
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2002)
D. Ebert, P. Brunet, I. Navazo (Editors)

An Open Toolkit for Prototyping Reverse Engineering
Visualizations

Alexandru Telea1, Alessandro Maccari2, Claudio Riva2

1 Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

alext@win.tue.nl
2 Software Technology Laboratory

Nokia Research Center, Helsinki, Finland
alessandro.maccari, claudio.riva@nokia.com

Abstract
Maintenance and evolution of complex software systems (such as mobile telephones) involves activities such as
reverse engineering (RE) and software visualization. Although several RE tools exist, we found their architecture
hard to adapt to the domain and problem specific requirements posed by our current practice in Nokia. In this
paper, we present an open architecture which allows easy prototyping of RE data exploration and visualization
scenarios for a large range of domain models. We pay special attention to the visual and interactive requirements
of the reverse engineering process. We compare our toolkit with other existing reverse engineering visual tools
and outline the differences.

1. Introduction

Reverse engineering (RE) 15 � 22 � 20 is an essential part of
maintenance and evolution of complex software systems,
that involves several tasks such as program analysis 15, plan
recognition 11, redocumentation 20, and architecture recov-
ery 20 � 22. Overall, these tasks can be reduced to two generic
operations: construction of a layered program representation
by automatic and user-driven (interactive) operations, and
the visualization of this representation in various manners,
such as graphical navigable views at different detail levels
3 � 17. Several tools support (some of) the RE tasks by pro-
viding automatic and user-driven data extraction and visual
data presentation 21 � 9 � 3. In practice, attempts to reverse engi-
neer large systems usually reach functional and/or structural
limitations of such RE tools. Some tools focus on domain
modelling and program analysis 15 � 11 but provide little for
the visual examination and/or editing of the extracted infor-
mation. Other tools focus on visualization 3 � 9 � 21, but do not
support program analysis or are hard to integrate with tools
that perform this task. In comparison with scientific visual-
ization (SciViz), where established generic system architec-
tures and implementations thereof are now common 16, most
RE tools are still narrowly specialized and hard to adapt e.g.

to easily integrate program analysis with visualization facil-
ities.

To address the above problems, we propose an open soft-
ware toolkit for RE tools. Our first aim is easy prototyping of
RE data exploration scenarios by combining and customiz-
ing existing software components and writing new ones. The
presented toolkit accommodates a large range of RE data
types, operations, and application scenarios. Secondly, this
paper brings concrete data on current practice of construct-
ing RE exploration and visualization applications in the soft-
ware industry. Section 2 overviews how current software
tools support reverse engineering in practice. Sections 3
and 4 present the architecture’s core, respectively visualiza-
tion back-end. Section 5 shows an end-user view of our tool.
Section 6 illustrates the use of our RE tool for the analysis
of concrete software data from the industry. Section 7 con-
cludes the paper with future directions.

2. Reverse Engineering Overview

The RE tasks outlined in Sec. 1 can be refined into five
generic operations a RE tool should support (see also
Fig. 1 a, cf. 20 � 22 � 21):

c
�

The Eurographics Association 2002.

241241

http://www.eg.org
http://diglib.eg.org

Telea, Maccari, Riva / Reverse Engineering Visualization

source
code

Extract
artifacts

Aggregate
artifacts

basic
artifacts

hierarchical
representation

Measure
norms

Visualise Select/
filter

imagevalue

selected
part

Reverse Engineering Tool

 End User

examine
output

input
commands

datasets

operations

Layered graph
nodes

edges

Operations

Selection Set
sel1 sel2

read

Toolkit
 Core

User Interface
and

Scripting

Visual Objects

write

read

Viewing and Interaction

selection editingmapping

T
C
L

Tk

a) b)

Figure 1: Reverse engineering pipeline (a). Toolkit architecture overview (b)

1. extract the low-level artifacts from the source code
2. aggregate the extracted artifacts into a hierarchical model
3. measure model’s quality using computed norms. If

needed, reexecute the aggregation differently.
4. select a sub-hierarchy to examine, if the whole is too

large, complex, or unclear to display.
5. visualize the data, e.g. by producing a graph layout, fol-

lowed by a drawing, of the selected data 6.

