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Abstract

Extracting only the visible portion of an isosurface can improve both the computation efficiency and the rendering
speed. However, the visibility test overhead can be quite high for large scale data sets. In this paper, we present a
view-dependent isosurface extraction algorithm utilizing occlusion query hardware to accelerate visible isosurface
extraction. A spherical partition scheme is proposed to traverse the data blocks in a layered front-to-back order.
Such traversal order helps our algorithm to identify the visible isosurface blocks more quickly with fewer visibility
queries. Our algorithm can compute a more complete isosurface in a smaller amount of time, and thus is suitable

for time-critical visualization applications.

Categories and Subject Descriptors (according to ACM CCS):

1.3.1 [Computer Graphics]: Hardware Architec-

ture; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism 1.3.7 [Computer Graphics]: visible

line/surface algorithms

1. Introduction

Visualizing isosurfaces is an effective method to analyze
three-dimensional scalar datasets. To compute isosurfaces,
the Marching Cubes algorithm ! is typically used. One
bottleneck for the Marching Cubes algorithm is that the
number of triangles generated from a large dataset can
be enormous. Although researchers have proposed vari-
ous techniques?3.43.6.7.8 to accelerate the process, it is
still a major undertaking to compute, store, and render a
large number of triangles at an interactive speed. To alle-
viate the problem, view-dependent methods were proposed
9.10,11,12.13 'Tn essence, the view-dependent methods mini-
mize the computation and rendering overhead by extracting
and rendering only the visible portion of the isosurface.

Since computing the visibility for every triangle in an iso-
surface can be very expensive, the visibility determination is
typically done at the block level. Livnat and Hansen ° used
an octree to partition the data into small blocks, and visit the
isosurface blocks in a front-to-back order. To determine the
visibility of an isosurface block, the projection of the block’s
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bounding box is compared against the screen coverage of
the already computed isosurface patches. A block is invisi-
ble if its bounding box is completely occluded. Otherwise,
it is visible, and the isosurface patches within are extracted.
This process is applied to every block that contains the iso-
surface.

Although the view-dependent isosurface extraction algo-
rithms can reduce the surface extraction and rendering cost,
the visibility determination itself can become a performance
bottleneck since the occlusion tests are mostly done in soft-
ware. The algorithms are also inherently sequential, that is,
the visibility of an isosurface block needs to be determined
before the triangles within can be extracted. This makes it
difficult to incorporate occlusion culling into parallel isosur-
face extraction algorithms.

Recently, the commercial graphics hardware such as
nVidia’s GeForce4 cards provide efficient visibility query
functionality !7. The hardware also allows multiple visibil-
ity queries to be issued at once, so that the visibility tests
performed by GPU can be overlapped with the CPU com-

delivered by
.

www.eg.org

EUROGRAPHICS

DIGITAL LIBRARY
diglib.eg.org



http://www.eg.org
http://diglib.eg.org

Gao and Shen / Hardware-assisted View-dependent Isosurface Extraction using Spherical Partition

putation. In this paper, we propose a new view-dependent
isosurface extraction algorithm which can take advantage of
those features to reduce the occlusion culling overhead. Our
algorithm consists of two phases. In the first phase, the al-
gorithm identifies the front-most isosurface blocks, and then
extracts the isosurface patches within those blocks. In the
second phase, we use the partial isosurface generated in the
first phase as the occluder to cull away the invisible blocks,
and then extract the remaining isosurface patches.

We use the hardware visibility query features supported
by nVIDIA’s GeForce 4 graphics cards to identify the front-
most blocks, as well as to cull away the invisible blocks.
To efficiently find the front-most blocks to construct an oc-
cluder, a front-to-back traversal of the isosurface blocks is
performed. Traditionally, an octree is used for this purpose.
When using an octree, however, the front-most isosurface
blocks can not be identified without traversing the entire
tree. This is because the traditional octree traversal algorithm
visits each octree node in a depth-first search order. It only
ensures that a local front-to-back traversal order is not vio-
lated, but does not guarantee globally that the nodes closer
to the eye will always be visited before the nodes that are
farther away. Traversing the entire dataset introduces addi-
tional overhead, which can be quite significant for a large
dataset. To amend this problem, we propose an alternative
space partition scheme, called spherical partition, to locate
the front-most blocks more efficiently. Our new scheme par-
titions the whole volume based on the spherical coordinate
system and organizes the data blocks in a binary partition
tree. Using the spherical partition scheme, we can traverse
the isosurface blocks in a layered front-to-back order, so that
a larger occluder can be constructed more rapidly. The algo-
rithm also allows for an efficient update of the front-to-back
order when the view changes, as well as a quick elimination
of non-isosurface blocks.

