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Abstract
We show a novel approach for accelerating the computation of graph drawing algorithms. The method is based
on the notion that we can find a subspace with a relatively low dimensionality thatcaptures the “nice" layouts of
the graph. This way each axis of the drawing is a linear combination of a few basis vectors, instead of being an
arbitrary vector inR

n (n is the number of nodes). We describe ways of constructing these basis vectors and also
algorithms for optimizing the graph drawing in the resulting subspace.

1. Introduction

A graph G(V = {1, . . . ,n},E) is an abstract structure that
is used to model a relationE over a setV of nodes. Vi-
sualizing graphs is a challenging task, requiring algorithms
that faithfully represent the graph’s structure and the relative
similarities of the nodes. Consequently, many approaches to
graph drawing have been developed [dBETT99, KW01]. We
have focused on the problem of drawing undirected graphs
with straight-line edges. The most popular approaches to
this appear to be those that define a cost function, whose
minimization determines the optimal drawing. The resulting
algorithms are known asforce-directedmethods; see, e.g.,
[Ead84, FR91, KK89].

A particularly challenging problem is drawing large
graphs containing 103–106 nodes, which has gained much
interest recently because of the rapid growth of data collec-
tions. Most existing graph drawing algorithms do not scale
up well and face substantial difficulties when applied to large
graphs. Consequently, we suggest here a new approach to
drawing large graphs. As in force-directed methods, we uti-
lize cost functions to assess the quality of the drawing. How-
ever, instead of optimizing these functions in the fullR

n, we
optimize them in a carefully designed, much smaller sub-
space that we expect to contain nice drawings of the graph.
Our experiments with two appropriate energy models show
an appreciable reduction of running time without a consid-
erable loss of drawing quality.

2. Related Work

Multi-scale graph drawing In recent years the multi-
scale strategy has been recognized as an effective way
for improving the performance of graph-related opti-
mization problems by overcoming the localized nature
of various optimization heuristics. Probably, the most
well-known application is for the graph partitioning
problem; see, e.g., [HL95]. Multi-scale graph drawing
[GGK00, HH01, HK00, KCH02, Wal00] is a rather rapid
method suitable for drawing large graphs. The main idea is
to approximate the final drawing using a drawing of much
smaller related graph (e.g., of the half size), calleda coarse
graph. After obtaining the approximated layout, it is refined
locally to become a truly nice layout.

The method that we introduce in this paper shares some
conceptual relations with the multi-scale approach. Multi-
scale algorithms accelerate the computation by consider-
ing layouts of smaller, simplified graphs; our approach also
works with simplified layouts but in a very different way
– we use special vector spaces in which the layout must
lie. Unlike the multi-scale algorithms that have to refine the
simplified layout in order to get a nice one, the subspace-
restricted layouts are already quite nice and can be used
without further refinement.

Eigen-projection — drawing graphs with eigenvec-
tors The spectral approach to graph visualization, which
is rooted in the 1970’s work of Hall [Hal70], computes
the layout of a graph using certain (generalized) eigenvec-
tors of the related Laplacian matrix. Consequently, we call
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this method theeigen-projection. Two distinct advantages of
eigen-projection make it very attractive. First, it provides us
with an exact solution to the layout problem, whereas almost
all other formulations result in an NP-hard problem, which
can only be approximated. The second advantage is compu-
tation speed: spectral drawings can be computed extremely
fast [KCH02].

In this work eigen-projection can be used both for con-
structing the subspace in which we want to draw the graph
(Subsection 3.2) and for finding the graph layout within a
given subspace (Subsection 4.1). In fact, in the context of
visualizing multidimensional data, a few recent works al-
ready deal with optimizing eigen-projection-related energies
within a subspace; see [Bra03, KC03].

PHDE — graph drawing by high-dimensional embed-
ding An approach to drawing large graphs, which is espe-
cially relevant to this paper, is described in [HK02]. This
method involves a two-steps process: it first constructs a
high-dimensional layout (HDE) of the graph (e.g., in 50 di-
mensions) and then projects the layout into a low dimension
usingprincipal components analysis(PCA). Henceforth, we
refer to this PCA-based approach as PHDE (short for PCA
of High-dimensional Embedding). In the following sections
we show how to replace the PCA projections with more so-
phisticated methods that take into account the structure of
the graph and typically yield better drawings.

