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Abstract
Scatterplots are widely used in exploratory data analysis and class visualization. The advantages of scatterplots
are that they are easy to understand and allow the user to draw conclusions about the attributes which span
the projection screen. Unfortunately, scatterplots have the overplotting problem which is especially critical when
high-dimensional data are mapped to low-dimensional visualizations. Overplotting makes it hard to detect the
structure in the data, such as dependencies or areas of high density.
In this paper we show that by extending the concept of Pixel Validity (1) the problem of overplotting or occlusion
can be avoided and (2) the user has the possibility to see information about an additional third variable. In
our extension of the Pixel Validity concept, we summarize the data which are projected onto a given region by
generating a histogram over the required attribute. This is then embedded in the visualization by a pixel-based
technique.

Categories and Subject Descriptors(according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous–
Visualization H.2.8 [Database Management]: Database Applications–Data Mining

1. Introduction

In this paper we propose a new visualization technique
which enhances a two-dimensional projection, e.g., a scat-
terplot, such that the probability distribution of an additional
third attribute can be perceived by the user. At a small lo-
cal region in the projection plane the probability distribution
of the additional attribute is shown. This enables the user to
recognize dependencies between three variables, i.e., the two
attributes which define the projection and the third attribute.

We call our techniqueShape-Embedded-Histograms, be-
cause the histogram of a third attribute is embedded in the
plane to which the other two attributes are projected. The
embedding is done by a pixel-oriented visualization tech-
nique. The main benefit of our technique is to overcome
the impact of overplot or occlusion, a well known problem
of scatterplots when mapping high-dimensional data sets to

† Partially supported by NSF grant CCR-01-04494, and ISF grant
282/01.

low-dimensional data sets. Overplot or occlusion happens
when two or more data items are mapped to the same po-
sition or when the number of data items exceeds the number
of unique positions available for the visualization.

We point out two applications where the method proposed
in this paper can be applied and show examples taken from
real data sets.

The first application is the task of analyzing the classifi-
cation of a data set. The classification (or labeling) can be
known in advance or can be determined by a data mining
algorithm. For instance, clustering methods give the user a
set of clusters whether they are meaningful or not. The user
needs techniques which allow her/him to verify the valid-
ity of the clustering. This can be done by means of statisti-
cal tests or by more informal data-oriented methods which
make fewer assumptions about the data. One such informal
method is visualization. A widely used visualization tech-
nique is the scatterplot, where the points are colored accord-
ing to their class. The user can answer questions about the
separability and similarity of the classes, and dependencies
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between attributes (that is, the location of points in the pro-
jection plane) and the class label can be determined.

Typically, high-dimensional data items are mapped to a
low-dimensional (e.g., in our case a two-dimensional) space
and colored according to their class. Due to overplotting the
true class distribution can not be perceived. This means that
the questions “Which classes are present at a given loca-
tion?” and “How much is a particular class represented at
a given location?” can not be fully answered. The literature
proposed jitter and other techniques of repositioning to over-
come the overplotting problem. Another technique is to draw
the data items in an appropriate ordering such that the most
significant items are drawn last. Our technique enables the
user to recognize the true class distribution by showing the
histogram of the class distribution at any given location.

The second application is the need for exploring large data
sets. Analyzing data sets typically starts with analyzing the
scatterplot matrix (provided that the dimensionality is not
too high). People like scatterplots because they are easy to
understand. Assuming that the axes of the plot correspond to
the real attributes (“real” means non-transformed attributes
by methods of linear combination or dimensionality reduc-
tion) one can directly draw conclusions from the scatter-
plots. Scatterplots give information about the two attributes
which span the projection screen. The question arises: “Is
there any possibility to show information about an additional
third variable?” In [AKN01] the authors propose a method
calledPixel Validity Plots. This method enables the user to
get information about an additional third variable when ana-
lyzing 2D projections, making the 2D projections more ex-
pressive, particularly with regard to the fact that analyzing
low-dimensional projections is very useful in order to gener-
ate previously unknown hypotheses.

