also makes correct identification of small vessels (e.g. tibial
and fibular arteries) difficult.

This work presents the results of an accuracy evaluation
of six techniques for approximating the vessel centerline in
peripheral arteries. This paper has the following structure.
Section 2 describes each method which has been evaluated.
Section 3 presents the evaluation and the results. Finally, sec-
tion 4 presents the conclusions and future work.

2. Centerline Approximation Methods

Starting from an initial path of the vessel, six different tech-
niques to approximate the vessel centerline have been used
in order to evaluate accuracy and quality. This initial path is
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estimated using the vessel tracking technique developed by
Kanitsar et al. [KPF∗01]. This technique consists of finding
the path with the minimum cost. The cost is defined by a cost
function which depends on a value associated to the density
for vesselsvsother tissues, Laplacian filter and the gradient
magnitude between two adjacent voxels along the path.

The path generated by vessel tracking is with high proba-
bility inside the vessel structure and is taken as basis to ap-
ply the different centerline approximation methods. Along
this path, a perpendicular cross-section is estimated for each
point. Each center approximation technique presented in the
following sections is applied to each perpendicular cross-
section (on a 2D plane). The vessel centerline is defined as a
3D curve smoothed using B-splines.

2.1. Ray Casting

Ray casting methods trace several rays from one point inside
the object to the outside. The idea is to trace several rays−→r
(see Figure1) from one initial point inside the object until
a boundary is detected. Wink et al. [WNV00] and Kanitsar
et al. [KPF∗01] use this technique to approximate the vessel
centerline.

Wink et al. [WNV00] use gradient information to detect
the border of the vessel. First, they calculate the gradient via
convolution of the original image with a normalized Gaus-
sian derivative, in order to reduce noise and other irregu-
larities in the image. Then, they define the border as the
position where the gradient magnitude in the direction of
the ray reaches a first maximum above some threshold. The
threshold has to be significantly higher than the typical noise
level in the data set. This threshold depends on the image
quality (e.g., contrast, noise and resolution), and is there-
fore modality-dependent. On the other hand, Kanitsar et al.
[KPF∗01] apply ray casting technique based on a valid den-
sity interval for vessels, and stop a cast ray when a density
value along the ray is outside this interval. This valid inter-
val for a vessel was defined empirically betweentlower and
tupper.

Two techniques based on ray casting were implemented.
One is denoted as ray casting with thresholds (RCT) and
the other as ray casting with maximum gradient (RCMG).
The RCT is the same ray casting technique used by Kanitsar
[KPF∗01]. RCMG uses the maximum gradient along the ray
as stopping criterion. Furthermore, the RCMG method uses
also the lower threshold valuetlower to validate that tissues
with lower density than the density for vessels are not con-
sidered. After several border points are estimated, the true
center is calculated by:

[xc,yc] =

[

∑n
i=1 xi(di−1 +d(i)mod(n))

2∑n
i=1 di

,
∑n

i=1 yi(di−1 +d(i)mod(n))

2∑n
i=1 di

]

(1)
Here,xc andyc are the coordinates of the center calculated,
n is the number of border points detected,xi andyi are the
coordinates of thei-th border point, anddi is the distance

Figure 1: Example of the ray casting method

between two adjacent border pointsi andi +1. The function
mod is used due the circular connection between successive
border points.

2.2. Block Matching

Block Matching (BM) technique is used for motion estima-
tion between successive frames in video compression. More
details are described in [DKF95]. Assume that two 2D im-
ages are related by a simple shift determined byxd andyd.
These values are estimated by minimizing the magnitude of
the difference between shifted states of the two images as:

(xd,yd) = minx′d,y′d ∑
i, j

[

f2D(i +x′d, j +y′d,1)− f2D(i, j,0)
]2

,

(2)
wherex′d and y′d are the displacements of pixels in image
space.

This method is applied incrementally for pairs of succes-
sive cross-sections of the initial vessel path. It looks for the
best matching between two vessel cross-sections by apply-
ing a shift on the original cross-sections. The consecutive
cross-section is shifted to several new positions and matched
with the previous cross-section. The best match result is se-
lected as center of the vessel.