Visualization challengesOne of the main difficulties
when drawing large graphs is the limited display area. Obvi-
ously, graphs with many thousands of nodes cannot be con-
veniently displayed or printed, and new display tools would
be required. A promising direction is to display only a por-
tion of a graph at any given time, using various smooth nav-
igation tools. Another interesting approach is to display ab-
stractions of the original graph in order to ease the visual
burden of grasping the full complex graph. A comprehensive
survey of various visualization approaches for the display of
large graphs can be found in, e.g., [HMM00]. In this paper,
we tackle the problem from an algorithmic point of view,
which is complementary to the display point of view.

3. Adequate Subspaces for Graph Drawing

Given a graphG(V = {1, . . . ,n},E), we can define its 2-D
layout using two vectorsx,y∈ R

n, such that the coordinates
of nodei are(xi ,yi).

† Consequently, a traditional force di-
rected algorithm can be formulated as:

“Find vectorsx,y ∈ R
n that minimize a certain

cost-function".

We want to alter this formulation and suggest the following:

† The methods discussed here can be easily extended to 3-D, but
for presentation simplicity we deal with 2-D layouts that aremuch
more common.

“Find vectorsx,y∈ S that minimize a certain cost-
function".

Here,S ⊆ R
n represents some subspace (vector space) in

which we want to optimize the layout. Our usual way of
defining such a subspace is by defining its basis vectors. This
way, the subspace spanned by the basis vectors{v1, . . . ,vm}
is

span(v1, . . . ,vm)
de f
= {α1v1+ · · ·+αmvm | α1, . . . ,αm∈R}.

Clearly, constraining the drawing to lie within a subspace
might result in arbitrarily bad layouts. However, as we will
show, we can find some subspaces that contain reasonably
nice layouts, so we are not loosing much by working only
within such subspaces. In this section we describe two such
subspaces that meet our demands. In the next section we de-
scribe how to optimize certain cost functions within these
subspaces.

Technical notesWe assume, without loss of generality,
that the basis vectors are orthonormal, what will be proved
useful later. For any set of vectorsv1,v2, . . . ,vm, this charac-
teristic can be achieved without altering span(v1,v2, . . . ,vm).

Also, note that adding a multiple of 1n
de f
= (1,1, . . . ,1} ∈ R

n

to the coordinates is equivalent to translation that has no vi-
sual effect. Hence, it will be convenient for us that all vectors
are orthogonal to 1n (that iscentered) eliminating the redun-
dant translation degree-of-freedom. We achieve all these re-
quirements by a variant of the Gram-Schmidt orthonormal-
ization procedure shown in Fig. 1. Note that vectors that are
(almost) linearly dependent will get the value 0 and therefore
should be removed. The entire orthonormalization process
takesO(m2n) time.

Orthonormalize ({u1, . . . ,um})
% This function orthonormalizes a set
% of vectors. Also, it orthogonalizes
% the vectors against 1n

constu0← 1n
‖1n‖

, ε← 0.001

for i = 1 tom do
for j = 0 to i−1 do

ui ← ui −

(

(

ui
)T

u j
)

u j

end for
if ‖ui‖< ε then

% a linearly dependent vector
ui ← 0

else

ui ← ui

‖ui‖

end if
end for

Figure 1: Gram-Schmidt orthonormalization
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3.1. High-dimensional embedding

An appropriate subspace is HDE (high-dimensional em-
bedding) that has already been used by [HK02]. In or-
der to construct anm-dimensional subspace spanned by
{v1,v2, . . . ,vm}, we choosem pivotnodes{p1, p2, . . . , pm}
that are uniformly distributed on the graph and link each
of the m basis vectors with a unique node. The vectorvi ,
which is associated with pivot nodepi , represents the graph
from the “viewpoint" ofpi . This is done by assigning thej-
th component ofvi to the graph-theoretic distance between
nodespi and j. Henceforth, we denote this graph-theoretical
distance bydpi j , so in symbolsvi

j = dpi j .

