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Abstract
Morse theory and the Reeb graph give topological summaries of the behaviour of continuous scalar functions. The
contour tree augments the Reeb graph for the isosurfaces in a volume to store seed sets, which are starting points
for extracting isosurfaces by the continuation method. We replace the minimal seed sets of van Kreveld et al. with
path seeds, which generate paths that correspond directly to the individual components of an isosurface. From a
path we get exactly one seed per component, which reduces storage and simplifies isosurface extraction. Moreover,
the correspondence allows us to extend the contour spectrum of Bajaj et al. to an interface that we call flexible
isosurfaces, in which individual contours with different isovalues can be displayed, manipulated and annotated.
The largest contour segmentation, in which separate surfaces are generated for each local maximum of the field,
is a special case of the flexible isosurface.

1. Introduction

One of the fundamental tools for rendering and segmenting
three-dimensional scalar fields is the isosurface. Isosurfaces,
the three-dimensional analogue of contour lines on a topo-
graphic map, show the surface defined by a specified value of
the scalar field, called the isovalue. An isosurface may con-
sist of several connected components: we refer to the con-
nected components of the isosurface as contours.

Isosurfaces can be rendered directly, or used to define
transfer functions for volume rendering. In either case, the
first task is to establish a suitable isovalue for which the iso-
surface captures all of the information of interest in the data
set. In many cases, a suitable isosurface is already known,
especially when the task has been performed many times.

In other applications, although boundaries are of particu-
lar interest, the specific isovalue of interest is unknown. An
example of this is the boundary between the heart and the
rest of the body in a medical data set. In some cases, it is
possible to select a suitable isovalue automatically, based on
the gradient of the field18. In other cases, user interaction is
required to find a suitable isovalue.

Not all applications focus on boundaries: computational
fluid dynamics and molecular modelling, for example, give
rise to data sets where the specific isovalue of interest is not

immediately obvious. Where no a priori isovalue is known,
successful visualization usually involves human-directed ex-
ploration of the data. The user tries different isovalues inter-
actively, until a suitable one is found. As a result, interfaces
that that give cues to suitable isovalues can significantly en-
hance the human’s exploration of the data.

In Section 2, we review the interfaces suggested for guid-
ing exploration of data, techniques for automatically select-
ing isovalues, and relevant work on isosurface extraction,
feature tracking, and segmentation. In discussing isosurface
extraction, we start with the continuation method of Wyvill,
McPheeters & Wyvill32, which divides the function up into
polyhedral cells, then follows each contour from cell to cell
until the contour has been completely traversed. In order for
this method to work, a reliable set of starting points, or seeds,
is required to initialize the continuation method.

The most reliable source of seed cells is the contour tree.
This structure is describes the evolution of isosurfaces as
the isovalue is varied. Not only can it be used to generate
seeds for the continuation method, it can also be used as a
visual representation of the data. In Section 3, we describe
this structure, review algorithms for constructing it, and re-
view the minimal seed set method of van Kreveld et al. for
isosurface extraction using the contour tree.
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In Section 4, we describe how to replace these minimal
seed sets with path seeds. Instead of pre-computing and stor-
ing a universally sufficient set of seeds, we generate paths of
valid seeds from the contour tree at runtime. Not only does
this reduce the memory overhead for seed sets, it also re-
duces the pre-processing required, by integrating the com-
putation directly with the contour tree algorithm of Carr,
Snoeyink & Axen4. These path seeds also can guarantee a
1-1 correspondence between contours, isosurface seeds, and
superarcs of the contour tree.

In Section 5, we exploit this correspondence to identify
individual contours, to annotate them, and to track them as
the isovalue varies. We extend the contour spectrum of Bajaj,
Pascucci & Schikore1 to create an interface that we call the
flexible isosurface, in which we select, manipulate, and an-
notate contours visually. In particular, we free the user from
the constraint that a single isovalue must be chosen for the
entire data set. Instead, the user may choose several contours
at different values. The local contour segmentation of Man-
ders et al.14 is a special case of the flexible isosurface.

We comment on our implementation in Section 6, state
our conclusions in Section 7, and discuss some possible fur-
ther extensions of this tool in Section 8.

2. Previous Work

We now review previous work on isosurface interfaces1 � 10,
interactive transfer function design11, automatic iso-
value selection18 � 30, isosurface extraction1 � 4 � 13 � 31 � 32, feature
tracking20 � 23 � 24, and segmentation14 .

As noted in the previous section, an isovalue can be speci-
fied manually or automatically. Manually specified isovalues
are often used to explore otherwise ill-understood data. For
this, the simplest approach is to display the isosurface inter-
actively. The user interacts with the software, trying differ-
ent isovalues until a suitable isosurface is found. This ex-
ploratory process is significantly faster if cues are available
to guide the user to interesting isovalues.

In 1991, Shinagawa, Kunii & Kergosien22 described a
method of coding contour changes visually, based on a struc-
ture called the Reeb graph. Although this paper described
how to code contour changes, it was apparently not used as
interface for isosurface exploration. Since the Reeb graph is
intimately related to the contour tree, it will be discussed in
the following section, along with the contour tree itself.

In 1997, Bajaj, Pascucci & Schikore1 described an inter-
face for isovalue selection. This interface consisted of two
parts: a main panel showing the isosurface, and a separate
panel, the contour spectrum, which graphed summary char-
acteristics of isosurfaces as a function of the isovalue. These
summary characteristics included the surface area and en-
closed volume of the isosurface. In addition, the contour
spectrum suggested to display the contour tree, as a cue to
topological change in the data.

Kettner, Rossignac & Snoeyink10 modified the contour
spectrum in an interface called SAFARI. This interface uses
colour and intensity in the contour spectrum panel to rep-
resent the connectivity of isosurfaces over two independent
variables: time and isovalue. Moreover, the contour spec-
trum panel is also used directly to specify the time and iso-
values to display in the main panel. The connectivity of the
isosurfaces at different isovalues and times was computed
from the contour trees for the individual time steps, without
explicitly extracting the isosurfaces.