The method proposed in this paper enhances the expres-
siveness ofPixel Validity Plots. In [AKN01] a pixel is called
valid if the mass of the data which are projected onto a pixel
is close to the median. The color of the pixel represents the
value of the median. If the pixel isnot valid the pixel is col-
ored black. This works well if the probability distribution
is unimodal. Bimodal distributions are likely to result in in-
valid pixels disregarding the fact that the bimodality might
be an interesting observation. Therefore, we developShape-
Embedded-Histograms, an extension ofPixel Validity, in or-
der to show information of the probability distribution of the
third attribute.Shape-Embedded-Histogramssolve the over-
plotting problem and enhance thePixel Validityby summa-
rizing the data which are projected onto a small region in
the projection plane. This is done by computing the his-
togram of the class distribution or the probability distribu-
tion of the data which are projected onto the particular loca-
tion. Our technique of embedded histograms visualizes those
histograms transferring the essential information to the user.
The histogram computation restores the loss of information
due to overplotting or occlusion.

Figure 1: Overview of the technique presented in this paper.

An overview of our approach is shown in Figure 1. In this
paper we assume that the attributes which span the projec-
tion space are selected in advance. We call these attributesX
andY. Furthermore, we assume that an additional attribute,
calledZ is selected. At first, all data items from the database
are projected ontoX×Y. In the next step the projected items
are discretized in order to get a grid, which is defined in the
X×Y plane. Each cell of the grid corresponds to a region
in the final visualization. Next, the histogram of theZ at-
tribute for the data items falling in a particular grid cell is
computed, i.e., the data of a cell are summarized and fea-
tures are extracted. In the last step the histogram for a cell
is visualized at the position corresponding to that cell. The
histograms visualize some features of the data set, but avoid
the overplotting problem which would result from visualiz-
ing the individual data items.

In this paper we restrict ourselves to axes-parallel projec-
tions. For a given data set arbitrary projections or projections
determined by PCA or LDA can be useful to find dependen-
cies which are not visible in axes-parallel projections. For
instance, classes can seem to be badly separated in axes-
parallel projections, but an appropriate rotation may reveal
that they are well separated.

The rest of the paper is organized as follows: Section 2
presents work which is relevant to our technique. In section
3, we formalize our idea and present the essential algorithms.
In section 4, we evaluate our technique by visualizing data
sets taken from real world applications. We summarize our
findings and point out future work in section 5.

2. Related Work

The goal of visual data mining is to combine the domain
knowledge, the perceptual abilities and the creativity of the
human with the computational power of computers in or-
der to explore large high-dimensional data sets. Visual data
mining methods have been proven to be successful in many
areas. An overview of techniques and applications can be
found in [KW02]. In this paper we apply the concepts of
several visual data mining techniques.

Scatterplots are widely used, but they have the problem of
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overplotting or occlusion. Several methods have been pro-
posed in order to overcome the overplotting problem. Over-
plotting or occlusion is a matter of visual scalability [EK00].
The authors of [EK00] give some remarks about the scala-
bility of scatterplots. To overcome the overplotting problem
some techniques apply a repositioning of the data items by
jitter [CCKT83, Cle93] or self organizing maps [TGC03].
Other techniques summarize the data and visualize the ex-
tracted features. Those methods are based on density esti-
mation. Examples include the well-known density plot and
the methods proposed in [CLNL87, Hyn96]. In most cases
squares are used for binning, whereas [CLNL87] proposed
to use a hexagon for binning. Another technique to reduce
the overplotting problem is to draw the data items in an ap-
propriate ordering such that the most significant items are
drawn last. Also, techniques of panning and zooming can be
used to analyze regions of interest.

Several techniques have been emerged for visualizing
multi-dimensional data by embedding dimensions within
other dimensions. One of these techniques is called Di-
mensional Stacking [FB90a, FB90b, LWW90, MGTS91].
In [LWW90] then-dimensional attribute space is partitioned
in two-dimensional subspaces which are “stacked” into each
other. The technique requires a partitioning of the attribute
value ranges into classes. The technique works best when
the important attributes are used on the outer levels.