The resulting algorithm for constructing the high-
dimensional embedding is given in Fig. 2. The graph-
theoretical distances are computed using breadth-first-search
(BFS). The pivotsp1, p2, . . . , pm are chosen as follows. The
first member,p1, is chosen at random. Forj = 2, . . . ,m,
nodep j is a node that maximizes the shortest distance from
{p1, p2, . . . , p j−1}. The time complexity of this algorithm is
O(m· |E|), since we perform BFS in each of them iterations.

HDE (G(V = {1, . . . ,n},E),m)
% This function finds an m-dimensional
% high-dimensional embedding of G

Choose nodep1 randomly fromV
d[1, . . . ,n]←∞
for i = 1 tomdo

% Compute vi using BFS
dpi∗← BFS(G(V,E), pi)
for every j ∈V

vi
j ← dpi j

d[ j]←min{d[ j],vi
j}

end for
% Choose next pivot
pi+1← argmax{ j∈V}{d[ j]}

end for
return v1, . . . ,vm

Figure 2: Constructing an m-dimensional HDE

The PHDE method [HK02] uses PCA projections of the
high-dimensional embedding to yield nice layouts. Projec-
tions are just a type of linear combinations, so restricting
the layout to lie inside span(u1,u2, . . . ,um) is plausible. In
practice, we have found that choosingm∼ 50 serves very
well for producing a nice layout. It is important to note two
fundamental differences between the current approach and
PHDE:

1. In PHDE we looked forprojections of the high-
dimensional embedding, whereas here we are looking for
the more general case of alllinear combinationsof the
high-dimensional embedding vectors.

2. In PHDE all the knowledge about the graph is encapsu-
lated in the part of the algorithm that generates the high-
dimensional embedding, whereas in the projection part
of the algorithm (i.e., PCA) nothing is known about the
graph’s structure. However, here, as will be shown later,
we utilize the graph’s structure also in an algorithm that
computes a nice layout within the subspace.

3.2. Low eigenspace of the Laplacian

The Laplacian, L, is an n × n symmetric positive-
semidefinite matrix associated with the graph, defined as:

Li j =







−1 〈i, j〉 ∈ E
degi i = j
0 otherwise

i, j = 1, . . . ,n,

where degi = |{ j | 〈i, j〉 ∈ E}|. Throughout this paper we
have assumed thatG is connected and contains no self loops
or parallel edges.

It is well-known that the low eigenvectors of the Lapla-
cian are useful for obtaining nice graph layouts [Hal70]. In
the graph drawing field only the 2–4 low eigenvectors of the
Laplacian were used so far [BW02, KCH02, Kor02]; how-
ever, in [KG00] many more low eigenvectors of the Lapla-
cian were used in compressing mesh geometry (in the con-
text of computer graphics). Consequently, [KG00] implied
that combinations of low Laplacian eigenvectors can yield
very good layouts.

Let us denote them+ 1 lowest eigenvectors ofL by
u1,u2, . . . ,um+1. It is known thatu1 is proportional to 1n and
that all other eigenvectors are orthogonal to 1n. Recall that
we remove the superfluous translation degree-of-freedom by
excludingu1 from our subspace. Therefore, an adequatem-
dimensional subspace that possesses important features of
the graph is span(u2, . . . ,um+1).

Technical notesApparently, taking a subspace spanned
by u2, . . . ,um+1 involves a very expensive computation of
m eigenvectors. Fortunately, we have found a way to get
around this computational problem. Observe that it is not
necessary to accurately distinguish between the eigenvec-
tors u2, . . . ,um+1, since we are not interested in each indi-
vidual eigenvector, but rather in the space spanned by all of
them together (that is, aneigenspace). It is necessary to dis-
tinguish between vectors that lie inside span(u2 . . . ,um+1)
and the rest of the vectors. Algorithms that compute eigen-
vectors have a hard time in distilling a particular eigenvec-
tor from adjacent eigenvectors (those with similar eigenval-
ues). However, here, for most vectors (especially the more
important, low ones), it is not necessary to distinguish be-
tween adjacent eigenvectors, since we need all of them.
Consequently, we use an algorithm for computing a basis
for the eigenspace span(u2 . . . ,um+1), where each vector in
the basis is not necessarily an eigenvector. The algorithm is
given in Fig. 3. Note that since we are interested in the low
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eigenspace, we invert the order of the eigenvectors by us-
ing the matrixg · I −X TLX . The scalarg is the Gershgorin
bound [GvL96], which is a theoretical upper bound for (the
absolute value of) the largest eigenvalue of a matrix.