A related problem is the design of transfer functions for
volume rendering. Transfer functions specify the opacity
and optical properties of different types of material. Fre-
quently, transfer functions are based on isovalues in the data.
Kniss, Kindlmann & Hansen11 noted that this assumes that a
given isovalue has uniform meaning throughout the data set.
They observed that this assumption causes problems, and de-
signed an interface to construct multi-dimensional transfer
functions interactively. This interface added gradient infor-
mation as a parameter to the transfer function.

Instead of user interaction, some authors use statistical
methods. Pekar, Wiemker & Hempel18 use a gradient his-
togram to find isovalues for which the gradient is steepest,
assuming that steep gradients mark significant boundaries.
Tenginakai, Lee & Machiraju30 use statistical signatures of
the local distribution of voxel values to define a transfer
function. And in a technical report published in 2001, Taka-
hashi, Fujishiro & Takeshima26 described how to automate
transfer function design by using the contour tree to detect
isovalues at which major changes in isosurface topology oc-
curred, then emphasizing those isovalues.

Once an isovalue has been chosen, the next task is to
extract the corresponding isosurface. In 1987, Lorenson &
Cline13 described Marching Cubes, in which the domain of
the function is divided into a large number of small cubes.
The intersection of the desired isosurface with each cube is
then computed separately, and rendered. This approach has
the drawback that all cubes are inspected, but only a small
fraction of them intersect the surface. Since 1987, many re-
searchers have sought to accelerate isosurface extraction by
inspecting only the cubes that intersect the surface.

One of the most efficient method of doing so was de-
scribed in 1986, by Wyvill et al32. Instead of inspecting all
cubes, they assumed that a cube that intersected each surface
was already known. These starting cubes have since come to
be known as isosurface seed cells. The seed cells for a partic-
ular isosurface are placed on a queue. As cells are taken off
the queue, their intersection with the isosurface is computed,
and, if it is non-empty, all neighbouring cells are placed on
the queue. This method has the effect of propagating along
each surface until the entire isosurface is constructed. The
principal weakness of this method is that it requires a reli-
able source of seed cells.

Various authors have reported on methods for guarantee-
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Figure 1: A Small Example in Three dimensions

ing such seed cells. Starting in 1994, Itoh & Koyamada7 � 8
described a structure called the extrema graph, in which
the local extrema in the function were connected by sets
of seed cells. They noted, however, that the method was
heuristic, and not guaranteed to succeed. Itoh, Yamaguchi
& Koyamada9 extended this to volume thinning, in which a
set of seeds for extracting contours was constructed by dis-
carding redundant samples until no more could be discarded.
This gave a volumetric skeleton for the data set, which also
served as a sufficient set of seeds. Similar thinning methods
were also used by Bajaj, Pascucci & Schikore2, to construct
the contour tree, and by Gagvani, Kenchammana-Hosekote
& Silver6 to animate volumetric data.

In 1997, Bajaj, Pascucci, & Schikore showed that the con-
tour tree could be used to generate seed sets for contour lines
or isosurfaces. We defer discussion of the contour tree until
the next section. For now, it suffices to say that the statement
that the contour tree captures the relationship between the
contours at different isovalues, and can be used to generate
seeds for isosurface extraction.

Not all isosurface extraction methods are based on March-
ing Cubes or continuation. For example, medical data is of-
ten acquired as a set of two-dimensional slices. Contours or
boundaries are constructed on each slice, and must be con-
nected between slices. Shinagawa & Kunii21 used the Reeb
graph to track the topological changes in the boundaries be-
tween slices. A similar approach was also applied to the
problem of tracking moving features in time-varying data
by Samtaney et al.20 and by Silver and Wang23 � 24.

In cell biology, Manders et al.14 use largest contour seg-
mentation to detect organelles in individual cells. Instead
of looking for sharp boundaries, which were often absent,

they define maximal contours which contain exactly one lo-
cal maximum. These largest contours are extracted from the
data by growing regions independently from each local max-
imum until a saddle point is detected. As we will see in
Section 5.4, this is a special case of the flexible isosurfaces
which we introduce in this paper.

One structure has recurred in many of these areas: the con-
tour tree. This is not a coincidence. Once the decision has
been made to study contours, the relationship between the
contours is a rich source of information about the data. This
information is neatly encapsulated in the contour tree, which
we discuss in the following section.

3. The Contour Tree

As noted in the introduction, the contour tree is a structure
that captures the topological evolution of a data set as the
isovalue varies. It is a tree, composed of superarcs and su-
pernodes, each of which may collapse several original edges
and vertices. It is best described by showing an example.

Figure 1 (a) - (f) show six isosurfaces of a small data set in
order from high to low. Figure 1(g) shows the corresponding
contour tree: the horizontal lines correspond exactly to the
isosurfaces shown in Figure 1, while the edge colours cor-
respond to the surface colours. Finally, the Greek letters α
to ι mark correspondence between the contour tree and the
contours. If we imagine a sweep from high isovalues to low
isovalues, we see four small contours in Figure 1(a): these
correspond to the four leaves at the top of the contour tree.
Contours α and β join to form ε in Figure 1(b): note that ε
rapidly becomes a contour of genus 1: this additional infor-
mation can also be stored in the contour tree16 � 17. Contours
γ and δ then join to form ζ in Figure 1(c). Contours ε and
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Figure 2: A Small Sample Triangulation
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Figure 3: Graph Matching to extract Seed Sets

ζ then join to form η, in Figure 1(d). This surface gradually
wraps around a hollow core (Figure 1(e)), then pinches off to
form two surfaces θ � ι in Figure 1(f). Note that only θ is visi-
ble, as ι is contained inside it: we observe a change of colour
between Figure 1 (e) and (f), which alerts us to the change
in topology. As we sweep to the global minimum value, ι
contracts to a local minimum and disappears, followed by θ
at the global minimum.