Steps 2 to 5 can occur in any order - one may e.g. first visu-
alize the whole model produced by Step 1, then apply some
user- or system-driven aggregation (Step 2), measure the re-
sult’s quality (Step 3), select a feature to look at (Step 4), and
then repeat from Step 2. Step 5 may provide different visual-
izations besides graph drawing. However, in most cases we
are aware of, RE users desire to focus on the specific re-
lations between (groups of) software components, so graph
visualization is their first choice.

3. Toolkit Architecture

Our toolkit is built as a layered system (Fig. 1 b). The toolkit
core is implemented as a C++ class library for performance.
The user interface and scripting layer is implemented in
Tcl/Tk for flexibility. We describe next the data and oper-
ation model used by the toolkit core.

3.1. Data Model

Our data model contains four elements: structure, attributes,
and selections, as follows.

3.1.1. Structure

We model the basic RE data by a hierarchical (layered) at-
tributed graph, similarly to 14 � 2 � 17. The graph’s nodes model
software artifacts output from program analysis. The graph’s
layers model node aggregations (clusterings) done during
plan assignment throughout architecture recovery. Several
aggregations (nodes with several parents) model alternative
system structurings common during RE sessions. The edges
model both relational and containment information.

3.1.2. Attributes

Both nodes and edges may have key-value pair attributes.
We implement keys as string literals and values as primi-
tive types (integer, floating-point, pointer, or string). Each
node and edge has a set of attributes with distinct keys, man-
aged in a hash-table-like fashion. Attributes automatically
change type if written to with a value of another type. Sev-
eral attribute planes can coexist in the graph. An attribute
plane is defined implicitly as all attributes of a given set of
nodes/edges for a given key. Our attribute model differs from
the one used by most SciVis 16 and RE applications 3 � 21 � 9

which choose a fixed set of attributes of fixed types for all
nodes/edges. Our choice is more flexible, since a) certain
attributes may not be defined for all nodes, and b) attribute-
planes are frequently added and removed in a typical RE
session.

3.1.3. Selections

Selections, defined as sets of nodes and edges, allow execut-
ing toolkit operations on a specific subset of the whole graph.
To make the toolkit flexible, we decouple the operations’

c
�

The Eurographics Association 2002.

242

Telea, Maccari, Riva / Reverse Engineering Visualization

definitions from the selections on which they are executed,
similarly to the dataset-algorithm decoupling in SciViz. Se-
lections are named, similarly to the attributes. All selec-
tions are kept as key-value pairs selection-set, similarly to at-
tributes. Overall, our graph and selection data model is quite
similar to the one used by the GVF toolkit 10. Our graphs are
structurally equivalent to the node-and-cell dataset model in
SciViz frameworks, whereas our selections do not have a di-
rect structural equivalent. Selections are functionally equiv-
alent to SciViz datasets, since they are the operations’ inputs
and outputs. As pointed out by 10 too, this is one of the main
differences between SciViz and graph-based toolkits which
leads to different architectures for the two.

3.2. Operation Model

Operations have three types of inputs and outputs: selec-
tions that specify on which nodes and edges to operate;
attribute keys that specify on which attribute plane(s) of
the selection to work; and operation-specific parameters,
such as thresholds or factors. We distinguish three operation
types, based on their read/write data access, as follows (see
also Fig. 1 b). Selection operations create selection objects
(Sec. 3.3). Graph editing operations modify the graph data
(Sec. 3.4). Mapping operations map the graph data to vi-
sual objects (Sec. 4). The above data-operation interface al-
lows the system to automatically update all components that
depend on the modified data after an operation’s execution.
For example, the selections are automatically updated after
a structure editing operation which deletes selected nodes or
edges. Similarly, the data viewers (Sec. 4.0.7) are updated
when the selections they monitor change. Although largely
similar to the SciViz dataflow mechanism 16, we do not ex-
plicitly construct an operation pipeline. After attempting to
do this, we have found that, in contrast to SciViz applica-
tions, RE operations are seldom executed in the same order
in typical RE sessions, so building an explicit pipeline bur-
dens more than helps users.

