
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2003)
G.-P. Bonneau, S. Hahmann, C. D. Hansen (Editors)

Contouring Curved Quadratic Elements

D. F. Wiley1, H. R. Childs2, B. F. Gregorski1, B. Hamann1 and K. I. Joy1

1 Center for Image Processing and Integrated Computing (CIPIC), Department of Computer Science,
University of California,Davis, CA 95616-8562, U.S.A.;
e-mail: {wiley, gregorsk, hamann, joy}@cs.ucdavis.edu

2 B Division, Lawrence Livermore National Laboratory, Mail Stop L-098,
7000 East Avenue, Livermore, CA 94550, U.S.A.;

e-mail: childs3@llnl.gov

Abstract
We show how to extract a contour line (or isosurface) from quadratic elements—specifically from quadratic trian-
gles and tetrahedra. We also devise how to transform the resulting contour line (or surface) into a quartic curve
(or surface) based on a curved-triangle (curved-tetrahedron) mapping. A contour in a bivariate quadratic func-
tion defined over a triangle in parameter space is a conic section and can be represented by a rational-quadratic
function, while in physical space it is a rational quartic. An isosurface in the trivariate case is represented as a
rational-quadratic patch in parameter space and a rational-quartic patch in physical space. The resulting contour
surfaces can be rendered efficiently in hardware.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Image Representation]: Volumetric I.3.5 [Com-
putational Geometry and Object Modeling]: Curve, surface, solid, and object representations

1. Introduction

Higher-order elements have gained in importance since they
can be used to represent complex data. Figure 1 shows the
advantage of using a higher-order element to represent data
in the univariate case. Higher-order elements can typically
represent data better when compared to lower-order ele-
ments. This improvement in quality is true for two, three, and
higher dimensions. In the 2D case, a linear triangular ele-
ment represents a linear functional defined over the domain
of the triangle. Most visualization and approximation tech-
niques can use this type of element. A higher-order triangu-
lar element is the quadratic triangle, which has a quadratic
functional defined over the same domain as the linear trian-
gle. Linear tetrahedra can be extended to quadratic tetrahe-
dra in a similar fashion in the 3D case.

Higher-order hexahedral elements are popular in finite el-
ement applications3, and Wiley et al.13 showed their poten-
tial for substantial reductions in the number of required el-
ements when replacing linear elements with quadratic el-
ements. Here, we not only consider linear-edge higher-
order elements, we also consider elements that are also of
higher order in domain space. We call these elements curved

higher-order elements. We devise a method to find contour
lines (and isosurfaces) in curved quadratic triangles (and
tetrahedra). We define a curved quadratic triangle (and tetra-
hedron) as an element that has both a quadratically defined
domain and quadratic functional defined over that domain,
Figure 2 shows an example.

Higher-order elements are typically tessellated by sev-
eral smaller linear elements for rendering purposes. Conven-
tional visualization methods, such as contouring, ray cast-
ing, and cutting-planes, can be applied directly to these lin-
ear elements. Visualization of higher-order elements is not
nearly as highly developed as visualization for linear ele-
ments. Methods for efficiently visualizing higher-order ele-
ments are needed.

We contour trivariate quadratic elements by extracting tri-
angular rational-quadratic patches and show how to contour
curved quadratic elements in 2D and 3D domain spaces. We
first map a quadratic function F(u) : U −→ R defined over
a curved quadratic element into parameter space U and find
the representation Q(u) : U −→ U for a contour value c such
that F(Q(u)) = c, and then transform Q(u) into physical
space R, yielding the mapping C(u) : U −→ R—the repre-
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Figure 1: Advantage of using a higher-order element representation. Left image shows original piecewise linear data. Middle
image shows linear approximation using one linear element. Right image shows quadratic approximation using one quadratic
element. Gray area represents approximation error.