More formally, the contour tree is a special case of the
Reeb graph19. This graph, first reported by Reeb in 1946, de-
scribes the evolution of cross-sections of an arbitrary mani-
fold. We note that every function defines a manifold, and that
the cross-sections of that manifold are the contours. Thus,
the Reeb graph of a function with respect to the isovalue is
the contour tree. Both the Reeb graph and the contour tree
are defined in terms of equivalence classes of contours19 � 4.
Note that the contour tree was independently described by
Boyell & Ruston3 in terms of the nesting relationship of a
set of explicit polygonal contours.

The best short description of the contour tree is that it
is the result of contracting each possible contour to a sin-
gle point16. A contour that passes through a local extremum,
or a saddle point at which the connectivity of the contours
changes, always contracts to a vertex of the contour tree:
the extremum or saddle is called a critical point. Otherwise,
the contour contracts to a point on one of the edges of the
tree, and is called a regular point. Although general Reeb
graphs may have cycles, the contour tree may not: as is eas-

ily seen on a topographic map, contours are always properly
nested. Any contour (or point on the contour tree) therefore
divides the function domain (and the contour tree) into dis-
joint pieces. Cycles are therefore excluded, guaranteeing that
the contour tree is in fact a tree.

The contour tree was initially used for two-dimensional
data sets, as an index structure for extracting contours3 � 31,
and as an abstract description of a landscape5 � 12 � 25 � 27. Prior
to 1995, it was typically constructed from previously ex-
tracted polygonal contour lines.

In 1995, Takeshima et al.27 gave the first algorithm for
computing the contour tree for a triangulation in two dimen-
sions. This algorithm traces ascending and descending paths
from saddles in the mesh to form a “surface network” con-
necting all saddles and local extrema in the mesh. Local ex-
trema in the mesh are identified, and transferred to the con-
tour tree, working in to the centre of the tree. This algorithm
was extended to three dimensions in 2001 in a technical re-
port by Takahashi, Fujishiro & Takeshima26, although the
contour tree is referred to in this case as the volume skeleton
tree. No formal analysis is given in either case, but a bound
of O � n2 � is not difficult to prove, and a tighter bound may be
possible. Special treatment was required for boundary cases,
and multiple saddles had to be decomposed into single sad-
dles.

Van Kreveld et al.31 gave an algorithm for computing the
contour tree on simplicial meshes by sweeping a polygo-
nal contour through the mesh from high to low, then from
low to high. They also noted that the contour tree could be
used to extract isosurfaces from volume data. For two di-
mensions, the algorithm took O � n log � n ��� steps, for three
or more dimensions, O � n2 � steps. Again, multiple saddles
and boundary cases required special handling. Tarasov &
Vyalyi28 then extended the O � n log � n ��� analysis to three di-
mensions, at the expense of subdividing simplices into as
many as 576 cells each. Pascucci16 further extended this al-
gorithm to track topological genus, as well as connectivity.

Carr, Snoeyink & Axen4 then extended and improved
this algorithm to take O � n log � n ��� tα � t ��� steps in three and
higher dimensions, where t is an output parameter mea-
suring the size of the contour tree. This algorithm com-
bines the sweeps from high-to-low and low-to-high isoval-
ues from van Kreveld et al.with the outside-in construction
from Takeshima et al., while dispensing with the explicit
contour construction of the former, and the surface network
construction of the latter. Moreover, no special cases are re-
quired for multiple saddles or boundary cases. Subsequently,
Pascucci & Cole-McLaughlin17 extended the algorithm of
Carr, Snoeyink & Axen4 to track topological genus, and also
adapted the algorithm to handle cubic cells with a trilinear
interpolation function.

Once the contour tree was constructed, van Krev-
eld et al. showed how to use it to generate a minimal seed
set: a set of seed cells that was guaranteed to intersect each
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Figure 4: A Minimal Seed Set of Size O � n �

possible contour at least once. Figure 2 shows a small 2-D
triangulation that has the same contour tree as the 3-d exam-
ple shown in Figure 1. Figure 3 shows how a minimal seed
set is constructed for this triangulation. In Figure 3, the con-
tour tree is shown with thick black lines. For each triangle in
Figure 2, an edge is added between the highest and lowest-
isovalued vertices of the triangle. These edges are shown
in Figure 3 as thinner grey edges. A minimal set of edges
is then chosen to cover all the original contour tree edges.
In this case, one such minimal seed set is the set of five
medium-weight grey edges marked A-E. The corresponding
triangles A-E in the triangulation are then sufficient to gener-
ate all possible contours, and are shown in grey in Figure 2.

Several drawbacks to this approach can be noted. First,
although the minimal seed set can be computed in polyno-
mial time, van Kreveld et al.31 do not specify the polynomial.
Instead, they present an approximation algorithm which re-
quires linear storage and O � n log2 n � time in two dimensions,
linear storage and O � n2 � time in higher dimensions. This ap-
proximate algorithm guarantees that no more than twice the
minimum number of seed cells are chosen.

Second, the size of this seed set can be significant. Since
at least half of the supernodes of the tree are local extrema,
and no cell can contain more than one minimum and one
maximum, it follows that the seed set must be Ω � t � , where
t is the number of supernodes in the contour tree. A trivial
upper bound is O � n � , as each grey edge covers at least one
arc of the contour tree: thus, there is always a seed set of
size n. It is not difficult to construct worst case examples
for which the minimal seed set is significantly larger than
t. Consider the triangulation in Figure 4. The contour tree
in this case consists of a single superarc (i.e. t � 1), but the
minimal seed set always uses Θ � n � cells. This construction
can be extended to any dimension.