We also utilize the fact that the lower eigenvectors (those
around u2) are more important for us than the higher
ones (those aroundum+1), since the lower eigenvectors
convey the graph better in terms of energy minimization
[Hal70, Kor02]. In this manner, it is not crucial if, for exam-
ple, we replaceum+1 with um+2 in the basis. Hence, we halt
the algorithm prematurely, after about 100 iterations. At this
point, the low eigenvectors are already contained within the
vector space, whereas the expression of higher eigenvectors
might be worse.

In terms of running time, each iteration takes time
O(m2n + m|E|) for performing orthonormalization andm
matrix-vector multiplications. Since the number of iterations
is constant, this is also the overall time complexity. In prac-
tice, construction of the high-dimensional embedding sub-
space is faster.

SubspaceIteration(L, {u2, . . . ,um+1})
% This function computes a basis for
% the low eigenspace of the Laplacian L

const#iterations← 100
% Compute Gershgorin bound:
g←maxi

(

Lii +∑ j 6=i |Li j |
)

{u2, . . . ,um+1}← random
Orthonormalize({u2, . . . ,um+1})
for i = 1 to #iterationsdo

for j = 2 tom+1 do
u j ← (g · I −L)u j

end for
if i mod 3 = 0then

% orthogonalize each 3 iterations

Orthonormalize({u2, . . . ,um+1})
end if

end for

Figure 3: The subspace iteration algorithm

4. Optimization within Subspaces

In this section we show how to optimize two cost functions
within a subspace. For convenience, let us assume that the
subspace is spanned by the columns of ann×m matrixX .
Hence, the subspace is just the range ofX denoted byR(X ).
Since the basis vectors were assumed to be orthonormal we
obtainX TX = I . Such a matrix representation is very con-
venient, since it allows us to describe the vectors in the sub-
space as the matrix-vector productXv, wherev∈ R

m.

4.1. Eigen-projection in a subspace

Here, we follow the eigen-projection and define the nice lay-
out as the minimizer of:

min
x∈Rn

∑〈i, j〉∈E(xi −x j )
2

∑i< j (xi −x j )2 . (1)

The energy to be minimized strives to make edge lengths
short (to minimize the numerator) while scattering the nodes
in the drawing area preventing an overcrowding of the nodes
(to maximize the denominator). This follows a common
strategy to graph drawing stating that adjacent nodes should
be drawn closely, while, generally, nodes should not be
drawn too close to each other; see, e.g., [Ead84, FR91].

Eliminating the translation degree-of-freedom, we are in-
terested only with centered coordinates, i.e.,xT1n = 0. In
this case it can be shown that∑i< j (xi −x j )

2 is proportional

to xTx, making problem (1) equivalent to:

min
1n⊥x∈Rn

xTLx
xTx

, (2)

whereL is the Laplacian matrix defined in Subsection. 3.2.
The optimizer is just the eigenvector ofL with the lowest
positive eigenvalue.

However, in our case, we want to optimizex within a sub-
space so problem (1) becomes:

min
x∈R(X )

∑〈i, j〉∈E(xi −x j )
2

∑i< j (xi −x j )2 . (3)

Or, equivalently:

min
x∈R(X )

xTLx
xTx

. (4)

In this case, we can replacex with Xv. Hence, (4) be-

comes minv∈Rm
(Xv)T L(Xv)
(Xv)T (Xv) , or equivalently:

min
v∈Rm

vTX TLXv
vTv

. (5)

The denominator could be simplified becauseX TX = I .
Note, that here we do not impose orthogonality to 1n, as it is
already achieved by the fact that 1n /∈R(X ).