3.3. Selection Operations

Selection operations add nodes and edges of selection ob-
jects. We implemented several such operations, as follows.
Level selections (called ’horizontal slices’ in the RE litera-
ture 21) gather all the nodes and association edges on a cer-
tain aggregation level in the layered graph, and are useful for
visualizing the software at a given level of detail. Tree selec-
tions (called ’vertical slices’ in 21) gather all nodes and con-
tainment edges reachable from nodes in an input selection,
and are useful e.g. for visualizing subsystem structures. Con-
ditional selections (called ’filters’ in most RE tools) gather
all elements in an input selection that obey some attribute-
based condition, and are useful in queries such as ’show all
nodes where the cost attribute is higher than some thresh-
old’.

3.4. Graph Editing Operations

Graph editing operations edit the graph structure or the
node/edge attributes, as follows.

3.4.1. Structure Editing

Structure editing operations construct and modify the graph.
Such operations include the standard node and edge addition
and removal, as well as reading several graph formats such
as file formats such as RSF 21, GraphEd 7, and DOT 12, and
GXL 10. Aggregation operations usually take the nodes in an
input selection and produce a unique parent node. The input
selection can be either programmatically constructed or can
be the output of user interaction (Sec. 4.0.7). Currently we
are working on more complex aggregation methods, such as
automatic topology-based graph simplification.

3.4.2. Attribute Editing

These operations create, modify, and delete attributes from
the nodes’ and edges’ attribute-sets (Sec. 3.1.2). Besides the
selection input, attribute operations have also one or sev-
eral attribute-plane names as inputs. These names refer to
attribute-planes that the operation reads and/or writes, as fol-
lows.

3.4.3. Metrics

We treat RE metrics as attribute editing operations. Exam-
ples of RE metrics are computing the number of provisions,
requirements, and internalizations for some selected nodes
21 � 15. Metrics may produce new attribute-planes, as the above
metrics do, or single values, e.g. the cyclomatic number or
size for a subgraph. Decoupling the metric’s selection in-
put from the selection operation allows by default applying
any metric on any subgraph (which is not the case in other
RE tools 21 � 9). Moreover, explicitly specifying the input and
output attribute-plane names allows easy run-time prototyp-
ing of various combinations of metrics, similarly to the way
one works with function or matrix objects in systems such
as Matlab of Mathematica 23. Finally, the above decoupling
allows the implementations of metrics, attributes, and selec-
tions to evolve independently from each other in the toolkit.

3.4.4. Graph Layouts

In contrast to other systems 21 � 9 � 10, we treat graph layouts
simply as attribute editing operations and thus decouple
them completely from mapping and visualization. This has
several benefits. First, we can lay out different subgraphs
separately, e.g. using spring embedders 12 � 4 for call graphs
and tree layouts 18 � 12 for containment hierarchies. Second,
we can precompute several layouts e.g. to quickly switch
between them. Finally, we can cascade different layouts on
the same position attributes, e.g. to apply a fish-eye distor-
tion or refine an existing layout 6. We have implemented

c
�

The Eurographics Association 2002.

243

Telea, Maccari, Riva / Reverse Engineering Visualization

a b

Figure 2: Software visualization overview (a) and detail (b)

a b

Figure 3: Custom layouts: stacked layout (a) and nested layout (b)

several custom layouts by cascading simpler ones, as fol-
lows. Stacked layouts (Fig. 3 a) lay out a selection span-
ning several layers of a graph by applying a given 2D lay-
out (e.g. spring embedder) per layer and then stacking the
layers in 3D. Stacked layouts visualize effectively both con-
tainment (vertical) and association (horizontal) relations in
a software system. Nested layouts (Fig. 3 b) lay out a simi-
lar selection as above, by recursively laying out the contents
of every node separately and then laying out the bounding
boxes of the containing nodes. Nested layouts produce im-
ages similar to package UML diagrams and are very helpful
in RE applications. Users can easily combine any 2D lay-
outs as the building bricks for the stacked and nested layouts
In the example in Fig. 3 a we use a tree layout, whereas in
Fig. 3 b we use a spring embedder as basic layout. Con-
cretely, we use the AT&T’s DOT package 12 for tree lay-
outs and AT&T’s NEATO, GraphEd, and GEM 7 � 4 for spring
embedding. We have conducted some hundreds of tests on
graphs up to 2000 nodes on which DOT was faster, more
robust, and produced visually better results than the layouts