Other techniques which embed a set of information into
a shape in a 2D region include Shape Coding [Bed90] and
Color Icons [Lev91, KK94]. In [Bed90] the data are visual-
ized using small arrays of fields. Each field represents one at-
tribute value. The arrays are arranged line-by-line according
to a given order (e.g., the time attribute for time-series data).
Color Icons [Lev91, KK94] are arrays or shapes divided into
fields and the color of the fields represents the attribute val-
ues. The arrangement of the icons can be query-dependent
(e.g., spiral) or can be specified by other attributes.

Our technique can be seen as a combination of Dimen-
sional Stacking and Shape Coding. In contrast to previous
work, we stack only one dimension: We embed the his-
togram of the third dimension in a higher-level image. The
embedding results in a dense display, whereas [LWW90]
gives a sparse display. Shape coding displays many attributes
at a small location. Our method achieves a higher coherence,
because only one attribute is displayed.

The method proposed in this paper embeds histograms by
a pixel-based technique. The idea of pixel-based techniques
is to represent each attribute value by one colored pixel. The
value ranges of the attributes are mapped to a fixed colormap
and the attribute values for each attribute are presented in
separate subwindows. A survey of pixel-based techniques
can be found in [Kei00]. There are differences between the
work proposed so far and our work. In this paper the bin
of a histogram, i.e., “the attribute” is mapped to a number
of pixels of the same color. The number of pixels depends

{The database of dimensionalityd is defined as}
{ DB = {xi : i = 1, . . . ,n∧xi ∈ Rd}.}
{The attributesX, Y, andZ are selected in advance.}
{Let f , g, andh be appropriate functions}
{which discretizeX, Y, andZ.}

{Project and discretize the data.}
{ M is a matrix of sizeNX×NY.}
{The elements ofM are sets.}
for i = 1 toNX do

for j = 1 toNY do
Mi j ←{x : x∈ DB, f (xX) = i,g(xY) = j}

end for
end for

{Construct the histograms.}
{ H is a matrix of sizeNX×NY.}
{The elements ofH are histograms.}
for i = 1 toNX do

for j = 1 toNY do
Hi j ← histogram of the set{xZ : x ∈ Mi j } with re-
spect to the discretization given byh

end for
end for

{Visualize the histograms.}
{ I is the image matrix of sizeNX ·S×NY ·S.}
for i = 1 toNX do

for j = 1 toNY do
HistogramHi j is visualized in the image region given
by [(i−1) ·S+ 1, i ·S]× [( j−1) ·S+ 1, j ·S]

end for
end for

Figure 2: The basic algorithm of our visualization tech-
nique.

on the value (height) of the bin and the color represents the
index of the bin. In contrast, the previous approaches map
the attribute value to the color and the specific attribute is
recognizable by the location of the pixel.

3. Shape-Embedded-Histograms

In this section we explain the essential algorithms. The basic
algorithm which outlines our method is given in Figure 2.

3.1. The Basic Algorithm

Suppose we have a databaseDB and we would like to ana-
lyze the data with regard to attributesX, Y, andZ. For now
we assume that these attributes are selected in advance. At-
tributesX andY correspond to the axes of the image. The
goal is to visualize the probability distribution ofZ depend-
ing onX andY.
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First, we have to discretizeX andY in order to get the co-
ordinates of a data item in the image. The most natural way
is to use a linear mapping of the original range to the range
of the image coordinates, because this mapping preserves
the distances within an attribute. Other techniques such as
non-linear mappings might also be used, depending on the
nature of the distribution of the attribute. For instance, if a
specific attribute has a Zipf or some multimodal distribution
we would give more bins to the high populated areas of the
distribution. The discretization defines a grid in theX andY
space. In the final image (the image of the visualization) this
grid is mapped to an equi-distant grid.