Since the columns ofX are linearly independent and or-
thogonal to 1n, the matrixX TLX is positive-definite. Con-
sequently, it is known that the minimizer of (5), which is the
Rayleigh quotient, is the eigenvector ofX TLX with the low-
est eigenvalue. Another uncorrelated axis can be obtained by
the second lowest eigenvector, and so on.

To summarize, let us be restricted to a subspace spanned
by the columns of the orthogonal matrixX . The drawing can
be obtained by first computing the two lowest eigenvectors
of X TLX , denoted byv andu, and then taking the coordi-
nates to beXv andXu.
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It is interesting to compare this approach to the PCA pro-
jection used in PHDE [HK02]. We can reshape minimization
problem (1) as themaximizationof the ratio

∑i< j (xi −x j )
2

∑〈i, j〉∈E(xi −x j )2 . (6)

However, we have shown in [KC03] that PCA maximizes
∑i< j (xi − x j )

2, which was just the numerator in (6). There-
fore, unlike PCA, which strives to maximize the scatter of
the nodes, without considering the structure of the graph,
here we take into account the graph, and strive to keep edge
lengths short.

Optimizing (1) in the subspace spanned by the low
eigenspace of the Laplacian will yield the lowest positive
eigenvectors of the Laplacian that lie within this subspace.
This is not an interesting result, since this is exactly the
eigen-projection layout obtained by optimizing (1) in the full
R

n.

Nonetheless, we obtain very interesting outcomes by
optimizing (1) in the high-dimensional embedding sub-
space. This is a very quick way to approximate the eigen-
projection, which replaces solving ann× n eigen-equation
with an m×m eigen-equation. Regarding drawing quality,
the fact that all coordinates in the high-dimensional embed-
ding are integral (up to translation), helps in avoiding very
dense regions in the drawing, which are common in eigen-
projection results. In a sense, optimizing (1) in the high-
dimensional embedding subspace results in an integration
of PHDE and eigen-projection. It merges the ability of the
eigen-projection to find the global layout of the graph, with
the ability of PHDE to show delicate details that are often
hidden in eigen-projection layouts.

Figure 4 demonstrates optimization of (1) in the high-
dimensional embedding subspace, by comparing side-by-
side three methods: (1) eigen-projection, (2) PHDE and (3)
eigen-projection in the HDE subspace. We provide there
three layouts of the Bfw782a graph [MM]. Clearly, the
new method agrees with the eigen-projection regarding the
global structure of the layout, but provides finer details
like PHDE. We also show the results of the three meth-
ods for the 4elt graph [Wal]. Here, PHDE fails to show
the global structure of the graph optimally, since its top
boundary is folded; this is solved by using our new method.
Our last example here is the larger graph Finan512 [Wal],
(|V|=74,752, |E|=261,120). As usual, the eigen-projection
shows its overall circular structure well, but fails to exhibit
the delicate details. PHDE provides some hints concerning
the micro structure, but a better and more symmetric layout
is obtained by the method we have described here.

Running time Computation of the productX TLX is
done in two steps: first, we computeLX in time O(m|E|)
utilizing the sparsity ofL, and then we computeX T(LX ) in
time O(m2n). Note thatX TLX is anm×m matrix, where
typically m∼ 50, so the eigenvectors’ calculation takes neg-

ligible time (about a millisecond). We recommend that a
very accurate calculation be performed; this improves the
layout quality with an insignificant affect on running time.
In practice, we invert the order of the eigenvectors by using
the matrixB= µ· I−X TLX , and compute the highest eigen-
vectors ofB using the power-iteration [GvL96]. The scalar
µ is the highest eigenvalue ofX TLX that can be computed
directly by the power-iteration, or alternatively, one can set
µ to the Gershgorin bound [GvL96].