Figure 2: Contour of a curved-quadratic triangle in physical
space R2. The dark curves show the contour in the xy-plane
(domain space) and on the “graph” surface in 3D space.

sentation of c in physical space. We show, for both the 2D
and 3D case, how to transform rational-quadratic functions
in U to rational-quartic functions in R. The resulting con-
tour surfaces can be rendered efficiently in hardware. The
ELSA Gladiac 920, nVidia GeForce 3 and GeForce 4, and
ATI Radeon 8500 and Radeon 970012 video hardware all
support varying levels of higher-order patch rendering suit-
able for quartic patches.

We first discuss how to find contours in 2D and 3D linear-
edge quadratic elements (in our parameter space). We then
continue with a description of transforming parameter-space
contours into the physical space of the curved quadratic ele-
ments.

2. Previous work

Few higher-order element visualization techniques exist.
Higher-order hexahedra visualization is described in 9. Visu-
alization of higher-order element isosurfaces in the form of
A-patches is described in 1. Elements with a higher-order do-
main and a linearly defined functional defined over that do-
main are volumetrically visualized by the method in 11. Cre-
ation of hierarchical quadratic-tetrahedral approximations is
discussed in 13.

Extracting isosurfaces from linear-edge quadratic trian-

gles has been studied in 2, 10, 14. The Worsey-and-Farin
method14 uses a Bernstein-Bézier basis, which tends to work
better than the monomial basis used in the Marlow-and-
Powell method10. The Worsey-and-Farin method14 and the
method discussed by Bloomquist in his thesis2 provide a
foundation for finding contours in quadratic elements in
their parameter spaces (linear-edge quadratic simplices).
Bloomquist used the Worsey-and-Farin method for the 2D
case and extended it to the 3D case to find contour surface
intersections with the faces of a tetrahedron.

2.1. The 2D case

We implemented the Worsey-and-Farin method14 to find
rational-quadratic curves that represent the contour passing
through a linear-edge quadratic triangle. The domain of the
standard triangle—with vertices (0,0), (1,0), and (0,1)—U ⊆
R defines our parameter space and R physical space. The
contour in a quadratic triangle can be quite complex, and it
is often desirable to represent it by several segments. We de-
fine a univariate rational-quadratic curve Q(u) : U1 −→ U2

that represents a segment of the contour, in Bernstein-Bézier
form, with three control points pi ∈ U2 and three weights
wi,0 ≤ i ≤ 2, wi ≥ 0, defined as

Q(u) =
∑0≤i≤2 wipiB

2
i (u)

∑0≤i≤2 wiB2
i (u)

, (1)

where the univariate nth-degree Bernstein polynomial Bn
i (u)

is

Bn
i (u) =

n!
(n− i)!i!

(1−u)n−iui
. (2)

3. The 3D case

Our method is an extension of Bloomquist’s trivariate con-
touring method using a method similar to 8. Bloomquist’s
method is extended by forming triangular rational-quadratic
patches that represent the contour surface in a linear-edge
quadratic tetrahedron. We compute our representation by
applying the contour line method to each of the tetrahe-
dron’s faces to find the contour intersections. Then, we form
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Figure 3: Two contour surfaces inside a quadratic tetrahe-
dron. Dark dots are the contour intersections with the edges.
Dark curves are the contour intersections with the faces.
There are two groups of three curves that bound two inde-
pendent surfaces of the contour.

rational-quadratic patches that approximate the contour sur-
face from the contour lines on the faces. We define a trian-
gular rational-quadratic patch Q(u,v) : U2 −→ U3 that rep-
resents a region of the isosurface, in Bernstein-Bézier form,
with six control points pi j ∈ U3 and six weights wi j, i, j ≥ 0,
i+ j ≤ 2, wi j ≥ 0, defined as

Q(u,v) =

∑ i, j ≥ 0,

i+ j ≤ 2

wi jpi jB
2
i j(u,v)

∑ i, j ≥ 0,

i+ j ≤ 2

wi jB2
i j(u,v)

, (3)

where the bivariate nth-degree Bernstein polynomial
Bn

i j(u,v) is

Bn
i j(u,v) =

n!
(n− i− j)!i! j!