In the next step we have to generate the histograms over
theZ attribute. For each cell of the grid a histogram is gen-
erated. The overall task is to visualize those histograms. IfZ
is a categorical attribute, e.g., if the class distribution has to
be analyzed, the histogram is given by the categories. IfZ is
a continuous attribute, i.e., the probability distribution ofZ
with respect toX andY has to be analyzed, we discretizeZ
in order to get an approximation of the probability distribu-
tion of Z by histograms. The discretization ofZ influences
the visualization. Later, in section 4, we discuss different
discretization techniques including equi-width or equi-depth
binning.

The attributesX andY are mapped to[1,NX ] and[1,NY]
respectively, i.e., the generated grid has a size ofNX ×NY.
Note that this is not the size of the image in pixels. The his-
togram of theZ attribute for a specific position is represented
by a small square of the sizeS×Spixels. Therefore the im-
age has a size of(S·NX)× (S·NY) pixels.

Let h be a histogram withn bins hi (1≤ i ≤ n) describ-
ing the probability distribution of theZ attribute. For sim-
plicity we assume that∑n

i=1 hi = 1. The task is to visualize
the histogram in a small square ofS×S pixels. We use a
pixel-based technique in order to achieve this. Each bin of
the histogram has to be represented by a number of pixels
proportional to the height of the bin. The color of the pixels
is determined by the index of the bin. We now explain the
details.

The index of a bin is encoded by the color. For instance
low values of a continuous variable are shown by dark colors
whereas high values of a continuous variable are represented
by light colors. Useful colormaps are discussed in the litera-
ture, e.g., [Lev97]. Typically, a continuous colormap is used
for numerical data, whereas a set of well-distinguishable col-
ors is used for categorical data.

The height of a bin is encoded by the number of pixels.
Suppose the histogram is allowed to occupyNP = S·Spix-
els on the screen. Binhi should occupy approximatelyhi ·NP
pixels on the screen. In general this is a real number and
not an integer. Therefore we must round this value to get
the exact number of pixelspi for bin hi . Here we note that
∑n

i=1 pi = NP must be satisfied. This implies that the round-
ing is not as trivial a task as it first seems.

Example 1: n = 3, h = ( 1
3 ,

1
3 ,

1
3), and NP = 10. After

rounding each bin occupies 3 pixels. One pixel is still un-
occupied.

Example 2: n = 3, h = ( 1
4 ,

1
4 ,

1
2), and NP = 10. After

rounding two bins occupy 3 pixels, and one bin occupies 5
bins. There is not enough space for 11 pixels.

A “good” rounding should satisfy

n

∑
i=1

pi = NP. (1)

In order to specify the quality of the “good” rounding we use
a least-square approach which corresponds to the Euclidean
Distance between the required amount and the actual amount
of pixels:

n

∑
i=1

(
hi −

pi

NP

)2

→min (2)

Furthermore it must be satisfied that each non-zero bin gets
at least one pixel:

pi > 0 ⇐⇒ hi > 0 (3)

Summarizing: The equations (1), (2), and (3) require that
the percentage of pixels for bini should represent the actual
value ofhi to the best possible extent.

The equation (2) is known as theinteger least-squares
problemas well as theshort vector problem. These prob-
lems are known to be NP-hard [Ajt98, HV02]. Equation (2)
has the form

min
p∈Zn
‖h−H p‖2 (4)

whereH = ( 1
NP
, . . . , 1

NP
) is diagonal. To solve equation (4)

it is sufficient to solve the unconstrained least-squares prob-
lem and then roundpi to the nearest integer, becauseH is
diagonal. But in our casep is constrained by equation (1)
and (3). Therefore we developed a simple greedy algorithm
in order to determine the best number of pixels for each bin.
This algorithm is given in Figure 3. Basically the algorithm
assigns an initial number of bins. If there is still an unoccu-
pied pixel, the pixel is assigned to the bin which would yield
the minimal value for (2). We note that it is possible that two
bins with the same height may be represented by numbers of
pixels which differ by 1.