A distinct advantage of optimization within the HDE sub-
space is the substantial reduction of running time thanks to
replacing then× n eigen-equation with anm×m eigen-
equation. We cannot provide a recipe for the value ofm, but
as hinted before, in all our experimentsm = 50 served us
well, regardless of the graph’s size. Note that unlike all iter-
ative eigen-solvers (including the rapid algebraic-multigrid
implementation in [KCH02]) for which the number of iter-
ations depends on the structure of the matrix, the running
time of our algorithm depends only on the graph’s size and
isO(m2n+m|E|). Moreover, the dimensionality of the draw-
ing has virtually no effect on the running time, whereas for
(unconstrained) eigen-projection running time is linear in the
dimensionality of the layout (e.g., time for drawing a graph
in 3-D will grow by∼50% relative to drawing it in 2-D).

Table 1 provides the actual running time of the various
components of the subspace-constrained algorithm, as mea-
sured on a Pentium IV 2GHz PC. In addition to the total
running time, we also provide the time needed for comput-
ing and orthogonalizing the HDE subspace (in the HDE-
titled column), and the time needed for calculating the ma-
trix X TLX (in the last column).

4.2. Stress minimization in a subspace

Graph drawing algorithms based on minimizing the so-
called stress energy strive to place nodes in accordance with
target distances. Such algorithms were first introduced to the
graph drawing field by Kamada and Kawai [KK89]. Given a
layoutx, the concrete form of the energy is:

E(x)
def
= ∑

{i, j}∈S

ki j
(

|xi −x j |−di j
)2

. (7)

Here, the target distance,di j , is typically the graph-
theoretical distance between nodesi and j. The normaliza-
tion constantki j equalsd−α

i j , where 06 α 6 2; we worked
with α = 2. The setS ⊆ {{i, j} | i, j ∈ V} contains those
node pairs whose respective pairwise distances should be
preserved. The most obvious choice is to takeS as the set of
all node pairs. The resulting layouts are usually nice; how-
ever, the space complexity would be quadratic. Shortly, we
will show a much more efficient choice forS.

Standard stress minimization algorithms are based on
node-by-node local optimization methods, where in each
step a single node is relocated in a way that decreases the
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graph |V| |E| running time (sec.)
total HDE X TLX

516 [Wal] 516 729 0.02 0.00 0.00
Bfw782a [MM] 782 3,394 0.06 0.02 0.00
Fidap006 [MM] 1651 23,914 0.06 0.03 0.02
4970 [Wal] 4970 7400 0.77 0.09 0.64
3elt [Wal] 4720 13,722 0.77 0.09 0.64
Crack [Wal] 10,240 30,380 1.80 0.25 1.45
4elt2 [Wal] 11,143 32,818 1.84 0.28 1.52
4elt [Wal] 15,606 45,878 2.59 0.44 2.13
Sphere [Wal] 16,386 49,152 2.91 0.55 2.33
Fidap011 [MM] 16,614 537,374 3.28 0.73 2.52
Finan512 [Wal] 74,752 261,120 8.17 2.83 5.30
Sierpinski (depth 10) 88,575 177,147 13.89 3.19 10.56
grid 317× 317 100,489 200,344 7.59 3.28 4.24
Ocean [Wal] 143,437 409,593 25.73 8.00 17.50

Table 1: Running time (in seconds) of the various components of eigen-projectionwithin HDE subspace

stress energy. However, since the basic entities of these
methods are nodes and not axes, they seem to be inappro-
priate for subspace-restricted optimization. An alternative
approach that suits subspace-restricted optimization is the
novel algorithm for axis-by-axis minimization of the stress
energy [KH03]. The algorithm iteratively solves problems of
the form:

min
x∈Rn

xTLx−2xTbx̃ . (8)

Here, then×n matrixL is an appropriate Laplacian, defined
as:

Li j =







−ki j {i, j} ∈ S
∑ j:{i, j}∈S ki j i = j
0 otherwise

i, j = 1, . . . ,n.

Let the vector ˜x∈ R
n be another layout, usually the one ob-

tained by a previous iteration. The vectorbx̃ ∈ R
n is defined

as:

bx̃
i = ∑

j:
{i, j}∈S,x̃ j6x̃i

ki j di j − ∑
j:

{i, j}∈S,x̃ j>x̃i

ki j di j i = 1, . . . ,n.

(9)
The solution of (8) is obtained by solving then×n system of
equations,Lx = bx̃. It is shown in [KH03] thatE(x) < E(x̃),
unlessx = x̃.