(1−u− v)n−i− juiv j
. (4)

3.1. Constructing contour surfaces

We apply the 2D algorithm to each face of a tetrahedron
and find the intersections of the contour surface with each
face; we call these intersections face-intersection curves.
Since there can be more than one surface passing through
a quadratic tetrahedron, we connect the face-intersection
curves end-to-end to form groups of curves that bound vari-
ous portions of the contour surface, see Figure 3, similar to
Hamann’s method 7. We classify each group according to the
number of curves it contains:

• Zero curves. Either the contour surface is not present or
the surface is “pill-shaped” and lies completely inside the
tetrahedron.

• One curve. This is the case when one edge of the tetra-
hedron is equal to the contour value. We do not treat the
curve in this case.

• Two curves. This is the case when, along one edge,
the contour surface intersects two neighboring faces and

Figure 4: Constructing a triangular patch from two curves.
We collapse one edge of the patch by using the point p0

0 three
times along an edge. Left image shows contour intersecting
the faces of tetrahedron. Middle image shows labelled points
of two-curve boundary polygon. Right image shows patch
indexing.

looks similar to the “peel-of-an-orange slice,” see Figure 4
(left).

• Three curves. The surface intersects three neighboring
faces.

• More than three curves. The surface is bounded by sev-
eral curves.

Simple cases occur when there are two or three face-
intersection curves bounding the surface. An approximation
to the contour surface is found by representing the surface
with one triangular quadratic patch.

When there are two curves, we form one triangular patch
by collapsing one side of the patch to the same point, see Fig-
ure 4. A “crack” along the curves would be introduced if we
were to cut the surface across the middle to form two patches
since the curves found in neighboring elements would not
necessarily be split. Later in the rendering process—when
the patch is tessellated either in software or hardware—the
degenerate patch edge produces zero-area triangles (where
two vertices have the same location). In terms of visualiza-
tion, no significant problems are introduced since normal
vectors for the vertices are computed analytically from the
patch.

Three curves are trivially converted into one triangular
patch by using the control points from the three boundary
curves as patch control points.

More than three curves bounding the surface is non-
trivial. Figure 5 shows an example of the type of complicated
surface we must represent. We first form a polygon from the
control nets of the face-intersection curves that bound the
surface; this polygon is always closed but not necessarily
convex. We follow these three steps to represent the surface
with rational-quadratic patches:

1. Choose the shortest diagonal in the polygon to “split
across.” Here, a diagonal splits the polygon into two
halves. We only consider diagonals that connect end-
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Figure 5: Contour surface bounded by six face-intersection
curves. Dark dots are the endpoints of the curves.

points of the face-intersection curves. If n is the num-
ber of boundary curves, then the only valid diagonals to
choose from are those that partition the polygon into two
sets of n

2 curves (or additionally n+1
2 when n is odd).

2. Choose a control point and weight for the center of the
diagonal.

3. Recurse on each half until the simple case of three bound-
ary curves is reached.

There are several possibilities to choose the center con-
trol point location along the diagonal. Initially, we tried to
choose this point by intersecting tangent planes of the con-
tour surface. We chose not to compute the tangent planes
exactly for performance reasons, instead, we estimated tan-
gent planes using the control nets of the face-intersection
curves. This method turned out to be inappropriate since the
intersection quite often lay outside a tetrahedron.

We choose the more stable approach that considers var-
ious combinations of the center control points of the face-
intersection curves (ensuring a point that lies inside a tetra-
hedron). For each diagonal, we only consider the center con-
trol points that are immediate neighbors to the endpoints of
the diagonal. This approach always provides us with four
control points, see Figure 6.