Until now we have done the following: We mapped each
data item to its grid cell. For each grid cell the histogram is
computed, and for each bin the number of pixels required to
visualize a particular bin is computed. What remains to be
done is to specify how the histogram and the bins are visu-
alized, i.e., we need to discuss how the pixels are mapped to
the square of sizeS×S.

We use the concept of space-filling curves in order to map
the bins to the pixels of the image. The idea is to draw the
p1 pixels of the first bin at the firstp1 locations on the curve,
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{ h is the histogram as defined in the text}
{ p is the vector of dimensionalityn}
{ pi is the number of pixels for bini}
counter← 0 {number of binsi with hi > 0}
for all bins i do

if hi > 0 then
pi ← 1
counter← counter+ 1

else
pi ← 0

end if
end for
for all bins i with hi > 0 do

pi ← pi + b(NP−counter) ·hic
end for
while ∑n

i=1 pi < NP do
j ← argmink∈{1,...,n},hk>0(

(hk− pk+1
NP

)2 + ∑i∈{1,...,n}\{k},hi>0(hi − pi
NP

)2
)

p j ← p j + 1
end while

Figure 3: The algorithm to determine the number of pixel
for every bin.

to draw the nextp2 pixels of the second bin on the locations
p1 + 1, . . . , p1 + p2 of the curve and so on. Examples for
space filling curves [Sag94] include the Hilbert Curve, the
Peano (Z) Curve as well as the Column-wise Scan or the
Column-wise Snake Scan. For our purpose we decided to
use the Column-wise Snake Scan (a to-and-fro method). It
is an intuitive mapping, easy to understand for the analyst
and it avoids jumps between pixels which correspond to the
same bin, i.e., regions of pixels of the same color are not
interrupted.

3.2. Incorporating the Support

Until now we did not mention that some grid cells, while
having the same or a similar histogram might have different
support. The support is defined as the number of data items
which belong to a given cell. We use the term support in or-
der to avoid that the term probability distribution refers to
the X×Y plane as well as theZ attribute. For a successful
data analysis it is important to be able to distinguish between
cells of high and cells of low support - and, at the same time,
perceive the probability distribution of theZ attribute. The
following two possibilities can be used to give the user in-
formation about the support of a particular cell:

The first possibility is to adapt the number of pixelsNP
which have to be drawn in order to visualize the histogram.
The value ofNP should vary in an interval[Nmin,Nmax]. A
minimum value is needed in order to ensure that cells with
a very low support still have enough pixels to draw the his-

togram as well as that the user is able to perceive those his-
tograms. The support of a grid cell is mapped to this range.
A linear mapping or other transformations which are better
adapted to a given data set can be applied. The advantage
of this approach is that the method proposed so far remains
unchanged. The only change is that the valueNP must be
computed for each grid cell.

The second possibility is to let the color represent the in-
dex of a bin and, at the same time, the support of the grid
cell. When using the HSV color model this can be achieved
as follows:

For all colors we assume full saturation. The index of a bin
is mapped to hue, and the support is mapped to the lightness.
An example of a colormap can be found in Figure 8. We suc-
cessfully analyzed data sets with this colormap. We decided
to use this colormap because the colorsaqua (cyan), green,
yellow, orange, andredare easy to distinguish - in all cases:
The difference in hue can be recognized (for the same light-
ness), the difference in lightness can be recognized (for the
same hue) as well as different combinations of hue and light-
ness (for different combinations of index and support) are
distinguishable. At this point we note that there is still need
for research to answer the question “How can we map two
parameters to color?” This subject is discussed in [Lev97].

3.3. Special Case NY = 1

The caseNY = 1 can be interpreted as follows: The data
items are not projected onto a 2D plane, but rather they are
projected onto a single axis, namely theX attribute. This
opens a new way to represent the support. So far a histogram
is visualized in a square ofS×Spixels. Now the histogram
can be visualized in a rectangle of widthS and height cor-
responding to the support (where an appropriate minimum
height is used such that cells with a very low support are
still recognizable). The algorithm implementing the space-
filling curves (here Row-wise Snake Scan) needs only mi-
nor changes to handle different heights. The resulting visu-
alization has similarities toBar Chartsor Pixel Bar Charts
[KHL ∗01, KHDH02]. But the idea to show a probability dis-
tribution inside a bar is a new contribution. An example of
this special case is given in Figure 9.