In the following, related work is first discussed. We then
briefly overview the occlusion culling features supported by
existing graphics hardware. Section 4 gives an overview of
our algorithm, followed by the details in section 5 and 6. The
results are presented in section 7, and the conclusion of the
paper and the future work are given in section 8.

2. Related Work

The Marching Cubes algorithm! was first introduced to pro-
vide a simple and robust way for isosurface extraction. Sub-
sequently many algorithms? 3.45.6.7.8 were proposed to im-
prove the performance of isosurface cell search process. For
a large dataset, however, the number of triangles extracted
by the Marching Cubes algorithm can be huge.

Surface simplification methods 41516 are very effective
in reducing the size of the surface geometry. However, they
are usually used for post-processing and thus cannot be used
for the applications that require interactive isosurface extrac-
tion and rendering.
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Occlusion culling is another way to reduce the size of ge-
ometry. The culling can be done in either image space or ob-
ject space. Hierarchical z-buffer method '3 performs the oc-
clusion test in image space by comparing the bounding box
of the object with a hierarchical representation of the depth
buffer. The method takes advantage of occluder fusion, that
is, the cumulative occlusion formed by multiple occluders.
Zhang et al.'® proposed the Hierarchical Occlusion Map al-
gorithm which only utilize graphics hardware to perform oc-
cluder fusion. Among object space algorithms, Coorg et al.!®
introduced a visibility determination algorithm based on the
shadow volume or shadow frustum defined by large convex
occluders. A set of visual events is always maintained for
the algorithm to utilize temporal coherence. However, oc-
cluder fusion is not considered in their algorithm. Another
method, aspect graph?®- 2!, provides a new way for visibility
determination by encoding visibility information for all pos-
sible views of the object and managing the visibility changes
through visual events. All the above algorithms have suc-
cessfully shown that the occlusion culling can effectively
improve the rendering performance.

Occlusion culling has been used to reduce the size of iso-
surface geometry. Different view-dependent techniques® 10
have been proposed to reduce the extraction and rendering
time by only extracting and rendering the visible isosurface.
Contour propagation and ray casting technique are also pro-
posed to progressively extract view-dependent isosurfaces
12 To further reduce the rendering time, parallel rendering
algorithms 2223 can be used. Recently, some efforts were put
to parallelize both the extraction and rendering of the visible
isosurfaces!!- 13,

Many occlusion culling algorithms!824 13 have already
utilized graphics hardware to speed up the visibility query.
However, some of the expensive operations such as bound-
ing box projections and depth-buffer read-back are still the
bottleneck. Recently, graphics cards such as HP’s FX6 and
nVidia’s GeForce4 started to support hardware-based visi-
bility queries. It would benefit the view-dependent isosur-
face extraction algorithms if such hardware capability can
be fully utilized. We will briefly discuss the hardware occlu-
sion culling feature in the next section.

3. Hardware Occlusion Culling

Hardware occlusion culling extensions are available in HP’s
FX6 and nVidia’s GeForce 4 graphics cards. Both extensions
aim to provide a simple and efficient way to rapidly deter-
mine the visibility status of a given object.

The HP occlusion extensions operate in a "stop-and-wait"
manner. An occlusion culling algorithm that utilizes the ex-
tension typically works as follows. Firstly, it issues the visi-
bility query for the bounding box of a target geometry. Then
the hardware renders the bounding box and returns whether
the depth buffer is modified. If the depth buffer is updated,
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the bounding box will be considered visible and the geome-
try inside will be rendered. Otherwise, the geometry can be
skipped since it is not visible. The method provides a sim-
ple way to query an object’s visibility. However, it doesn’t
return the number of pixels that pass the test. Furthermore,
the "stop-and-wait" model prevents any potential overlap of
GPU and CPU computations.