We consider all unique averages of each pair, group of
three, and all four control points, in addition to each of the
control points themselves. This method produces at most fif-
teen unique possibilities. For each point b i

1 in this set, we
try to form a rational-quadratic curve Qi(u) to represent the
diagonal with endpoints b0 and b2. We compute the weight
for the curve by intersecting the line connecting b i

1 and m
with the contour surface, where m = b0+b2

2 , see 14 for how
to compute the weight. We ignore a point b i

1 if there is not
exactly one intersection with the contour surface. We choose
the control point that produces the curve with least error. We
estimate the error for curve Qi(u) by evaluating it at parame-
ter values u = 1

6 ,

2
6 ,

4
6 , and 5

6 and then sampling the quadratic
tetrahedron at these locations. We obtain an error estimate by
summing the absolute difference between the sampled value
and the contour value. If none of the control points can form

a valid curve, then the diagonal is invalid and we mark the
tetrahedron as containing a surface that is “too complex.”

When a contour surface is too complex, we subdivide the
tetrahedron to resolve the surface. These are the criteria that
indicate when a surface is too complex:

1. There are no intersection curves with the faces but there
exists a completely enclosed pill-shaped surface inside
the tetrahedron. (Worsey and Farin14 showed how to de-
termine whether or not there exists such a surface.)

2. All the curves in a face-intersection group lie on the same
face.

3. A surface bounded by more than three face-intersection
curves cannot be split into patches.

4. Curved simplices

We find contours in curved quadratic elements by first find-
ing the curve (or surface) in parameter space and then trans-
forming the curve (or surface) to physical space. This section
focuses on how to perform this transformation in the 2D and
3D cases to obtain quartic curves and surfaces that represents
the contour through the curved quadratic elements.

4.1. The 2D case

We represent the contour in parameter space by a set of
rational-quadratic curves. We consider each curve indepen-
dently using a transformation from parameter space to physi-
cal space. For the rational-quadratic curve Q(u) : U1 −→U2,
see equation (1), the weights w0 and w2 will always be one,
since we require that Q(0) = p0 and Q(1) = p2. We de-
fine, in Bernstein-Bézier form, the bivariate quadratic map-
ping T(u,v) : U2 −→ R2 of the standard triangle in pa-
rameter space, having corners (0,0), (1,0), and (0,1), to a
curved triangle in physical space with six control points
bi j ∈ R2

, i, j ≥ 0, i+ j ≤ 2, as

T(u,v) = ∑
i, j ≥ 0,

i+ j ≤ 2

bi jB
2
i j(u,v). (5)

Substituting (1), with weights w0 and w2 set to one, into
(5) transforms Q(u) from parameter space to physical space,
given by the mapping T(Q(u)) : U1 −→ U2 −→ R2. We re-
arrange the terms and obtain

T(Q(u)) =
c0 + c1u+ c2u2 + c3u3 + c4u4

1+g1u+g2u2 +g3u3 +g4u4 . (6)

The coefficients ci and g j are omitted since they are quite
“involved.” (However, one can easily compute these coeffi-
cients using a math package.)

We define the univariate rational-quartic curve C(u) :
U1 −→ R2 that we use to represent the contour curve in
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Figure 6: Constructing four triangular patches from six face-intersection curves. Circles are endpoints and squares are center
control points of face-intersection curves. Dark lines are chosen diagonal for splits. Dark squares are control points used to
determine the center control point for each diagonal. An original polygon is shown in image A. Image B shows the first diagonal
selection. Image C shows the diagonal selection for the left half. Image D shows the diagonal selection for the right half.

physical space, in Bernstein-Bézier form, having five con-
trol points di ∈ R2 and five weights mi,0 ≤ i ≤ 4, mi ≥ 0,
given by

C(u) =
∑0≤i≤4 midiB4

i (u)

∑0≤i≤4 miB4
i (u)

. (7)

In order to represent (6) by a rational-quartic curve C(u),
we must rewrite (7) to be in the form of (6). The weights m0
and m4 will always be one, since we require that C(0) = d0
and C(1) = d4. By substituting weights m0 and m4 set to one
into (7) we obtain

C(u) =
d0 +h1u+h2u2 +h3u3 +h4u4

1+ r1u+ r2u2 + r3u3 + r4u4 , (8)

which has the same form as (6). The coefficients hi and r j
are omitted here.