4. Evaluation

We tested our method with data sets taken from theNa-
tional Health Interview Survey 1993, the Current Popula-
tion Survey of 1993and theUCI Machine Learning Repos-
itory. To demonstrate the visualization of a third variable
we used two data sets. The first one is the nhis93ac data
set (National Health Interview Survey 1993), available at
http://ferret.bls.census.gov . The second one
is the cpsm93p data set (Current Population Survey of 1993
of personal records), available via the Data Extraction Sys-
tem (DES) onhttp://www.census.gov . The pendig-
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Figure 4: The histogram shows the discretization of theDoc-
tor Visits in Past 12 Monthattribute into 5 bins. A nonlinear
mapping is applied. The histogram is used in the experiments
of Figure 5 and Figure 7. The original range is mapped to
[0,4], and the mapping is given at the x-axis.

its data set, available athttp://www.ics.uci.edu/
∼mlearn/MLRepository.html , is used to exemplify
how to analyse class distributions. For each of those data sets
we use an individual colormap which is adapted to the task
at hand.

4.1. Visualizing a 3rd Dimension

The first example of our visualization is taken from the NHIS
data set and is shown in Figure 5. The selected attributes are
Age(X), Weight(Y), andDoctor Visits in Past 12 Month(Z).
The X andY attributes are mapped linearly to grid coordi-
nates. For the sake of small resolution images in papers we
mappedX andY to the range of[1,20]. We note that one
can increase the number of grid cells. Our experiments show
that a grid size of 50 by 50 gives good results. Further on
we note that changing the grid size only slightly changes the
results perceived from the visualization. The range of theZ
attribute is from 0 to 997. We chose a nonlinear discretiza-
tion in order to reflect that many people visited the doctor
only a few times per year, but for the other people the num-
ber doctor visits is widespread. The resulting histogram is
shown in Figure 4.

The first visualization is shown in Figure 5. The amount
of different colors in a given cell represents the histogram
of doctor visits for that cell. Therefore one can recognize
dependencies between age, weight and the number of doc-
tor visits. For instance, this visualization tells that increasing
age as well as increasing weight results in a higher number

x = 0 x = 1 1< x≤ 5 5< x≤ 10 x> 10

Figure 5: An example taken from the NHIS data set. X cor-
responds to age and Y corresponds to weight. The embed-
ded histogram shows the distribution of doctor visits. The
visualization shows that increasing age as well as increas-
ing weight results in a higher number of doctor visits per
year. The colormap used is shown at the bottom, where aqua
(red) colors correspond to a low (high) number of doctor
visits.

of doctor visits per year. This is because the amount of red
and orange is increasing in the upper right region of the im-
age. For comparison the well-known scatterplot is shown in
Figure 6.

One disadvantage is, that the support of the cells in a grid
defined by age and weight is not represented in the visu-
alization. Therefore the user can not know where and how
the data items are distributed in the grid. In this example
we show how to encode the support into the lightness of the
color. The corresponding visualization is shown in Figure 7.
Altogether three levels of support are encoded. The bottom
left corner is the region with the highest support. One can
recognize two very light cells (corresponding to the highest
support) and one cell of medium lightness (corresponding to
medium support). When verifying this isolated location we
found that this region corresponds to children, and that this
region covers about a quarter of the data. The large area in
the center of the image contains cells with low support, but
it represents the majority of the data. There are two cells of
medium support. The level of support is simply computed by
dividing the range of all support values into 3 equally sized
intervals.