2.3. Center Of Gravity

The weighted center of gravity (CoG) has been used widely
for estimation of object centers in gray level images with
sub-pixel precision [vAEPR02]. The center of gravity can
be defined as the equilibrium point where the entire weight
of the object is concentrated. For a 2D gray level image the
center of gravity is defined in [vAEPR02] as:

[xc,yc] =

(

∑x,y∈Ω xw(x,y)

∑x,y∈Ω w(x,y)
,

∑x,y∈Ω yw(x,y)

∑x,y∈Ω w(x,y)

)

, (3)

whereΩ defines the area containing pixels that belong to
the vessel.w(x,y) is the weight for each coordinate in theΩ
space, and can be defined as:

w(x,y) = f2D(x,y)−m (4)

and,

m = minx,y∈Ω( f2D(x,y)) (5)

The function f2D(x,y) corresponds to the density value of a
pixel (x,y) in the perpendicular 2D cross-section.
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The threshold valuestlower and tupper defined for RCT
technique, were used also in this method to determine those
points which belong with high probability to the blood ves-
sel.

2.4. Ellipse Fitting

Blood vessels have a tubular structure, which can be defined
by a set of elliptical shapes along its axis. Therefore, an ap-
proximation of the centerline of the vessel can be estimated
as the center of an elliptical shape along its axis. This tech-
nique is denoted as EF. Starting from the initial path obtained
via vessel tracking, the Canny edge detector [Can86] is ap-
plied in order to get a set of points around the vessel bound-
ary. Then, these points are approximated with an ellipse us-
ing the Lagrange multiplier technique. The problem can be
described as:

Given:

• A set of 2D PointsP = {xi}
n
i=1, wherexi = (xi ,yi)

• A curveC(a) characterized by the vectora. WhereC(a) =
{x|F(a,x) = 0}, in our caseF(a,x) is the representation
of general conic curves which is given by:

F(a,xi) = ax2
i +bxiyi +cy2

i +dxi +eyi + f

=
[

x2
i ,xiyi ,y

2
i ,xi ,yi ,1

]

[a,b,c,d,e, f ]T , (6)

with a = [a,b,c,d,e, f ] andxi = [x2
i ,xiyi ,y

2
i ,xi ,yi ,1]

• A distance metricδ(C(a),x) as a measure of the distance
from a pointx to the curveC(a). Defined byF(a,xi)

2.

The problem consists of minimizing the sum of squared al-
gebraic distances∑n

i=1 F(a,xi)
2 with the constraint that for

an ellipse 4ac− b2 = 1. After this optimization problem is
solved [FF95], the ellipse center and axis can be extracted
using equation (6).

2.5. Randomized Hough Transform

The randomized Hough Transform (RHT) technique intro-
duced by Xu et al. [XOK90] consists of randomly selecting
a subset of points from an image and fitting a parameterized
curve to them.

First, the Canny edge detector is applied [Can86] in or-
der to get a binary edge image. Then, parametric ellipses
are extracted using the technique defined by MacLaughlin
[Mac98]. He describes a method to accelerate the ellipse de-
tection in an image using the RHT. This technique consists
of randomly selecting three points (P1, P2, P3) from the bi-
nary edge image, and defining the ellipse that passes through
these points (see Figure2). For each pointPi the tangent
to the curve is estimated, selecting a neighborhood around
this point and finding the line of best least-squares fit to the
curve in this neighborhood. The mid pointmbetweenP1 and
P2 is calculated, and connected with the intersection pointt
between the tangents of these points (see Figure2(a)). The

possible center of the ellipse will lie in the line defined by
−→tm. The process is repeated with the pointsP2 andP3, which
define a second line. The intersection of these two lines will
be the center of the ellipse.