of RE tools such as 21 � 9. In about 70% of our tests, GEM
produced better layouts quicker than NEATO, especially for
graphs over 1000 nodes, but was more sensitive to the pa-
rameter choice. Adding new layouts to the toolkit is reason-
ably simple. Adding DOT, NEATO, or GEM (whose imple-
mentations exceed 50000 C lines) were wrapped by less than
100 C++ lines each, whereas our custom layouts have each
under 200 C++ lines.

4. Data Mapping and Visualization

Mapping and visualization operations enable users to see
and interact with the graph data. These operations have
four sub-components: mappers, viewers, glyph factories,
and glyphs (Fig. 4). These operations are implemented us-
ing the Open Inventor C++ toolkit 19, which offers sophis-
ticated mechanisms for object direct manipulation, picking,
and rendering, and are described next.

c
�

The Eurographics Association 2002.

244

Telea, Maccari, Riva / Reverse Engineering Visualization

operations
datasets

Graph Data

read input selections and write pick selections

Selection
 Set

sel1 sel2

Mapping

Glyph
Mapper

Splat
Mapper

Tcl Glyph
factories

Visual Objects
Inventor
scene
graphs

Viewing and
Interaction

2D/3D viewers

manipulation

picking

refers
 to read

calls
write

structure

attributes

read

Figure 4: Software components of the mapping operation

a b

Figure 5: Visualization of program analysis tool (a) and clustered core detail using glyphs(b)

4.0.5. The Mappers

The central visualization component is the mapper, which
maps selections to Inventor scene graphs. We have imple-
mented several mappers, as follows. The glyph mapper cre-
ates a glyph for each node and edge in the input selection,
and positions these glyphs at the 2D or 3D coordinates pro-
vided by an attribute plane of the input nodes and/or edges.
This attribute-plane is constructed before mapping by a lay-
out operation (Sec. 3.4). In contrast, the splat mapper pro-
duces a splat field from the selected subgraph, by the method
described in 13. The splat field can be viewed as a color or
elevation plot (see Figs. 7,8,9,10, and 11).

4.0.6. The Glyphs

A glyph is a 2D or 3D graphical object that visualizes a node
or edge. The glyph mapper calls, for every node and edge it
maps, a Tcl script, called a glyph factory, which builds the
desired glyph as an Inventor node. The script sets the glyph’s
graphical properties (color, shape, size, annotation, and so
on) from the attributes of the input node or edge. Since these
scripts may be freely edited by users at run-time, it is very
easy to customize the visualization at hand. Figure 5 shows
a glyph-based visualization of the software of a program
analysis system developed at Nokia. The left image shows

all 1200 software artifacts (methods, classes, packages, and
files) extracted from the code. The right image shows a sim-
plified view of the system’s core, after several graph-editing
operations (Sec. 3.4) have been applied to cluster the ex-
tracted artifacts into higher-level units. Different glyphs have
been used to show the different unit types, whereas the sub-
system coupling strength 15 is visualized by edge glyphs of
different thicknesses. The separation of the glyph placement,
done in the layout phase, and the glyph construction, done in
the mapping phase, is a simple but powerful way in specify-
ing the visualization. New glyph factories can be developed
without being concerned by the layout, whereas new layout
tools can be added to operate on existing glyphs.

Although glyph-based visualizations are well known in
SciViz, few software visualization systems support glyph
mapping. One of the few such systems is VANISH 9. How-
ever, although VANISH can build impressive glyph-based
graph visualization, it provides very little freedom for graph
manipulation, layouts, as discussed further in Sec. 5.

4.0.7. Viewing and Picking

Viewers are both output components (they display their in-
put selection and provide 2D and 3D navigation) and input
components (they edit a so-called pick selection). The pick

c
�

The Eurographics Association 2002.