The colormap used for Figure 7 is shown in Figure 8. For
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Figure 6: The scatterplot corresponding to the data shown
in Figure 5 and 7. The overplotting is 85%. With respect to
Shape-Embedded-Histogramsthere is no information about
a third variable or the density. Note that a weight of zero
means children.

the highest level of support we use maximum lightness, and
the number of doctor visits (the index of the bin) is repre-
sented by hue. The hue ranges fromaqua (cyan)for 0 doctor
visits, overgreen, yellow, orangeto red for the highest num-
ber of doctor visits. The colormaps for the remaining two
levels of support are obtained by reducing the lightness: The
darker the color the lower the support.

4.2. Special Case NY = 1

The next example is taken from the CPSM data set and is
shown in Figure 9. Here we demonstrate the special case
whereNY = 1. In this case we can intuitively represent the
amount of data inside each grid cell by the size (that is, the
height) of the region where the histogram is embedded.

The selected attributes areAge for X andAGI (Adjusted
Gross Income)for Z. That means, the distribution ofAGI for
the different intervals ofAge is shown. The range ofAge is
[0,99] and we divided the range in ten intervals of length
10. The range ofAGI is [−9.999,99.999]. We mapped all
values smaller than 0 to zero (approximately 0.1% of the
data), the value 0 to one (approximately 50% of the data),
and the interval[1,99.999] is divided into eight equi-width
buckets.

Figure 9 shows that for middle-age people the fraction of
high AGI is larger than for other people. It also shows that
young people have a higher risk to have negativeAGI, which
can be seen by the red pixels. From the height of the differ-

Figure 7: This visualization corresponds to Figure 5 which
does not show any information about the support of a spe-
cific cell. In this figure this is achieved by using different
values for lightness. Three levels of support are shown. The
colormap is explained in Figure 8.

low medium high
density

x> 10
5< x≤ 10
1< x≤ 5

x = 1
x = 0

Figure 8: This is the colormap used for Figure 7. Different
levels of lightness correspond to different levels of support.
Hue represents the index of the bin (that is, the number of
doctor visits).

ent blocks it is obviously that middle-age and young people
represent the biggest portion of the data set.

4.3. Analyzing Class Distributions

One data set from the UCI Machine Learning Repository
is the pendigits data set. This data set contains 7494 data
items and 16 dimensions which describe handwritten digits.
For every attribute the range is[0,100], therefore we would
not apply any transformation for the selectedX, Y, andZ
attributes. But for the purpose of the paper we mapped the
variables to the interval[1,10] in order to improve the read-
ability of the figures.
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Figure 9: An example taken from the CPSM data set. The
horizontal axis corresponds to age. The height of different
bins (upper part) reflects the amount of data in each bin. In-
side each bin the distribution of AGI is shown. The colormap
shown on the left side maps low (high) AGI to yellow (black)
colors, whereas AGI below zero is mapped to red. The lower
part does not map the support to the height of the bin. This
allows easier comparison of different bins.

The data items of the pendigits data set can be interpreted
as follows: The movement of the pen when writing a digit
was recorded via a writing tablet. For each digit 8 points
were obtained by spatial resampling which yields a feature
vector of length 16. The first two attributes correspond to the
x- andy-coordinates where a person starts to write a digit,
whereas the last two attributes correspond to thex- andy-
coordinates where a person stops writing the digit. Some re-
constructed digits are shown in Figure 10. We present exam-
ples for every digit and note, that there are major differences
in writing digits between Europe (where the data set comes
from) and the US. This is shown in Figure 11. In particular
this applies for the digits 1 and 7. Further more we note that
some digits can not be written without lifting the pen. In the
US there are 2 such digits (digit “4” and “5”) and in Europe
3 such digits (digit “4”, “5”, and “7”). For this reason the
digit “5” looks like the digit “6” in Figure 10.