To solve the problems in the HP occlusion extensions,
nVidia occlusion query mechanism!” is proposed. It returns
the number of pixels passing the test and also allows multiple
queries to be issued at once before checking any query result.
In this way, the occlusion culling algorithm can overlap the
GPU and the CPU calculations to gain better performance.

4. Algorithm Overview

The purpose of our algorithm is to extract the visible por-
tion of an isosurface efficiently. Our algorithm consists of
two parts: pre-processing and run-time view-dependent iso-
surface extraction.

At the preprocessing stage, the dataset is partitioned based
on the spherical coordinate system. The smallest partition
unit is called a “sector”. All the data blocks, each of which
consists of n X n X n voxels, are bucketized into those sec-
tors. A partition tree is used to store the partition informa-
tion, which is to enable efficient front-to-back traversal to
assist visibility determination.

At run time, the view-dependent isosurface extraction al-
gorithm is performed with the hardware occlusion query
support. There are two major phases in this stage: occluder
construction and occlusion culling. The goal of the occluder
construction is to identify the front-most isosurface blocks
efficiently without extracting any isosurface patches. To
achieve this goal, we traverse the spherical partition tree in
a layered front-to-back order and query the visibility of the
isosurface blocks’ bounding boxes using the graphics hard-
ware. We take advantage of the nVIDIA GeForce 4 graphics
card’s capability to overlap the CPU and GPU computation
by continuously sending the queries without waiting for the
results to come back, until the first several non-empty layers
of the isosurface blocks are traversed. After that, our algo-
rithm begins to check the query result for each of the blocks.
If the bounding box of an isosurface block is determined to
be visible, we extract the isosurface patches within. Other-
wise, its visibility status is undetermined, and will require
another test in the second phase due to the approximate na-
ture of the bounding-box-based visibility test. The isosurface
triangles extracted at this phase will be rendered and used
as the occluder. In the second phase of the algorithm, the
occluder is used to test the visibility of the remaining iso-
surface blocks. This is also performed by the hardware. An
isosurface block can be culled away if its bounding box is
completely occluded by the occluder. Otherwise, isosurface
patches are extracted from the block.
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Since an isosurface block needs to be tested again if it
does not pass the visibility test in the first phase, it is im-
portant to only traverse the blocks that are the most likely
visible when constructing the occluder to reduce the vis-
ibility query overhead. The proposed spherical partition
method can achieve this goal because the front-to-back lay-
ered traversal allows a quicker construction of the occluder
without traversing through the entire data set. For a dataset
with high depth complexity, for example, at least half of the
isosurface is invisible. Therefore, the visibility query in the
occluder construction step can stop after traversing half of
the isosurface blocks. To get a more complete occluder, our
algorithm also extracts the triangles from the direct neigh-
bor blocks of the visible blocks to minimize the holes in the
occluder. Because the data blocks are organized in the spher-
ical coordinate system, when the view change is small, only
a small adjustment is needed to give us the new front-to-back
traversal order. In the following sections, we discuss our al-
gorithm in detail.

5. Preprocessing

The spherical partition and block bucketization need to be
done only once for a dataset and can be reused when the iso-
value or the viewing parameters are changed. The spherical
partition subdivides the whole volume in the spherical coor-
dinate system and the block bucketization sorts the blocks
into different sectors. The run-time front-to-back traversal
and visibility determination are based on this pre-calculated
information.

5.1. Spherical Partition

Figure 1 shows a 2D example of the spherical partition.
An example of the optimal partition for a front-to-back or-
der traversal is shown in Figure 1(a), where the partition
is always perpendicular to the eye direction. However, pre-
partitioning the data in this way is not feasible in practice
since it is view-dependent. If the partition is done in the
spherical coordinate system as shown in Figure 1(b), the lay-
ered traversal similar to Figure 1(a) can be easily achieved
for any given view.

Figure 2 illustrates the spherical coordinate system. To de-
fine spherical coordinates, we take an axis (the polar axis)
and a perpendicular plane (the equatorial plane), on which
we choose a ray (the initial ray) originating at the intersec-
tion of the plane and the axis (the origin O). In this system,
the coordinates of a point P are: the distance r from P to the
origin O; the angle ¢ between the line OP and the positive
polar axis (Z axis); and the angle 0 between the initial ray (X
axis) and the projection of OP to the equatorial plane (X OY
plane).