Thus, the parametrization of the control net of C(u) in
physical space in terms of (1) and (5) is defined by the values

m1 = w1,

m2 = 1
3 (1+2w1

2),
m3 = w1,

(9)

and

d0 = c0,

d1 = 1
4

4c0+c1
w1

,

d2 = 1
2

2c0+c1+
1
3 c2

1
3 (1+2w12)

,

d3 = 1
4

4c0+3c1+2c2+c3
w1

, and
d4 = c0 + c1 + c2 + c3 + c4.

(10)

Examining the transformation of the control net of
Q(u)—defined by the three points p0, p1, and p2—reveals
some similarities between the control net of Q(u) and that
of C(u). We find the similarities by transforming the two
tangent lines TL and TR from parameter space to phys-
ical space, where TL is the line segment connecting p1
and p0 and TR is the line segment connecting p1 and
p2. Two quadratic curves in physical space represent these
tangent lines. We find the curves by fitting two quadratic
curves—l(u) and r(u)—to the transformed points L =

{p0,
p0+p1

2 ,p1} and R = {p2,
p2+p1

2 ,p1}, respectively. We

determine the two curves by solving for the center control
point for T(u) : U1 −→ R2 when u = 1

2 , where

T(u) = ∑
0 ≤ i ≤ 2

biB
2
i (u), (11)

using three control points bi ∈ R2
,0 ≤ i ≤ 2. The center con-

trol points for l(u) and r(u) turn out to be d1 and d3, respec-
tively, and d0 and d4 turn out to be p0 and p2 transformed to
physical space, respectively, (control net for C(u), see Fig-
ure 7). We prove this property in the Appendix.

Using this observation, we obtain four of the five required
points that define the control net of C(u), given by

d0 = T(p0),
d1 = l1,
d3 = r1,and
d4 = T(p2),

(12)

where l1 and r1 are obtained as described in the Appendix,
using equations (21) and (22), respectively.

4.2. The 3D case

We represent the isosurface in parameter space by a set of
rational-quadratic patches. We consider each patch indepen-
dently using a transformation from parameter space to phys-
ical space. For the rational-quadratic patch Q(u,v) : U2 −→
U3, see equation (3), the weights w00, w20, and w02 are
one, since we require that Q(0,0) = p00, Q(1,0) = p20,
and Q(0,1) = p02. We define, in Bernstein-Bézier form,
the trivariate quadratic mapping T(u,v,w) : U3 −→ R3 of
the standard tetrahedron in parameter space, having corners
(0,0,0), (1,0,0), (0,1,0), and (0,0,1), to a curved tetrahedron
having ten control points bi jk ∈ R3

, i, j,k ≥ 0, i + j + k ≤ 2,
as

T(u,v,w) = ∑
i, j,k ≥ 0,

i+ j + k ≤ 2

bi jkB2
i jk(u,v,w), (13)
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Figure 7: Relationship between control net of Q(u) and control net of C(u). Left image shows rational-quadratic curve Q(u) in
parameter space. Middle image shows control net of Q(u) transformed into physical space. Right image shows rational-quartic
curve C(u) resulting from transforming Q(u) into physical space. It turns out that l1 = d1, r1 = d3, T(p0) = d0, and T(p2) = d4.

where the trivariate nth-degree Bernstein polynomial
Bn

i jk(u,v,w) is

Bn
i jk(u,v,w) =

n!
(n− i− j− k)!i! j!k!

(1−u− v−w)n−i− j−kuiv jwk
. (14)

Substituting (3) into (13) transforms Q(u,v) from param-
eter space to physical space, T(Q(u,v)) : U2 −→U3 −→ R3.
This mapping is defined as

T(Q(u,v)) =
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(15)

Here, we omit the coefficients ci and g j since they are quite
complicated.