245

Telea, Maccari, Riva / Reverse Engineering Visualization

Figure 6: Tcl/Tk interface of the integrated reverse engineering application

selection is a subset of the input selection that is displayed in
a special color-highlighted manner, as shown by the tree in
the upper-left part of Figs. 11 g and 5 b). The pick selection
is edited interactively when users pick nodes and/or edges
displayed by the viewers. The pick selection is automati-
cally modified upon these pick events, whereupon all toolkit
components are updated as described in Sec. 3.2. Moreover,
users can attach Tcl scripts to pick events to customize the
picking action, e.g. to interactively inspect, delete, aggre-
gate, hide, lay out , or apply metrics on the pick selection.
As for the Tcl glyph factories, such scripts usually have 10
to 20 Tcl lines and can be edited on the fly.

5. User Interaction and Assessment

We have built several integrated applications based on the
C++ toolkit core presented so far. These applications ex-
tend the Tcl interface to the core’s C++ API with several
Tk-based graphical user interfaces (GUIs) and Tcl scripts.
The scripts and GUIs add custom functionality, such as ex-
amining and editing node attributes, selection objects, do-
main models, and viewers, loading and saving data, and so
on (Fig. 6). These integrated applications are functionally
very similar to other RE tools such as Rigi 21, VANISH 9, or
graph visualization tools such as Royere 10. However, several
differences are to be mentioned. The main difference is our
toolkit’s core architecture which is based on a few loosely
coupled, orthogonal components: graph and selection data
objects, operations, mappers, glyphs, and viewers. The data-
operation loose coupling, via selections, makes it natural for
developers to write small, independent operations - so far
all our operations range from 20 to 150 C++ or Tcl lines.
For example, the script shown in the background window
of Fig. 6 that produces the graph visualization in Fig. 5 a,
has 11 Tcl lines. In contrast, Rigi 21 uses a monolithic core
architecture. Although somewhat adaptable via Tcl scripts,
this architecture offers no subclassing or composition mech-
anisms for the core itself. It is not possible, for example, to

change the graphic glyphs, the interactive selection policy,
or to add a new mapper without recoding the core. Similarly,
adding a new layout, selection operation, or metric involves
a low level API to access nodes and edges, as Rigi has no no-
tion of manipulating these as selections. VANISH 9 provides
a way to build custom glyphs very similar to our glyph fac-
tories (Sec. 4.0.6). However, VANISH uses node and edge
attributes based on compiled C++ classes which prove in-
flexible for our targeted RE scenarios (Sec. 3). Finally, we
should mention the large class of library-level toolkits, such
as GVF 10, GTL, or Graphlet 8. These toolkits provide ba-
sic graph data manipulation and usually do not address vi-
sualization, interaction, and RE-specific operations. From
these, our toolkit resembles GVF the most. However, we
found GVF’s Java-based API rather complex to understand
and use, especially for non object-oriented expert end users,
which led us to our choice for a light Tcl customization layer
to a C++ core.

6. Applications

We have used the presented integrated GUI application for
the exploration of reverse engineering data obtained from
several software systems built at Nokia. First, we extract
an attributed graph from the original Java, C, or C++ pro-
gram source code. The graph’s nodes are software entities
such as functions, classes, files, and packages. The arcs map
relationships such as ’uses’, ’contains’, ’calls’, and ’imple-
ments’. Various code attributes such as names, number of
code lines, version numbers, change dates, etc are stored as
node/edge attributes. The graph is loaded in our RE tool after
which the RE operation pipeline (Sec. 2), i.e. selection, ag-
gregation, metric computation, layout, mapping, and view-
ing, is executed.

Figure 2 a shows a simplification displaying about 20%
of a graph of 4000 nodes, layed out with a spring embed-
der. The about 850 clusters shown here correspond to differ-
ent loosely-coupled subsystems in the original software. The

c
�

The Eurographics Association 2002.