Third, although the contour tree is used to construct the
seed set, the correspondence noted between the superarcs of
the contour tree, and the individual contours in the image
is lost. For each given contour, we may in fact have more
than one seed cell. In Figure 2, the contour at a height of
3.5 is shown as a dotted line. Note that it intersects three
of the grey triangles: A, C, and E. This many-to-one corre-
spondence makes it difficult to relate contours in the image
to the superarcs to which they correspond. This redundant
representation makes it necessary to mark which cells have
been visited, in order to guarantee that the same contour is
not extracted multiple times. This is unnecessary for two-
dimensional data sets, which do not need such flags for con-
tour extraction. If we start at the seed cell, we need merely
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Figure 5: Monotone Paths as Seeds
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Figure 6: Storing Monotone Paths as Path Seeds

follow the contour in either direction until we return to the
seed cell, or reach the boundary of the data set. If we reach
the boundary, we return to the seed cell and extract the other
half-contour travelling in the opposite direction. For three-
and higher-dimensional data, however, the number of possi-
ble directions to travel requires us to store flags for each cell
in the mesh during our extraction step.

In the next section, we describe an improvement to the
seed set approach: path seeds, which we generate directly
from the contour tree.

4. Path Seeds

The distance is nothing: it is only the first step that is diffi-
cult: (the Marquise du Deffand (1697-1780), remarking on
the legend that St. Denis walked two leagues carrying his
head after it was cut off)

In the previous section, we reviewed the construction of
minimal seed sets from the contour tree. In this section, we
show how to bypass this step, and generate seeds directly
from the contour tree as needed. Instead of generating seed
cells, we generate seed edges (i.e. edges that intersect the
desired contour). In practice, either seed edges or seed cells
suffice, as any cell including the edge is a seed cell, and there
is always at least one edge in a seed cell that can be used as a
seed edge. Moreover, we choose our seed edges so that they
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form a set of monotone paths starting at critical points. To
do this, we use paths similar to those that Takeshima et al.27

use to compute the contour tree.

Consider Figure 5, in which the heavy grey edges mark
monotone paths starting at critical points. Each path corre-
sponds to a superarc in the contour tree shown in Figure 6.
To generate seed cells for contours corresponding to a super-
arc, we follow the corresponding path through the mesh until
we reach the desired isovalue. For example, to generate the
contour at isovalue 8 	 9 along the superarc 5 
 10, we start
along the edge 5 
 7 	 2, then ascend along edges 7 	 2 
 8 	 3
and 8 	 3 
 10 until we reach the isovalue 8 	 9.

But, once we have departed in the right direction from 5
going in the right direction, it is trivial to choose a suitable
path. After following the edge 5 
 7 	 2, we have a choice: to
follow 7 	 2 
 8 	 3 or 7 	 2 
 9 	 2. Since 7 	 2 is not a critical point,
all ascending edges pass through the same set of contours.
The same is true at 8 	 3 or 9 	 2, until we reach the isovalue of
the critical point 10. All we need to store to generate a seed
edge is this critical first step: 5 
 7 	 2. We call these “first
steps” path seeds, as they provide seeds for us to construct a
path which generates the desired seed cells or seed edges.

Unlike the paths used by Takeshima et al.27, these paths
need not extend to a local extremum. For example, one path
at 4 ascends to vertex 6 	 1, then stops. This path is used only
for the range of isovalues represented by the corresponding
superarc: in this case, 4 
 5, and does not need to extend
beyond the isovalue 5. Moreover, the paths need not take
the steepest ascent (although that will often be the most ef-
ficient), nor need they terminate at a critical point. Finally,
note that these paths are computed only as needed, and are
not used to compute the contour tree itself.

These path seeds are provably minimal, in the sense that
no stored seed set can be smaller. At any fork in the contour
tree, there must be distinct seeds for each branch. Thus, we
must always store at least as many pieces of seed informa-
tion as there are branches in the tree. Since these path seeds
store exactly one piece of information per branch, they are
optimal, taking Θ � t � space to store in the contour tree. Us-
ing it to compute contour seeds on the fly does add an ad-
ditional cost: this can be as much as Ω � n � for the triangula-
tion in Figure 4. In most cases, however, this cost is dwarfed
by the cost of the actual contour extraction, estimated to be
O � N � d � 1 �� d � 8.

How do we compute these path seeds? Carr, Snoeyink &
Axen4 describe how to merge two partial structures called
the join tree and split tree to obtain the contour tree. The
join tree is constructed by sweeping from high to low isoval-
ues, incrementally using Tarjan’s union-find structure29 to
determine connected components. When vertex 5 is added
to the union-find, so are the edges from 5 to 7 	 2, 9 	 2, and 9.
Immediately before adding 5, these belong to two different
union-find components: one containing 9, the other contain-
ing 6 	 1, 7 	 2, 8 	 3, 9 	 2, and 10. This merge in the union-find

structure is precisely what identifies 5 as a join in the con-
tour tree. At this point, we know that 5 
 7 	 2 and 5 
 9 are
edges ascending from 5 into the two connected components
of � x : f � x ��� h � that join at 5. We store this information
in the join tree, and transfer it to the contour tree during the
merge step of the algorithm. Similarly, we store 3 
 2 	 1 and
3 
 1 in the split tree when we identify 3 as a split, and trans-
fer these path seeds to the contour tree.

Extracting the path seeds in this way adds constant cost
to generating each edge of the join or split tree, and con-
stant cost to transferring edges to the contour tree. Thus,
the asymptotic cost is exactly the same as for the contour
tree algorithm: O � n logn � tα � t ��� . It follows that path seeds
are cheaper to store than the minimal seed sets of van Krev-
eld et al.31, especially in dimensions higher than two.