We define the bivariate rational-quartic surface C(u,v) :
U2 −→ R3 used to represent the contour surface in physi-
cal space, in Bernstein-Bézier form, having fifteen control
points di j ∈ R3 and fifteen weights mi j, i, j ≥ 0, i + j ≤ 4,

mi j ≥ 0, given by

C(u,v) =

∑ i, j ≥ 0,

i+ j ≤ 4

mi jdi jB4
i j(u,v)

∑ i, j ≥ 0,

i+ j ≤ 4

mi jB4
i j(u,v)

. (16)

In order to represent (15) by a rational-quartic patch
C(u,v), we must rewrite (16) in the form of (15). The
weights m00, m40, and m04 are all one, since we require that
C(0,0) = d00, C(1,0) = d40, and C(0,1) = d04. Substitut-
ing weights m00, m40, and m04 set to one into (16) allows us
to rearrange the terms so that it takes on the same form as
equation (15).

Thus, the parametrization of the control net of C(u,v) in
physical space in terms of (3) and (13) is given by the values

m10 = w10,

m20 = 1
3 (1+2w10

2),
m30 = w10,

m01 = w01,

m11 = 1
3 (w11 +2w10w01),

m21 = 1
3 (w01 +2w10w11),

m31 = w11,

m02 = 1
3 (1+2w01

2),

m12 = 1
3 (w10 +2w01w11),

m22 = 1
3 (1+2w11

2),
m03 = w01,

m13 = w11,

(17)
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and

d00 = c0,

d10 = 1
4

4c0+c1
w10

,

d20 = 1
2

2c0+c1+
1
3 c5

1
3 (1+2w102)

,

d30 = 1
4

4c0+3c1+2c5+c8
w10

,

d40 = c0 + c1 + c5 + c8 + c10,

d01 = 1
4

4c0+c11
w01

,

d11 = 1
4

4c0+c1+c11+
1
3 c2

1
3 (2w10w01+w11)

,

d21 = 1
4

4c0+2c1+c11+
2
3 (c2+c5)+

1
3 c6

1
3 (2w10w11+w01)

,

d31 = 1
4

4c0+3c1+2c5+c6+c2+c11+c8+c9
w11

,

d02 = 1
2

2c0+c11+
1
3 c12

1
3 (1+2w012)

,

d12 = 1
4

4c0+2c11+c1+
2
3 (c2+c12)+

1
3 c3

1
3 (2w01w11+w10)

,

d22 = 1
2

2c0+c1+c11+
2
3 c2+

1
3 (c3+c5+c6+c7+c12)

1
3 (1+2w112)

,

d03 = 1
4

3c11+4c0+c13+2c12
w01

,

d13 = 1
4

c4+c13+c2+c3+2c12+c1+3c11+4c0
w11

, and
d04 = c0 + c11 + c12 + c14 + c13.

(18)

5. Results

We show examples of isosurfaces for complex data sets in
Figures 8, 9, and 10. In these figures, an isosurface of a
curved-quadratic tetrahedral representation of a “spherical”
data set (x2 + y2 + z2 = c) is shown. This data set consists
of 320 curved-quadratic tetrahedra. The extracted isosurface
consists of 308 triangular rational-quartic patches.

Figures 11 and 12 show the isosurface of a data set con-
sisting of 15918 quadratic tetrahedra representing “eight
spheres.” The curved quadratic-tetrahedral mesh uses the
same 90◦ twist as the one shown in Figure 8. The resulting
contour surfaces consist of 6112 patches.

6. Conclusions

In the bivariate case, a rational quadratic can represent a con-
tour curve exactly since it is a conic section. In the trivari-
ate case, we can represent the intersection of the contour
surface with each face exactly. However, the contour sur-
face inside a tetrahedron cannot be represented exactly with
a rational-quadratic patch4. Some degree of error is inher-
ent in the surface representations we produce because of the

Figure 8: Left image shows “un-twisted” mesh containing
only linear-edge quadratic tetrahedra. Right image shows
twisted mesh containing curved-quadratic tetrahedra. The
mesh is twisted by 90◦ comparing top and bottom faces of
entire mesh configuration.

Figure 9: Enlargement of rational-quadratic contour sur-
face extracted from un-twisted mesh shown in Figure 8 (left);
320 quadratic tetrahedra.