246

Telea, Maccari, Riva / Reverse Engineering Visualization

String

Figure 7: Software graph splatting. Packages using String
class

MenuBar

Display

Implementation
classes

GXLParser

Figure 8: Software graph splatting. Packages’ requirements

largest subsystem, shown in the lower left part of Figure 2 a,
was selected interactively by the user and then displayed sep-
arately in a second viewer (Figure 2 b). In this image, we
can easily detect the ’bridge’ (or interface) software compo-
nents as being those nodes that connect the large, densely
coupled subgraphs. In Fig. 5 a, 1200 entities from a differ-
ently architected software are visualized. The central dense
graph is the system’s core, whereas the elements scattered
around it are user interface and I/O code. In Figs. 7 and 8,
about 2000 entities extracted from a third system are visu-
alized. As the extracted graph is strongly connected, visu-
alizing it directly is not effective. Therefore, we visualize it
using graph splatting on a spring embedder layout 13, as fol-
lows. In Fig. 7 (11 d in color), the scalar density function

String
ListIter

Figure 9: Software splatting visualized with elevation plots

GXLParser MenuBar

GXLParser

Display

Figure 10: Software splatting visualized with elevation plots

(splat field) shows the number of provide relationships (who
is called by whom). The user has picked all packages using
the String Java class. As expected, a large part of the code
uses this class. Figure 8 (11 e in color) shows the number of
require relationships (who calls what). The splatting max-
ima denote the key system components: the Display (visu-
alization), GXL parser (data reader), and MenuBar (GUIs)
package. The ’hot area’ in the center of the image is pop-
ulated by several implementation classes, such as strings,
container classes, and so on, that refer to each other very
frequently. Figures 9 and 10 (11 f in color) shows the same
data as before, displayed with an elevation plot of the splat
field. Even though this time we use different layout parame-
ters, peaks denoting the same software components as before
emerge.

The above scenarios, starting from the RSF data delivered
by the code parser, took each under 10 minutes to build.
This implied the execution, via the tool’s GUI and its Tcl
command-line, of less than 20 operations. To produce the
zoomed-in image shown on the right, a Tcl procedure of less
than 15 lines was written that takes the left viewer’s highlight

c
�

The Eurographics Association 2002.

247

Telea, Maccari, Riva / Reverse Engineering Visualization

selection output (Sec. 4.0.7, applies a spring embedder lay-
out, and maps it in a new viewer. To visualize node details,
e.g. attribute names and values, one user wrote a second 12-
line Tcl procedure that opens a inspection GUI window (as
shown in Fig. 6 middle). This procedure is activated on the
changing of the highlight selection in the detail viewer, i.e.
when one clicks on the desired node in this viewer.

Overall, our RE tool proved more flexible than Rigi or
VANISH for the same case data. Among the most positive
points reported by end users were the possibility to write
custom selections, metrics, and glyph factories in a few Tcl
lines and to test them interactively. The slowest and most
delicate to tune part was the layout computation, especially
for graphs over 800 nodes. For such graphs, we had to de-
sign, usually on the fly, several selection and/or aggregation
operations to reduce the data size prior to layout and visual-
ization or alternatively use splatting on the whole graph.

7. Discussion and Future Work

We have presented a new toolkit for prototyping RE data ex-
ploration which has several advantages as compared to sim-
ilar systems we have worked with. Our aim was to strike
a balance between producing a too complex to learn and
maintain (yet versatile) system and building a too rigid and
specialized (yet simple to use) one. Overall, our toolkit has
currently about 10000 C++ and 1500 Tcl lines grouped in
around 50 classes and took five man-months development
time. The toolkit implements around 60 operations (8 data
readers, 4 data writers, 20 structure editing and metrics op-
erations, 8 layout operations, and about 15 mapping opera-
tions). The GUI-based application built atop of the toolkit
adds around 500 Tcl lines and proved in our daily practice
easier to customize than specialized systems such as 21 � 9 � 10.
For most visualization scenarios imagined by our users, writ-
ing (or adapting) a few small Tcl scripts of under 50 lines
was enough. This was definitely not the case with other RE
systems we worked with. Although our focus is reverse en-
gineering, our toolkit can be directly used as a prototyping
platform for various graph-based visualization applications.

We further aim to develop and integrate several domain-
specific operations, such as graph simplification, layout, and
glyph mapping, for the software domain models used at
Nokia. Our RE system will thus serve both as a tool for un-
derstanding our mobile telephony software and as a testbed
for prototyping new information visualization techniques.

References

1. T. BIGGERSTAFF, B. MITTBRANDER, D WEBSTER,
The Concept Assignment Problem in Program Under-
standing, Proc. WCRE ’93, IEEE CS Press, 1993.