Finally, we note that this approach generates one and only
one seed for each contour. This allows us to keep track of
individual contours as separate objects. In the next section,
we show how this can be used to generalize the concept of
an isosurface, and to use the contour tree as a direct control
for manipulating or annotating individual contours.

5. Flexible Isosurfaces

Once we have defined path seeds with a 1-1 correspondence
to the contours, we can begin to manipulate contours indi-
vidually, generating several contours at different isovalues.
In order to do so, we extend the contour spectrum of Ba-
jaj, Pascucci & Schikore1, both to represent these contours
abstractly, and to manipulate them.

We define a flexible isosurface to be a set of disjoint con-
tours � C1 ��	�	�	�� Cm � , with isovalues � h1 ��	�	�	�� hm � . A conven-
tional isosurface is a special case of the flexible isosurface,
consisting of the complete set of contours at isovalue h. In
order to display and work with flexible isosurfaces, we must
define how to represent the flexible isosurface, how to dis-
play it, and how to manipulate it.

5.1. Representing a Flexible Isosurface

In order to represent a flexible isosurface, we take advantage
of the fact that each contour in � C1 ��	�	�	�� Cm � corresponds to
a unique point on the contour tree, and vice versa. Thus, a
flexible isosurface can be stored as annotations to the con-
tour tree, marking which superarcs in the contour tree are
currently active, and the isovalue of the corresponding con-
tours. Alternately, we can simply store a list of active super-
arcs and their isovalues.

Even for conventional isosurfaces, this ability to anno-
tate the contour tree is powerful. Not only can we associate
an isovalue with a superarc, we can also associate textures,
colours, display list IDs, or arbitrary text strings with the
superarc. We start by arbitrarily assigning each superarc a
colour. The colours used are drawn from a small palette of
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Figure 7: A Contour Tree that is Hard to Display

easily distinguished colours. Since the exact colour does not
carry semantic information, the choice of palette is imma-
terial, and colour-blind users can still benefit, by changing
the palette of colours. At present, the colour assigned to
any given surface is based on the ID number of the super-
arc modulo the number of colours. In the future, we hope
to assign colours based on the structure of the tree, or on
domain-specific semantic information.

These colours serve three main purposes. First, they make
it much easier to distinguish contours in an image, as in
Figure 11 or Figure 12(c), even when they are tightly in-
tertwined. Second, as we will see next, these colours allow
us to associate each contour visually with the superarc in the
contour tree to which it corresponds. Third, changing the iso-
value in such a way that the topology of the surface changes
will usually cause the contour to change colour, cuing us vi-
sually to changes in the topology.

In addition to colours, we use the superarcs to store
OpenGL display list IDs for each active contour. This en-
ables us to avoid regenerating the entire flexible isosurface
when we make a change to a single contour in it.

5.2. Displaying a Flexible Isosurface

Once we have identified the active contours, we display the
flexible isosurface in two ways. Figure 8 shows the interface,
with the contours rendered in the contour display on the left,
and the contour tree rendered in the contour spectrum on the
right.

For each contour in the flexible isosurface, we take the
path seed stored on the corresponding superarc of the con-
tour tree, and use this to generate a single seed cell for that
contour. The contour is then extracted using the continuation
method of Wyvill, McPheeters & Wyvill32, and stored in an
OpenGL display list, for efficient rendering. The display list
ID is then stored on the superarc for future reference. The
contour is then rendered in the colour associated with the
superarc.

In the contour spectrum, we render the contour tree.
We follow Bajaj, Pascucci & Schikore1 in fixing the y-
coordinate of vertices according to their isovalues. Choos-
ing the x-coordinates is more difficult. In fact, some contour

trees cannot be laid out in this fashion without their edges
crossing. Figure 7 shows an example of a contour tree that
does not have a suitable layout. We then render a coloured
tag on each superarc corresponding to an active contour of
the flexible isosurface. In Figure 8, for example, there are six
active contours labelled α to ζ in the contour display. Visu-
ally, since the colours of the tags correspond to the colours of
the contours, we can associate the contours on the left with
their position in the contour tree on the right, although in this
case, both γ and ε have been assigned the colour green.

In this case, the leftmost contour, α has been marked in
grey to contrast with the colours assigned to other contours.
This indicates that the contour has been selected, following
the common user interface metaphor of selecting an object,
then performing an operation on it. Since we have chosen to
use colours to distinguish between contours, we use a dis-
tinctive monochrome colour to indicate the selection. Other
colour schemes could of course be devised.

5.3. Manipulating the Flexible Isosurface

Now that we know how to define a flexible isosurface, and
how to display it, we turn our attention to manipulating it.
As we indicated above, we follow the common user interface
metaphor of selecting an object, then performing an opera-
tion on it. We support the following operations:

1. Select. To select a contour, we click the mouse on the
desired contour in the contour display, or on the corre-
sponding tag in the contour spectrum. Once we have se-
lected a contour, we display it in a distinctive colour in
the contour display and the contour spectrum, as shown
in Figure 8.

2. Unselect. To unselect contours, we click in any white
space.

3. Add. To add another contour to the flexible isosurface, we
select a previously inactive contour in the contour spec-
trum: i.e. one with no coloured tag. We then compute the
isovalue corresponding to the y-coordinate of the cursor
location, add the corresponding contour to the flexible
isosurface, and redisplay.

4. Delete. One of the buttons below the contour spectrum
can be used to delete the current selection from the flex-
ible isosurface: the flag for the corresponding superarc is
set to false, and the deleted superarc’s ID is temporarily
stored in case we wish to reverse the deletion.

5. Isolate. The second button below the contour spectrum
can be used to isolate a single contour by deleting all
contours in the flexible isosurface except the selection.
Again, the deleted superarcs’ IDs are stored in case we
wish to reverse the deletion.