Many data structures can be used to store the spherical
partition results. The simplest one is to utilize an octree
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(a) Optimal Partition

"

(b) Spherical Partition

Figure 1: A 2D example of two partition methods.

<

Figure 2: The spherical coordinate system.

except that the partition is defined in the spherical coordi-
nate system instead of the Cartesian coordinate system. This
method is easy to implement. However, it is difficult to tra-
verse such tree in a front-to-back order.

Our algorithm partitions the volume in two steps to fa-
cilitate both data structure construction and efficient front-
to-back traversal. During the first step, the partition is done
along the sphere radius (» dimension), to create a layered
structure as shown in Figure 1(b). This allows the traversal
of the tree to be done in a front-to-back layered manner at run
time. The algorithm visits the data blocks in the inner layer
only after it finishes the outer layers. In the second step, the
partition will be done in ¢ and 6 dimensions alternatively.
This partition ensures the front-to-back traversal within each
layer. We will use "distance partition" to represent the parti-
tion performed in the first step and "angle partition" to repre-
sent the partition in the second step. A binary tree structure is
used to represent the partition and facilitate the front-to-back
traversal of isosurface blocks. The tree traversal method will
be introduced in detail in section 6.1.

A 2D example of the partition and the corresponding bi-
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Figure 3: An example of 2D spherical partition and its bi-
nary tree.

nary tree structure is shown in Figure 3. The binary tree
shows only the first layer’s angle partition. The angle par-
titions in other layers are similar. At run time, the tree is tra-
versed from the outer layer (layer 1) to the inner layer (layer
4). Within each layer, a block bucketization is performed to
further sort the blocks into sectors.

5.2. Block Bucketization

In our algorithm, the whole volume is subdivided into a
group of blocks. Each block consists of n x n x n voxels. The
voxels are grouped into blocks so that we can skip the empty
voxels (voxels that contain no isosurface) efficiently. A block
is also the basic unit for which our algorithm determines the
visibility. In essence, the goal of the block bucketization in
our algorithm is to sort each block to the corresponding sec-
tors based on the following rules: A block that overlaps with
two or more layers is assigned to the sector in the outer layer.
Within each layer, a block is assigned to a sector if it is com-
pletely inside of the sector. If a block overlaps with two or
more sectors, the block (the pointer to the actual data) will
be replicated and assigned to those sectors. However, only
the first one encountered in the traversal will be processed
at run time. Each sector will sort and link together all the
blocks assigned to it in the order of the r value of the block
center. The pre-sorted block list will be used for an efficient
front-to-back traversal.

After the bucketization, our algorithm needs to calculate
the minimal and maximal values for each sector from the
data in its blocks. The values are used for a faster search of
the isosurface blocks. The sector also needs to calculate a
center position which is the average of the center positions
of all its blocks. The center will be used to sort the sectors.

6. Hardware-assisted View-Dependent Isosurface
Extraction

With the help of the occlusion extension provided by the
nVidia GeForce 4 graphics card, our algorithm can find
all the visible isosurface blocks in two phases. The first
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Figure 4: A 2D example of the layer traversal: the increas-
ing order of the numbers represents the traversal order.

phase constructs an occluder from the front-most isosurface
blocks, and the second phase culls away the blocks that are
occluded by the occluder. The two phases work together to
generate the visible portion of the isosurfaces.

6.1. Front-to-back Traversal

To quickly identify the front-most isosurface blocks, our
algorithm traverses the spherical partition tree in a front-
to-back order at three different levels: layers, sectors, and
blocks. Starting from the outermost layer, we move toward
the sphere center and traverse the layers along the way. In
each layer, the isosurface sectors (the sectors that contain
isosurface blocks) are traversed in an order determined by
their orientations. Within each sector, isosurface blocks are
visited in an order based on their distances to the sphere cen-
ter. In the following, we discuss each traversal level in detail.

6.1.1. Layer Traversal

The layer traversal order is decided by the distance (radius)
partition portion of the spherical partition tree. A 2D exam-
ple is shown in Figure 4. The layers are traversed from the
outermost layer to the innermost layer. During the traversal,
the layers that contain no isosurface are skipped.