Figure 10: Enlargement of rational-quartic contour surface
extracted from twisted mesh shown in Figure 8 (right); 320
curved-quadratic tetrahedra.
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Figure 11: Rational-quadratic contour surface extracted
from un-twisted mesh consisting of 15918 quadratic tetra-
hedra.

Figure 12: Rational-quartic contour surface extracted from
15918 curved-quadratic tetrahedra.

patches we chose to use. An alternative is to tessellate (ap-
proximate to) the quadratic tetrahedron with linear tetrahe-
dra and then to extract the isosurface from these linear ele-
ments. To obtain an isosurface with less approximation error
one would need to use several linear tetrahedra per quadratic
tetrahedron, which is undesirable for two reasons: first, the
performance penalty for the tessellation is too high; and sec-
ond, the amount of data sent to the video hardware would
increase. We can either send a few curved patches or several
linear triangles.

We only guarantee C0-continuity between the rational-
quadratic patches. We will investigate how to ensure C1-
continuity.

When subdividing quadratic tetrahedra—in the case
where the contour surface is too complex—we are now con-
sidering the use of a subdivision scheme that does not pro-
duce “hanging nodes” or “skinny tetrahedra.” Longest-edge
bisection, in this application, tends to produce skinny tetra-
hedra, which leads to poor patches. Ideally, a method should
preserve the original shape of the initial tetrahedra. Exam-
ples of such methods are red-green subdivision 6 and dia-
mond subdivision 5. We are currently integrating quadratic
tetrahedra and the contouring method described here into the
view-dependant visualization method described in 5.
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Appendix

We prove the similarities between the control net of Q(u)
and that of C(u), as illustrated in Figure 7. We first prove
this property for the left tangent line formed by p0 and p1.
We must show that l0 = d0 and l1 = d1. First, we find that
l0 = T(p0) and l2 = T(p1) . These variables are given as

l0 =









b20 b11 b10
b11 b02 b01
b10 b01 b00









u0
v0

1−u0 − v0









T





u0
v0

1−u0 − v0





= c0,

(19)

thus, we find that l0 = d0, and

l2 =









b20 b11 b10
b11 b02 b01
b10 b01 b00









u1
v1

1−u1 − v1









T





u1
v1

1−u1 − v1





,

(20)

where c0 is obtained from equation (6). We fit a quadratic
curve to {l0,T(

p0+p1
2 ), l2} and find l1 to be

l1 =
























b00 0
b10 −b00 b00 +b20 −2b10
b01 −b00 b00 +b11 −b10 −b01
b10 −b00 0
b01 −b00 0

0
b00 +b11 −b10 −b01

b00 +b02 −2b01
0
0

















1
u1
v1

















T













1
u0
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u1
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.

(21)
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By substituting the solutions for c0 and c1, from equa-
tion (6), into the solution for d1 from (10) it follows that
d1 = l1. A similar proof can be constructed to show that
r0 = T(p2) = d4 and r1 = d3, where r1 is given as

r1 =
























b00 0
b10 −b00 b00 +b20 −2b10
b01 −b00 b00 +b11 −b10 −b01
b10 −b00 0
b01 −b00 0

0
b00 +b11 −b10 −b01

b00 +b02 −2b01
0
0

















1
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u1
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.

(22)
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Figure 8: Left image shows “un-twisted” mesh containing only linear-edge quadratic tetrahedra. Right image shows
twisted mesh containing curved-quadratic tetrahedra. The mesh is twisted by 90◦ comparing top and bottom faces of
entire mesh configuration.

Figure 9: Enlargement of rational-quadratic contour sur-
face extracted from un-twisted mesh shown in Figure 8
(left); 320 quadratic tetrahedra.

Figure 10: Enlargement of rational-quartic contour surface
extracted from twisted mesh shown in Figure 8 (right); 320
curved-quadratic tetrahedra.

Figure 11: Rational-quadratic contour surface extracted
from un-twisted mesh consisting of 15918 quadratic tetra-
hedra.

Figure 12: Rational-quartic contour surface extracted from
15918 curved-quadratic tetrahedra.
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