6. Restore. The third button reverses the last deletion, by
transferring superarcs from the deleted list to the flexible
isosurface. This is convenient if we wish to temporarily
isolate an object to examine it, then return the other con-
tours to the view to give context.
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7. Adjust Isovalue. We adjust the isovalue of the selection
with the vertical slider at the right-hand side of the con-
tour spectrum. This adjusts the isovalue of the selected
contour(s). We also incorporate the slider into the con-
tour spectrum itself, by treating the tags in the tree as
“thumbs” for the slider. In this mode, instead of dragging
the thumb of the slider, we simply select a tag, and drag
it vertically to the desired isovalue.
In Figure 9, we show the result of adjusting the isovalue
of the selected contour in Figure 8. As the isovalue in-
creases, the tag slides up the superarc until it reaches a
fork, at which point it breaks into two tags, and we render
the two corresponding contours in the contour display. As
we drag further, more contours appear, and some may dis-
appear, until we reach the final isovalue for the selected
contour. Thus, dragging the slider (or tag) with a selec-
tion tracks the evolution of the selection as the isovalue
is changed.

8. Select Isosurface. If no contour is currently selected,
dragging the slider at the right-hand side resets the flex-
ible isosurface to a conventional isosurface at the corre-
sponding isovalue.

9. Select Local Contours. In some data sets, such as the fuel
data set shown in Figures 8, 9, & 10, it is useful to iso-
late all local maxima simultaneously. Rather than select-
ing these manually, we provide a check-box marked lo-
cal contours. When this box is checked, and no contour
is currently selected, dragging the slider isolates all lo-
cal maxima, instead of specifying a new isosurface. Since
each local maximum is an upper leaf of the contour tree,
we add a tag to each upper leaf edge: the slider is used
to control the position of the tag on the edge. If the slider
is at the midway position, the tag is placed at the mid-
point of the edge, and so on. By dragging the slider from
top to bottom in this mode, we can see all of the local
maxima growing until they reach the maximum size that
contains only one critical point. Note that, for this data
set, it would not be possible to choose a single isosur-
face that simultaneously identifies all local maxima, as is
apparent from the contour tree display to the right.

To give a more complex example, we take the standard
UNC “3dhead” MRI data set in Figure 12, and show how
to use these operations to isolate the brain and spinal cord,
starting from almost any isovalue. In this example, we start
with the isosurface in Figure 12(a). This isosurface has the
disadvantage that the exterior contour prevents us from see-
ing the contours inside. We select the exterior contour, as
shown in Figure 12(b), then delete it to see what is inside, in
Figure 12(c).

Now that we have removed the exterior, we can see nu-
merous contours inside the head, of which only one interests
us: the brain. We select what appears to be the brain in Fig-
ure 12(d), then delete all the other contours in Figure 12(e).
After we have reduced our field of interest to this single con-
tour, we can adjust its isovalue. In this case, as we adjust

the isovalue downwards, the contour grows, until we reach
Figure 12(f), in which the brain and spinal cord are visible
unimpeded by any other structure.

In this particular instance, as we delete contours, the dis-
play accelerates, as we are no longer generating the missing
surfaces, or rendering them to the screen.

We note that, in the example just cited, we do not show
the contour tree. This is for three reasons. First, the oper-
ations can be performed without having the contour spec-
trum as a visual reference. Even without showing the con-
tour tree, these operations have immediate meanings that are
apparently useful. Second, as the size and complexity of the
data set increase, the complexity of the contour tree grows
to a point where it saturates the contour spectrum, as in Fig-
ure 11. Third, even for small data sets, it is not always possi-
ble to draw the contour tree in such a way that no two edges
cross, as is shown in Figure 7, above.

This layout problem occurs because we have followed Ba-
jaj, Pascucci & Schikore1 in insisting that the y-axis encode
the isovalue. While we personally prefer this, abandoning
this constraint allows alternate representations such as the
Morse surface coding of Shinagawa, Kunii & Kergosien22,
planar layout of the tree, or even three-dimensional layout
of the tree. We have considered using such alternate layouts,
but note that, even when this is possible, larger contour trees
become impractical to display due to the sheer number of
edges. As the number of edges increases, the contour tree
becomes visually saturated, as in Figure 11. For example, in
Figure 12, the data set is 2563 in size, and the contour tree
consists of over 1 � 000 � 000 edges, most of which represent
noise. In generating these images, we disabled the contour
tree, and worked directly with the contour display. A better
long-term solution is to simplify the contour tree as Taka-
hashi, Fujishiro & Takeshima26 have proposed; ways to do
this are currently under investigation.

5.4. Largest Contour Segmentation

In some applications, the peaks in the data are more impor-
tant than specific isovalues. Where this is the case, it is con-
venient to define an initial flexible isosurface by enclosing
each peak (local maximum) in a small surface. This forms
the basis for operation 9. on the flexible isosurface.

This approach is closely related to the largest contour
segmentation of Manders et al.14, where each peak is sur-
rounded by the largest contour which does not contain an-
other peak. In largest contour segmentation, however, if the
surface developing downwards from a local maximum splits
into two surfaces, as in Figure 1, before it joins up with
another surface, then the local isosurface will generate a
smaller surface than the largest contour segmentation. Oth-
erwise, the two sets of surfaces will be identical, and it is
clearly possible to modify this local contour extraction to re-
produce the largest contour segmentation.
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6. Implementation

As noted in Section 2, algorithms for constructing contour
trees have been described by a variety of authors. For the
purposes of this paper, we assume that the contour tree has
been constructed for the data set using one of these al-
gorithms. We implemented the flexible isosurface interface
shown using the algorithm of Carr, Snoeyink & Axen4, mod-
ified to use marching cubes instead of tetrahedra. This also
entailed modifying the continuation algorithm of Wyvill,
McPheeters & Wyvill to propagate strictly along one surface
per cell, rather than propagating to all adjacent cubes.