6.1.2. Sector Traversal

By traversing the angle partition portion of the spherical par-
tition tree, the sectors at each layer will be visited and the
sectors containing no isosurface will be skipped.

Each layer can be partitioned into two parts: front layer
and back layer. The front layer is the portion that faces to-
ward the eye, and the other portion is the back layer. To
achieve a correct front-to-back traversal, the algorithm tra-
verses the front layers from the outermost layer inwards, and
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Front Layer

Back Layer

Figure 5: A 2D example of front and back layer traversal:
the increasing order of the numbers represents the traversal
order.

then traverses the back layers from the innermost layer out-
wards, as shown in Figure 5. To build such a layer parti-
tion, the sectors in the same layer are classified into front
sectors, middle sectors and back sectors. The front sectors
are those which are completely inside a front layer, the back
sectors are those which are completely inside a back layer,
and the middle sectors are those which overlap with both
the front and the back layers. To classify the sectors, we de-
fine eye vector as the vector from the sector center to the
eye, center vector as the vector from the sphere center to
the sector center, and angle spread as the largest angle dif-
ference in ¢ and 6 dimensions of the spherical coordinates
in a sector. A sector is classified based on the angle be-
tween eye vector and center vector. If the angle is less than
90 — 0.5 x angle spread, the sector is classified as a front
sector. If the angle is greater than 90+ 0.5 X angle spread,
the sector is classified as a back sector. Otherwise, the sector
is a middle sector.

In our algorithm, the front sectors of all layers are tra-
versed before the middle sectors of all layers, and the mid-
dle sectors of all layers are traversed before the back sec-
tors of all layers. Among all the front sectors in each layer,
the traversal order is determined based on the angle between
each sector’s eye vector and center vector. The sectors with
smaller angles are visited first since they are closer to the
eye. A 2D example of traversing the front sectors at one
layer is shown in Figure 6. The same criterion is applied to
the back sectors in each layer. No ordering is done for the
middle sectors at this level. The front-to-back ordering of
blocks inside the middle sectors is taken care of in the block
traversal level.

6.1.3. Block Traversal

The goal of the block traversal is to traverse the isosur-
face blocks inside a sector in a front-to-back order. During
the block bucketization stage, the blocks in each sector are
sorted according to the block radius, which indicates the dis-
tance to the eye. To perform a front-to-back traversal, the iso-
surface blocks in a front sector are traversed in a decreasing



Gao and Shen / Hardware-assisted View-dependent Isosurface Extraction using Spherical Partition

Figure 6: A 2D example of sector traversal in a front layer:
the increasing order of the numbers represents the traversal
order.

[4] ™

== Sphere
Center

Figure 7: A 2D example of front-to-back traversal of the
blocks in the front sector: the increasing order of the num-
bers represents the traversal order.

radius order(Shown in figure 7), while the isosurface blocks
in a back sector are traversed in an increasing radius order.
For the blocks in the middle sectors, the traversal order is
determined by the angle between the eye vector and the cen-
ter vector. Traversing those blocks in an increasing order of
such angles ensures a correct front-to-back traversal.

If a block crosses several sectors, it is replicated and as-
signed to those sectors. Note that we do not replicate the
data, but only the pointers to the data. In addition, the iso-
surfaces within the block will be extracted only once when
it is first encountered.

6.2. Hardware-Assisted Occlusion Culling

After sorting the isosurface blocks in a front-to-back order
by traversing the spherical partition tree, we begin to pro-
cess the blocks in that order to extract the visible isosurfaces.
Our occlusion culling algorithm consists of two phases: oc-
cluder construction and occlusion culling. To construct the
occluder, we compare the bounding boxes of the isosurface
blocks in the first several non-empty layers and select those
whose bounding boxes are visible. The isosurface patches
are then extracted from those blocks to form an occluder.
This occluder is used to cull away the invisible isosurface
blocks in the second phase.

Recently, nVidia GeForce 4 graphics cards provide hard-
ware support for occlusion query. The programmer can use
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the occlusion query extension to test an object’s visibility.
It also allows multiple queries to be issued at once to over-
lap the GPU and CPU calculations. Our algorithm takes ad-
vantage of such hardware support when performing both the
occluder construction and the occlusion culling.