Because the data set is labeled, we would like to see if
there are similarities in how different people tend to write
digits. In particular we would like to know where (on the
writing tablet) different persons tend to start to write a spe-
cific digit as well as stopping writing the digit. We are able
to accomplish this by plotting the first two attributes (thex-
andy-coordinates where the pen hits the tablet the first time)
as well as the last two attributes (thex- and y-coordinates

Figure 10: Some digits reconstructed from the pendigits
data set. The solid circle identifies the point where a per-
son starts to write a digit, and the square identifies the point
where a person stops writing the digit. Those points can be
easily and reliable reconstructed from the pendigits data. In-
termediate points are identified by circles and the direction
of writing is shown by arrows. Note that points where writing
is interrupted (e.g., when writing “5”) can not be identified.

Figure 11: Writings of the digits. The upper row represents
the European style, the lower row represents the US style.

where the pen is lifted) and to color the plotted data items
corresponding to their class label which represents the digit.

Because there is considerable overplotting in the projec-
tions it is impossible to see any trustworthy patterns. This is
shown in Figure 14. Our technique helps to overcome this
situation. At a given location the histogram of the class dis-
tribution is drawn. Figures 12 and 13 show the resulting vi-
sualizations.

The long vertical yellow region in Figure 12 corresponds
to the digit 1. That means, usually a person starts to write
the digit 1 at the left border of the image. Here we have to
note that the digits are normalized in order to make the repre-
sentation invariant to translations and scale distortions. The
places where a person starts to write the other digits can be
identified with the colormap given in Figure 12.

Analogous is Figure 13 where one can identify the posi-
tion where a person ends the writing of a digit. For instance
the digit 2 (represented by red) typically ends at the bottom
right corner of the image. This figure additionally gives an
example of how to incorporate the support. Narrower blocks
correspond to cells with a low support, but square or al-
most square-like blocks correspond to cells with a high sup-
port. The decision to represent different levels of support by
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Figure 12: This visualization shows the locations where
people tend to start to write different digits, i.e., the location
where the pen hits the paper is shown. The coordinates in
the visualization correspond to coordinates of the tablet. The
amount of digits which start at a given location (grid cell)
is represented by the embedded histogram. The colormap is
shown at the left side.

the histogram size histogram is more appropriate than using
lightness, because changing the lightness would result in too
many colors.

One can verify those observations with Figure 10 where
we reconstructed some digits. In order to compare our vi-
sualization technique, we present a “normal” scatterplot in
Figure 14. While the user gets a first impression of the data
the overplotting of points is fairly high.

Some of the colors in Figure 12, 13, and 14 are hard to
distinguish, i.e., it is hard to distinguish the classes. Here we
mention that 10 classes is a fairly high number of classes to
visualize.

5. Conclusions

In this paper we presented a technique which makes it pos-
sible to recognize the distribution of a third attribute in the
2D projection screen, spanned by two attributes. Our exper-
iments show that this is useful for analyzing the class distri-
bution as well as dependencies between three variables. We
have shown that by extending the concept of Pixel Validity,
we are able to overcome the problems of overplotting or oc-
clusion.

Our future research is directed by the fact that there are

many combinations of three attributes, namelyd·(d−1)
2 ·(d−

2) whered is the dimensionality of the data set. Not all of

Figure 13: This visualization corresponds to Figure 12, but
instead of the first point the last point (the point where the
pen is lifted) is in focus. The visualization takes care of the
support as explained in the text. The colormap is shown at
the left side.

Figure 14: This scatterplot corresponds to Figure 12. The
overplotting is 40%. The same colormap as in Figure 12 and
13 is used.
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them have to be useful for an exploratory analysis. Therefore
we want to develop criteria which can help to select the most
interesting visualizations.

An important question is, how to map more than one pa-
rameter to color. In our case this means: “How can we map
the combination of histogram bin and support to the color?”
That means, we need a colormap which makes it possible to
recognize the histogram information as well as the support
of the corresponding cell. Increasing the number of support
levels and/or the number of bins and, at the same time, hav-
ing well-distinguishable colors is a challenging task.

The integration ofShape-Embedded-Histogramsinto sys-
tems for an exploratory data analysis is a goal of our future
work. The availability of information about an additional at-
tribute in two-dimensional plots should lead to a better qual-
ity of the exploration. Experiments with potential users are
needed in order to show the success of the integration.
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