To layout the contour tree in the contour spectrum, we
assign x-coordinates by taking the sum of the vertex coordi-
nates in three dimensions, then allow the user to adjust the
horizontal position of the vertices for clarity.

We implemented the user interface shown with the
commonly-used GLUT toolkit, and a set of custom inter-
face widgets. As noted in Section 5, surface rendering was
accelerated by storing each extracted contour in a separate
display list. Thus, adjusting the isovalue of one contour did
not require any other contours to be re-extracted.

Table Table 1 shows the results of using flexible isosur-
faces to display and manipulate contours on various data
sets, on a dual 1 GHz Macintosh with 1 GB of RAM and
a 64 MB GeForce video card, using Mac OS X 10.1.5. Note
that the frame rates and path lengths are cited as ranges, as
they depend on exactly which contours have been chosen.
Of these data sets, f368 is an electron distribution field cal-
culated by Alan Ableson from a molecule in the Protein Data
Bank. The second, marlobb, is the test function introduced
by Marschner & Lobb 15. The fuel data set was contributed
to volvis.org by the German Research Council, and is com-
putational in nature. The neghip and lobster data sets are also
available at volvis.org, and come from the SUNY VolVis dis-
tribution. The neghip data is analytic in nature, while the
lobster is a CT scan. The hipiph data set is available from
the University of North Carolina at Chapel Hill, and is ana-
lytic in nature. The teddybear is a data set made available by
the University of Erlangen-Nuremberg, while both 3dhead
and 3dknee come from the University of North Carolina at
Chapel Hill: all three are either MRI or CT scan. The figures
for the 3dhead data set come from a run that produced the
same images used in Figure 12. Initially, the frame rate was
about 0.5 Hz, but this increased once we started deleting sur-
faces, until it reached a peak of about 1.5 Hz. We acknowl-
edge that these results could, and should be faster, but have
not yet optimized the code for maximum frame rate. We also
note that the analytic data images tend to be noise-free, and
have small contour trees. But, when the contour tree is small,
the path lengths tend to be longer than for noisy sampled im-
ages, which have large contour trees.

7. Conclusions

We have described how to generate isosurface seeds directly
from the contour tree using path seeds, and how to take ad-
vantage of this to display several contours simultaneously.
We use the contour tree, not only as a cue for interesting iso-
values, but as a visual control for the isosurface display, and
as a proxy for manipulating sets of partial isosurfaces. We
believe that this can provide additional cues and interactiv-
ity for exploring volumetric data.

8. Future Work

Several extensions to this work are possible, involving im-
proved layouts for the contour tree, simplification of the con-
tour tree, or extension to boundaries extracted by techniques
other than isosurfacing.

In Section 5, we noted that not all contour trees have suit-
able planar layouts. It would be useful to see if a good heuris-
tic exists for reasonable layouts, and also to investigate lay-
outs in three dimensions. In addition, the contour tree in-
terface would be easier to work with if some of the edges
in the contour tree were merged or removed: this would
require a simplified contour tree. Takahashi, Fujishiro &
Takeshima26 have shown how to simplify the contour tree:
we are presently working on maintaining seed information
efficiently for simplified trees, and methods for using volu-
metric information to guide the tree simplification.

Interestingly, the contour tree was originally defined by
Boyell & Ruston3 to express the nesting relationship of a set
of contour lines extracted from a map. This definition could
be applied to any arbitrary set of nesting boundaries. If a
set of surfaces were extracted using some other technique,
such as the gradient methods used by Kniss, Kindlmann &
Hansen11, it should be possible to construct a contour tree
based solely on those surfaces, for manipulation with the in-
terface we have described above.

Finally, we would like to use the flexible isosurface in-
terface to construct spatially local transfer functions for vol-
ume rendering, in an extension of the work of Takahashi,
Fujishiro & Takeshima26.

9. Acknowledgements

Acknowledgements are due to the National Science and En-
gineering Research Council (NSERC) for support in the
form of post-graduate fellowships and research grants, and
to the Institute for Robotics and Intelligent Systems (IRIS)
for research grants. Acknowledgements are also due to
Tamara Munzner for suggesting colour-coded tags in the
contour tree.

References
1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. The Contour Spectrum. In Proceed-

ings of Visualization 1997, pages 167–173, 1997.

c
�

The Eurographics Association 2003.

57



Carr and Snoeyink / Path Seeds and Flexible Isosurfaces:

file n samples time tree size longest path triangle count frame rate
f368 30,345 0.41s 915 4-6 10K - 17K 15 - 60

marlobb 68,921 1.04s 912 1-23 10K - 35K 24 - 65
fuel 262,144 3.17s 227 2-3 3K - 11K 25 -180

hipiph 262,144 3.80s 1,360 5-29 2K - 22K 15 -150
neghip 262,144 4.50s 2,063 7-10 10K - 30K 20 - 60
lobster 489,600 6.03s 17,867 4 19K - 96K 7 - 32

teddybear 1,015,808 14.80s 245,588 4-5 19K -250K 3 - 21
3dhead 7,143,424 178.05s 2,231,900 2-5 85K -500K 0.5 - 3.5
3dknee 8,323,072 253.93s 2,751,506 1-6 325K -1634K 0.5 -1.64

Table 1: Results for some selected data sets

2. C. L. Bajaj, V. Pascucci, and D. R. Schikore. Seed Sets and Search Structures
for Optimal Isocontour Extraction. Technical Report 99-35, Texas Institute for
Computational and Applied Mathematics, Austin, Texas, 1999.

3. R. L. Boyell and H. Ruston. Hybrid Techniques for Real-time Radar Simulation.
In Proceedings of the 1963 Fall Joint Computer Conference, pages 445–458. IEEE,
1963.

4. H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in All Dimensions.
Computational Geometry: Theory and Applications, 24(2):75–94, 2003.