With the centerc of the detected ellipse (see Figure2(b))
whose coordinates are(xc,yc), and the three pointsP1 =
(x1,y1), P2 = (x2,y2), andP3 = (x3,y3) a possible ellipse
is estimated as:

• The ellipse equation (derived from Eq. (6)) is defined as:

a(x−xc)
2 +2b(x−xc)(y−yc)+c(y−yc)

2 = 1 (7)

With the restriction(ac−b2) > 0
• Translating the center to the origin, equation (7) is re-

duced to:

ax2 +2bxy+cy2 = 1 (8)

• If the coordinates fromP1, P2, andP3 are substituted in
equation (8), the following equation system is derived:





x2
1 2x1y1 y2

1
x2

2 2x2y2 y2
2

x2
3 2x3y3 y2

3









a
b
c



 =





1
1
1



 (9)

• After solving the equation system from (9) the parameters
(xc,yc,a,b,c) can be estimated.

• The parameter(xc,yc,a,b,c) must be converted into polar
coordinates(xc,yc, r1, r2,θ), wherer1 andr2 are the radii
of the major and minor axis respectively of the ellipse, and
θ is the angle of rotation for the major axis. In this way the
parameter of the ellipse are calculated.

Each found ellipse must be validated [Mac98]. This pro-
cess is done by drawing the ellipse into the image and look-
ing for all the possible points that exist in the data image and
are part of the border of this ellipse. For each valid detected
ellipse, a 5-D accumulator is used to aggregate the number
of valid ellipses found. Each dimension in the accumulator
represents one parameter of the ellipse. After a predefined
number of iterations, the cell with the maximum value in
the 5-D accumulator determines the parameters for the best
ellipse found in the image.

Figure 2: Ellipse Approximation. (a) Estimation of line
where the ellipse center should pass. (b) Estimation of the
ellipse center.
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3. Evaluation

Three different synthetic data sets have been used to evalu-
ate the accuracy of each method described in section 2. Each
synthetic data set consists of 3D data of 256x256x768 vox-
els of 0.53mm, and it simulates a vessel structure of the pe-
ripheral arterial tree, from aorta-to-pedal. The diameter of
the vessel varies along the z-axis from about 0.7 to about
23 voxels, from the slice 767 to the slice 0. The density for
a vessel is defined between 1130 and 1350 and the back-
ground density between 1080 and 1100. The curvature of the
vessel is simulated by a helix with an angle of 32.14 and ra-
dius 76.8. Each data set includes Gaussian noise, which has
been added with aσ of 0, 5 and 10 respectively. An example
of the synthetic data is shown in figure3. For the evalua-

Figure 3: Maximum Intensity Projection of the synthetic
data.

tion of the centerline estimation several graphs have been
generated, describing the error as the distance between the
center in the synthetic data, which is known, and the center
estimated by the respective method. The RCT, RCMG, EF
and RHT methods estimate the vessel centerline and its di-
ameter in individual slices. The CoG and BM estimate just
the vessel centerline. Therefore, two types of graphs were
generated. The first shows the distance error and the second
shows graphically the difference between the real and the es-
timated diameter of the vessel. Both graphs are plotted along
the vessel. Table1 describes concisely the result of several
experiments carried out for each method.

The RCT, RCMG and CoG use threshold values to con-
sider vessel pixels. These values were determined empiri-
cally based on the density distribution analysis of vessels on
CTA data done by Kanitsar et al. [KPF∗01]. For the evalu-
ation these values were varied accord with the data set. The
selection of a good threshold interval to identify vessel pix-
els results in a better approximation of the center. Figures
4(a, b and c) show the distance error gotten with these meth-
ods. These graphs show how CoG exhibits better results than
RCT and RCMG. The BM requires an optimization process.
The figure4(d) show how this method gets worst results on
large (slice 0 to≈ 500) than on small vessels.