By Limiting x to lie within the subspaceR(X ), we can
replace it withXv, and now we can rewrite (8) as:

min
v∈Rm

vTX TLXx−2xTX Tbx̃ . (10)

The unique minimizer is obtained by solving the tinym×m

system:
(

X TLX
)

v =X Tbx̃ , and takingx =Xv as the lay-

out. Consequently, we modify the iterative 1-D layout algo-
rithm of [KH03] as follows:

1-D_stress_subspace(G(V,E), X ∈ R
n×m, x∈ R

n)
Compute the LaplacianL
A←X TLX
do

x̃← x
Computebx̃ (by using (9))
Computev for whichAv= X Tbx̃

x←Xv
while (x 6= x̃)

As was proved in [KH03], the stress energy ofx strictly de-
creases in each iteration, and the process must converge.

We gain two benefits by minimizing the stress in a sub-
space. First, while using the original method, we solved in
each iteration ann×n system of equations; here we solve an
m×m system, which takes negligible time.

The second advantage is even more important and is re-
lated to the choice ofS. Since we optimize in subspaces
that contain only “quality" drawings, we find that taking a
very small setS is enough. Our way of choosingS is as
follows. First, we construct a setP that containsk pivot
nodesuniformly scattered over the graph. The construc-
tion of P is performed exactly like the way we have cho-
sen the pivots for constructing the high-dimensional embed-
ding in Subsection 3.1. Then, the set of pairs will beS =
{{i, j} | i ∈ P, j ∈V, i 6= j}. The distances between these
pairs are enough to distinguish the nice layout from other
layouts in the carefully crafted subspace. This is unlike the
case when we optimize in the fullR

n, when we also have to
add toS all pairs of closely located nodes. We have found
that takingk = 40 is often enough. Thus,|S| is linear inn,
and it is independent ofE. This is very important since|S| is
a dominant magnitude, governing the time and space com-
plexity of the algorithm. Also note that the pivot-smoothing
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mentioned in [KH03] is not needed here, since the layouts in
the subspace are already “smooth".

As explained in [KH03], when we want to compute a 2-D
layout by our algorithm, we have to computebx̃ (defined in
equation (9)) by taking the target distances to be theresidual
distances. This way we account for the fact that some frac-
tion of the target distances is already achieved in some other
axis. Specifically, given some layoutz∈ R

n, these residual
distances are defined as:

dz
i j =

{ √

d2
i j − (zi −zj )2 di j > |zi −zj |

0 otherwise
i, j = 1, . . . ,n.

(11)

Now, we compute a 2-D layout within a subspace by alter-
nating between the computation of thex- andy-coordinates,
as follows:

2-D_stress_subspace(G(V,E), X ∈ R
n×m, x,y∈ R

n)
Compute the LaplacianL
A←X TLX
do

% Improve the x-axis:
x̃← x
Computebx̃ using the residual distancesdy

i j

Computev for whichAv= X Tbx̃

x←Xv
% Improve the y-axis:
ỹ← y
Computebỹ using the residual distancesdx

i j

Computev for whichAv= X Tbỹ

y←Xv
while (x 6= x̃ or y 6= ỹ)

The most expensive part of the algorithm is the computa-
tion of the relevant residual distances (those corresponding
to pairs inS) and the calculation ofbx̃ andbỹ. Performance
is improved if instead of switching between the axes in each
iteration, we iterate with only one axis for a few iterations
and then switch to the other axis. This saves the necessity of
recomputing the residual distances in each iteration. We are
still looking for ways for alleviating the cost of computing
bx̃ andbỹ.

In our experiments we have found that optimization of
the stress energy within a subspace yields very nice results,
usually much better than optimizing the eigen-projection
within the subspace. As expected, we have to pay in running
time, which is significantly increased compared with eigen-
projection in a subspace. However, subspace-restricted stress
minimization is the fastest way that we know for optimiza-
tion of the stress function, and for some graphs it is probably
the fastest way of achieving a reasonable drawing.