6.2.1. Occluder Construction

In this phase, we want to identify the visible front-most iso-
surface blocks to construct an occluder. To achieve this, both
the depth buffer write and the depth test need to be enabled
first. We then render the bounding boxes of the isosurface
blocks in the first several non-empty layers and test their
visibility. The following is the pseudo code that utilizes the
nVidia’s occlusion culling extension:

1. Issuing queries for each block. Assuming there are N
isosurface blocks to be tested:
for (i=0;i<N;i++)
Begin the query
Render the bounding faces of the ith block
End the query

2. Check the query result:
for i=0;1<N;i++)
Count = number of pixels that pass
the test for the ith block
if (count > 0) then
The block is visible
Isosurface patches inside will be extracted
endif

After the visible blocks are found, isosurface patches are
extracted. To reduce holes in the occluder, we also extract
isosurface from those isosurface blocks next to the visible
blocks since they are most likely visible as well.

6.2.2. Occlusion Culling

The second phase is to cull away the isosurface blocks oc-
cluded by the occluder. After this, the rest of the isosurface
blocks will be classified as visible, from which the isosurface
patches will be extracted.

To identify the invisible isosurface blocks, we use the
nVidia hardware in a way similar to the first phase, except
that the depth buffer write should be disabled before issuing
the queries. In this way, only the occluder, not the bounding
boxes, is used to cull away the invisible blocks.

It is worth mentioning that such visibility test is conserva-
tive. That is, the final isosurface extracted by our algorithm
(as well as the algorithms in ® 1) will include the true visible
portion of the isosurface, plus a small portion of the invisible
isosurface. However, the correctness of the final image is not
compromised.

7. Results

We tested our algorithm on a PC with a 2.0 GHz P4 proces-
sor, 2 GB of memory and a GeForce 4 graphics card. Our
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Iso-value  visible total %o
triangles  triangles
25.5 266084 1056866 25.2
38.25 281103 1282374 21.9
63.75 312555 1291010 242

Table 1: The comparison between the number of triangles
extracted by our algorithm and the number of triangles in
the whole isosurface.

Number of  stop-and-wait  spherical partition
queries
24020 0.190 0.090
112279 0.741 0.390

Table 2: The visibility test time(in seconds) used by the
"stop-and-wait" algorithm and the spherical partition algo-
rithm when issuing different number of queries. The test is
done on the UNC brain dataset with iso-value 25.5 and the
number of queries is controlled by the data block size.

test datasets included a 256 x 256 x 145 UNC brain dataset
and a 256 x 256 x 308 Leg dataset. In our tests, unless stated
otherwise, a data block contained 4 x 4 x 4 voxels.

Our algorithm culls away invisible isosurfaces effectively
with the help of nVidia occlusion extensions. Table 1 com-
pares the size of the visible isosurfaces extracted by our al-
gorithm with the size of the whole isosurfaces for the UNC
brain dataset. Three test iso-values were used. From the re-
sults, it can be seen that only about 25 percent of the whole
isosurface was extracted.

Table 2 compares the visibility test time between the
"stop-and-wait" method and the spherical partition algo-
rithm. In the "stop-and-wait" method, after a query is issued,
the program waits for the query result, extracts the isosur-
face if the block is visible, and then processes the next block.
This is similar to the algorithm proposed in °. Our algorithm
sends multiple queries for the isosurface blocks at once be-
fore checking the query results and extracting isosurface in-
side the visible blocks. Both methods were tested using the
UNC brain dataset with iso-value 25.5. We used two differ-
ent data block sizes, 4 x 4 x 4 voxels and 2 x 2 x 2 voxels.
The numbers of isosurface blocks were 24020 and 112279,
respectively. From the results, it can be seen that our method
had smaller visibility query overhead because the "stop-and-
wait" method cannot take advantage of the overlap between
CPU and GPU calculations.

Our new algorithm takes advantage of the spherical par-
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Octree partition  spherical partition

UNC brain 0.230222 0.105389

Leg 0.109903 0.050750

Table 3: The visibility test time(in seconds) for the UNC
brain dataset (iso-value: 25.5) and Leg dataset (iso-value:
700.0) by the octree partition algorithm and the spherical
partition algorithm.