The EF and RHT use the Canny edge detector. This de-
tector uses two threshold values for the "hysteresis pro-
cess" involved in the method, which classify the pixels re-
sulting from previous Gaussian filtering, gradient and non-
maximum suppression steps [Can86]. The threshold values

Method Mean error Comments
(mm)

RCT ≈ 1.11±0.4 - Good approximation along
different diameters
- Overestimates the diameter
- Threshold dependent

RCMG ≈ 1.82±0.9 - Good approximation along
different diameters
- Overestimates the diameter
- Threshold dependent

BM ≈ 0.99±0.63 - Time consuming
for vessel - Requires an optimization
diameter process
<5mm - Better for small vessel

(<5mm of diameter) than large
vessel

CoG ≈ 0.8±0.4 - Best center approximation
along different diameters

EF ≈ 0.56±0.22 - Edge detector dependent
- Not robust enough

RHT ≈ 5.23±6.89 - Fails many times especially
for small vessel
- In general there are not enough
points in a vessel cross-section
available to get significant
results
- Not robust enough
- Computationally expensive

Table 1: Comparison of the evaluated methods.

used for the Canny edge detector were modified, but were
not able to achieve better results for small vessels. Peaks in
figures4(e,f) show where the methods fail because of the
Canny edge detector or there are not enough points to ex-
tract the parameters of the ellipse using EF or RHT tech-
niques. The method from MacLaughlin [Mac98] was used
to implement the RHT. Many parameters and threshold val-
ues must be handle in a precise way. This makes an accurate
evaluation of this method for small diameter difficult. In gen-
eral, RCT, RCMG, EF and RHT overestimate the diameter
approximation of the vessels (see figure5).

Timing are giving in table2. While BM and RHT clearly
have the longest execution times, RCT, RCMG, and CoG
are very fast and do no exhibit significant performance dif-
ferences. EF is slower than the latter three methods, but still
tolerable.

3.1. Improvements

The RCT, RCMG and CoG can be improved using an adap-
tive threshold estimation during the centerline process. The
BM require to optimize the search process for the best
matching, and could be implemented using sub-pixel preci-
sion for a best approximation. For EF and RHT is important
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Figure 4: Distance error graphs of the center estimated by (a) RCT, (b) RCMG, (c) CoG, (d) BM, (e) EF, and (f) RHT method
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Figure 5: Diameter estimated by (a) RCT, (b) RCMG, (c) EF, and (d) RHT method

to use a very good edge detector or refine the threshold val-
ues used by the Canny edge detector. The RHT technique
that have been used in this work requires a refining process
of all parameters involved in the method.

4. Conclusion

The paper presents an evaluation of different techniques to
approximate the center of the vessel in the peripheral arterial
tree. Synthetic data sets were used in order to evaluate the ac-
curacy of each method. In general all methods are sensitive
to noise. The CoG method exhibits less sensitivity to noise
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RCT RCMG EF CoG BM RHT

1.797 1.594 3.969 1.531 174,000 104,000

Table 2: Execution times in seconds for each evaluated method.

than the other techniques. The RCT, RCMG and CoG meth-
ods provide the best approximation to the center. The BM
technique requires an optimization process for better results.
The EF technique depends on the parameters of the Canny
edge detector. The RHT technique also depends on the pa-
rameters of the Canny edge detector, and is computationally
expensive.

The methods analyzed were selected as result of an ex-
ploration of different methods used to determine elliptical
shapes and detect the object’s center. In this study, the RCT
method is the only one used for centerline detection of ves-
sel structure. The other methods are not already used in this
area, but they were considered because simplicity, novelty in
the area, few sensitivity to noise and attack the problem.

The centerline estimation of the peripheral arteries is a
difficult task, because of the partial volume effect, diame-
ter of small vessels (tibial and fibular arteries), overlapping
of density values between vessels, bones and soft tissues.
Therefore, this topic continues being an open problem. The
results presented in this work are encouraging us to further
develops in these algorithms.
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Figure 6: From left to right rotating CPR with 45, 135, 225 and 315 degree. From top tobottom centered with RCT, RCMG,
CoG, EF, BM and RHT. This data corresponds to a femoral with a diameter between 2mm and 4mm, and present a calcification
part and one bifurcation. Brighter objects correspond to bone structures. Observing, from left to right, from top to button, the
third image exhibits the best approximation center in different rotations of theCPR. This is without consider bifurcations, and
corresponds with the CoG method. In this data the best result is exhibited bythe RCMG method.
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