As for the choice of the subspace, usually we have found
that working with the high-dimensional embedding is supe-
rior to working with the low eigenspace of the Laplacian,

since it contains high quality layouts with much fewer ba-
sis vectors. However, for a few graphs the low eigenspace
of the Laplacian is advantageous, so our default setting is
to form the subspace by joining the 10-D low eigenspace of
the Laplacian with a 40-D HDE, obtaining a 50-D subspace.
This choice usually works well, but it is certainly not opti-
mal.

Figure 5 shows the results of the 2-D algorithm; we quote
the running times measured on a Pentium IV 2GHz PC with
256MB RAM. The set of node pairs,S, is constructed using
40 pivots. We initialized the process with the optimizer of
eigen-projection within the subspace, as described in Sub-
section. 4.1 (this is included in the reported running times).
If the iterative process exceeds 200 iterations, we halt it be-
fore convergence.

Especially interesting for us is the result for the Finan512
graph (|V|=74,752,|E|=261,120) given in Fig. 6. This graph
was also drawn in Fig. 4, but only the stress-minimization
strategy can show its impressive micro-structure. Interest-
ingly, the Fruchterman-Reingold cost function used by Wal-
shaw (see Fig. 6 in [Wal00]) also hides the micro-structure,
producing a layout that resembles the result of the eigen-
projection. Therefore, it is very important to be able to draw
such a graph by minimizing the stress. Because of its large
size, optimization within a subspace is the only way we
could use for minimizing the stress in reasonable time and
space. However, the results for this graph when buildingS
using 40 pivots were not satisfactory and consequently we
have worked with 70 pivots, resulting in a running time of
225 seconds.

Last, somewhat funny example is the horse polygonal
mesh. The original mesh, shown in Fig. 7(a) consist of both
connectivity and 3-D geometry (that is, we are given a graph
and its layout). We used only the connectivity, and com-
puted a 2-D layout using our method. The result, which
shares some resemblance with the original mesh, is shown in
Fig. 7(b). For a detailed study on drawing polygonal meshes
based on their connectivity refer to [IGG01].

Figure 6: Stress minimization within a 50-D subspace of the
graph Finan512 [Wal].|V|=74,752, |E|=261,120, 225 sec
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5. Conclusions and Future Work

We have shown that optimizing graph-drawing in care-
fully designed subspaces (vector spaces) is a powerful ap-
proach for drawing large graphs quickly. Two constructions
of subspaces were suggested, one is based on the high-
dimensional embedding of [HK02] and one is based on
the low eigenspace of the Laplacian matrix associated with
the graph. We have shown how to optimize within a sub-
space two cost-functions that measure layout quality. We are
still looking for ways to optimize additional interesting cost
functions within a subspace and also seeking new ways of
constructing adequate subspaces.
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eigen-projection PHDE eigen-projection in subspace

Bfw782a

4elt

Finan512

Figure 4: Comparison of three drawing algorithms:left: eigen-projection,middle: PHDE (PCA of high-dimensional em-
bedding), andright: eigen-projection optimized in high-dimensional embedding subspace. The results are given for the three
graphs: top: the Bfw782a graph [MM] (|V|=782, |E|=3,394), center: the 4elt graph [Wal] (|V|=15,606, |E|=45,878), and
bottom: the Finan512 graph [Wal] (|V|=74,752, |E|=261,120).
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(a) (b) (c)

(d) (e) (f)

Figure 5: Stress minimization within a 50-D subspace of the graphs(a) Crack [Pet]: |V|=10,240,|E|=30,380, running time is
9 sec;(b) Shuttle [Wal]: |V|=3200, |E|=7840, 2 sec;(c) Rdb3200l [MM]: |V|=3200, |E|=7840, 1 sec;(d) Bfw782a [MM]:
|V|=782, |E|=3394, 0.3 sec;(e) Ocean [Wal]:|V|=143,437,|E|=409,593, 4 minutes;(f) Qh882 [MM]: |V|=882, |E|=1533,
0.5sec

(a) (b)

Figure 7: The horse model:(a) Original polygonal mesh;(b) Drawing the connectivity of the mesh using stress minimization
within a 50-D subspace.|V|=19,851, |E|=59,547, 29sec
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