5. H. Freeman and S. Morse. On Searching A Contour Map for a Given Terrain
Elevation Profile. Journal of the Franklin Institute, 284(1):1–25, 1967.

6. N. Gagvani, D. Kenchammana-Hosekote, and D. Silver. Volume Animation using
the Skeleton Tree. In Proceedings of Visualization 1998, pages 47–53, 1998.

7. T. Itoh and K. Koyamada. Isosurface Extraction By Using Extrema Graphs. IEEE
Transactions on Visualization and Computer Graphics, 1:77–83, 1994.

8. T. Itoh and K. Koyamada. Automatic Isosurface Propagation Using an Extrema
Graph and Sorted Boundary Cell Lists. IEEE Transactions on Visualization and
Computer Graphics, 1(4):319–327, 1995.

9. T. Itoh, Y. Yamaguchi, and K. Koyamada. Fast Isosurface Generation Using the
Volume Thinning Algorithm. IEEE Transactions on Visualization and Computer
Graphics, 7(1):32–46, 2001.

10. L. Kettner, J. Rossignac, and J. Snoeyink. The Safari Interface for Visualizing
Time-Dependent Volume Data Using Iso-surfaces and Contour Spectra. Computa-
tional Geometry: Theory and Applications, 25(1-2):97–116, 2001.

11. J. Kniss, G. Kindlmann, and C. D. Hansen. Interactive Volume Rendering Using
Multi-Dimensional Transfer Functions and Direct Manipulation Widgets. In Pro-
ceedings of Visualization 2001, pages 255–262,562, 2001.

12. I. S. Kweon and T. Kanade. Extracting Topographic Terrain Features from Eleva-
tion Maps. CVGIP: Image Understanding, 59:171–182, 1994.

13. W. E. Lorenson and H. E. Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. Computer Graphics, 21(4):163–169, 1987.

14. E. Manders, R. Hoebe, J. Strackee, A. Vossepoel, and J. Aten. Largest Contour
Segmentation: A Tool for the Localization of Spots in Confocal Images. Cytometry,
23:15–21, 1996.

15. S. R. Marschner and R. J. Lobb. An Evaluation of Reconstruction Filters for Vol-
ume Rendering. In Proceedings of Visualization 1994, pages 100–107, 1994.

16. V. Pascucci. On the Topology of the Level Sets of a Scalar Field. In Abstracts of
the 13th Canadian Conference on Computational Geometry, pages 141–144, 2001.

17. V. Pascucci and K. Cole-McLaughlin. Efficient Computation of the Topology of
Level Sets. In Proceedings of Visualization 2002, pages 187–194, 2002.

18. V. Pekar, R. Wiemker, and D. Hempel. Fast Detection of Meaningful Isosurfaces
for Volume Data Visualization. In Proceedings of Visualization 2001, pages 223–
230, 2001.

19. G. Reeb. Sur les Points Singuliers d’une Forme de Pfaff Complètement Intégrable
ou d’une Fonction Numérique. Comptes Rendus de l’Acadèmie des Sciences de
Paris, 222:847–849, 1946.

20. R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing Features and Tracking
Their Evolution. Computer, 27(7):20–27, 1994.

21. Y. Shinagawa and T. L. Kunii. Constructing a Reeb Graph Automatically from
Cross Sections. IEEE Computer Graphics and Applications, 11(6):45–51, 1991.

22. Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Surface Coding Based on Morse
Theory. IEEE Computer Graphics and Applications, 11:66–78, September 1991.

23. D. Silver and X. Wang. Volume Tracking. In Proceedings of Visualization 1996,
pages 157–164, 1996.

24. D. Silver and X. Wang. Tracking Scalar Features in Unstructured Datasets. In
Proceedings of Visualization 1998, pages 79–86, 1998.

25. J. K. Sircar and J. A. Cebrian. Application of Image Processing Techniques to the
Automated Labelling of Raster Digitized Contour Maps. In Proceedings of the 2nd
International ACM Symposium on Spatial Data Handling, pages 171–184, 1986.

26. S. Takahashi, I. Fujishiro, and Y. Takeshima. Topological Volume Skeletoniza-
tion and its Application to Transfer Function Design. Technical Report OCHA-
IS 2000-3, Department of Information Sciences, Faculty of Science, Ochanomizu
University, Ochanomizu, Japan, February 2001.

27. S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for Ex-
tracting Correct Critical Points and Constructing Topological Graphs from Discrete
Geographical Elevation Data. Computer Graphics Forum, 14(3):C–181–C–192,
1995.

28. S. P. Tarasov and M. N. Vyalyi. Construction of Contour Trees in 3D in O � n log n �
steps. In Proceedings of the 14th ACM Symposium on Computational Geometry,
pages 68–75, 1998.

29. R. E. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. Journal
of the ACM, 22:215–225, 1975.

30. S. Tenginakai, J. Lee, and R. Machiraju. Salient Iso-Surface Detection with Model-
Independent Statistical Signatures. In Proceedings of Visualization 2001, pages
231–238, 2001.

31. M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R. Schikore.
Contour Trees and Small Seed Sets for Isosurface Traversal. In Proceedings of the
13th ACM Symposium on Computational Geometry, pages 212–220, 1997.

32. G. Wyvill, C. McPheeters, and B. Wyvill. Data Structure for Soft Objects. Visual
Computer, 2:227–234, 1986.

c
�

The Eurographics Association 2003.

58



Carr and Snoeyink / Path Seeds and Flexible Isosurfaces:

α
α

β
γ

δ
ε
ζ

β
γ

δ

ε

ζ

Figure 8: A Level Set, with Colour-Coded Tags

Figure 9: After Adjusting The Isovalue, and Unselecting

Figure 10: Isolating Local Maxima

Figure 11: A Molecule with a Complex Contour Tree

Figure 12: Flexible Isosurface Operations
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