Octree partition  spherical partition

traverse 0.017917 0.000556
Visibility 0.230222 0.105389
Extraction 0.013917 0.012000
Rendering 0.036708 0.025042
Total 0.298764 0.142986

Table 4: The average time(in seconds) used by the octree
partition algorithm and the spherical partition algorithm for
the UNC brain dataset (iso-value: 25.5).

tition so that a larger occluder can be constructed more
quickly. Figure 8 compares the rendering images of the oc-
cluders obtained by the octree front-to-back traversal and
the spherical traversal. In our test, both methods visited the
first 50 percent of the isosurface blocks and queried their
visibility. The octree traversal algorithm found only 2441
visible blocks (35 % of the total visible blocks), while the
spherical partition algorithm found 6403 visible blocks (90
% of the visible blocks). In order to get an occluder simi-
lar to what obtained by the spherical partition algorithm, the
octree-based algorithm had to visit almost all the isosurface
blocks and query their viability. Table 3 compares the visi-
bility query time between the octree partition algorithm and
the spherical partition algorithm for the UNC brain dataset
and the Leg dataset. It can be seen that the spherical partition
algorithm spent less time in visibility query. In our test, we
found that visiting about 50 % of the front-most isosurface
blocks using the spherical partition can give us a pretty good
occluder.

Table 4 and Table 5 compare the breakdown of the av-
erage visible isosurface extraction time between the octree
partition algorithm and the spherical partition algorithm.
The tests were performed by rotating the datasets about
the Y axis continuously. Visible isosurfaces were gener-
ated from 72 evenly spaced view positions. The isosurface
was extracted incrementally when the view changed. That
is, only newly visible isosurface triangles were extracted at
each frame. Except the initial view, the isosurface extraction
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Octree partition  spherical partition

traverse 0.014597 0.000556
Visibility 0.109903 0.050750
Extraction 0.004875 0.003347
Rendering 0.024319 0.025194

Total 0.153694 0.079847

Table 5: The average time(in seconds) used by the octree
partition algorithm and the spherical partition algorithm for
the Leg dataset (iso-value: 700.0).

time for the subsequent views became smaller. The visibil-
ity query time, however, was almost constant for each view.
From the table, it can be seen that the spherical partition al-
gorithm had better performance in visibility query and front-
to-back traversal, and thus a better overall performance.

Since our algorithm can get a majority of the visible iso-
surface more quickly, it can be used for time-critical vi-
sualization applications. When the time budget is limited,
our algorithm can render a more complete isosurface with
a smaller amount of time. Figure 9 shows the images after
20%, 35%, and 50% of isosurface blocks were visited for
the Leg dataset. Images (a) to (c) give the results generated
by the spherical partition algorithm while images (d) to (f)
give the results generated by the octree partition algorithm.

8. Conclusion and Future Work

We present a view-dependent isosurface extraction algo-
rithm utilizing the occlusion query hardware. Our algorithm
partitions the volume using the spherical coordinate system,
which allows us to efficiently identify the front-most visi-
ble isosurface blocks. Those blocks are used to form an oc-
cluder, which can cull away the remaining invisible blocks
efficiently. Our algorithm can reduce the visibility query
overhead, and also extract a more complete visible isosur-
face in a shorter amount of time.

Future work includes utilizing the spherical partition for
out-of-core and parallel isosurface extraction. We will also
apply the similar idea to other visualization techniques that
can benefit from efficient visibility determination. Volume
rendering is one such technique. Finally, we will extend our
algorithm for curve-linear or unstructured datasets.
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Figure 8: The occluder constructed by different algorithms after 50 percent of the isosurface blocks were queried. (a) The
octree partition algorithm; 2441 visible blocks are found. (b) The spherical partition algorithm; 6403 visible blocks are found.
(c) The final image of the isosurface. 6620 visible blocks.
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Figure 9: The images generated for the Leg dataset after 20 percent, 35 percent and 50 percent of total isosurface blocks
are queried during the occluder selection stage. (a)-(c) show the corresponding images generated by the spherical partition
algorithm; (d)-(f) show the corresponding images generated by the octree partition algorithm. (g) shows the final image of the
isosurface.
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