2. S. CARD, J. MACKINLAY, B. SHNEIDERMAN, Read-
ings in Information Visualization, M. Kaufmann, 1999.

3. S. EICK AND G. WILLS, Navigating large Networks
with Hierarchies, in Readings in Inf. Vis. 2.

4. A. FRICK, A. LUDWIG AND H. MEHLDAU, A fast
adaptive layout algorithm for undirected graphs, Proc.
Graph Drawing ’94, Springer, 1995.

5. E.R. GANSNER, S.C. NORTH, An open graph visu-
alization system and its applications to software engi-
neering, Software-Practice and Experience, John Wiley
& Sons, (S1) 1-5, 1999.

6. HERMAN, G. MELANCON, M.S. MARSHALL, Graph
Visualization and Navigation in Information Visualiza-
tion: a Survey, IEEE TVCG, 2000.

7. M. HIMSOLT, GraphEd user manual, Technical report,
Fakultat fur Informatik, Universitat Passau, 1992.

8. M. HIMSOLT, Graphlet: Design and Implementation of
a Graph Editor, Software – Practice & Experience, no.
30, pp. 1303–1324, 2000

9. R. KAZMAN, J. CARRIERE, Rapid Prototyping of In-
formation Visualizations using VANISH, Proc. IEEE In-
foVis ’95, IEEE CS Press, 1995.

10. M. S. MARSHALL, I. HERMAN, G. MELANCON, An
Object-Oriented Design for Graph Visualization, Soft-
ware: Practice & Experience, 31, pp. 439–756, 2001

11. A. MENDELZON, J. SAMETINGER, Reverse Engineer-
ing by Visualizing and Querying, internal report, Com-
puter Systems Research Institute, Univ. of Toronto,
Canada, 1997.

12. S. C. NORTH, E. KOUTSOFIOS, DOT and
NEATO User’s Guide, AT&T Bell Labs Reports,
http://www.research.att.com, 1996.

13. R. VAN LIERE, Studies in Interactive Visualization,
PhD thesis, CWI, Amsterdam, 2001.

14. J. ROHRICH, Graph Attribution with Multiple Attribute
Grammars, ACM SIGPLAN 22 (11), pp.55-70, 1987.

15. S. TILLEY, A Reverse-Engineering Environment
Framework, CMU/SEI-98-TR-005, Carnegie-Mellon,
1998.

16. W. SCHROEDER, K. MARTIN, B. LORENSEN, The Vi-
sualization Toolkit, 2nd edition, Prentice Hall, 1998

17. J. STASKO, J. DOMINGUE, M. H. BROWN, B. A.
PRICE, Software Visualization - Programming as a
Multimedia Experience, MIT Press, 1998.

18. K. SUGIYAMA, S. TAGAWA, M. TODA, Methods for
Visual Understanding of Hierarchical Systems Struc-
ture, IEEE Trans. Systems, Man, and Cybernetics, Vol.
11, No. 2, pp.109-125, 1989.

19. J. WERNECKE, The Inventor Mentor: Programming
Object-Oriented 3D Graphics, Addison-Wesley, 1993.

c
�

The Eurographics Association 2002.

248

Telea, Maccari, Riva / Reverse Engineering Visualization

20. K. WONG, S. TILLEY, H. MULLER, M. STOREY,
Structural Redocumentation: A Case Study, IEEE Soft-
ware 12 (1), 1995, pp. 46-50.

21. K. WONG, Rigi User’s Manual version 5.4.4, Dept. of
Computer Science, Univ. of Victoria, Canada.

22. P. YOUNG Program Comprehension, Centre for Soft-
ware Maintenance, Univ. of Durham, 1996.

23. MATLAB, Matlab Reference Guide, The Math Works
Inc., 1992.

c
�

The Eurographics Association 2002.

249

Telea, Maccari, Riva / Reverse Engineering Visualization

String

GXLParser MenuBar

GXLParser

Display

Display

GXLParser

Implementation
classes

MenuBar

f

a b c

d e

g

Figure 11: Software visualizations in reverse engineering applications

c
�

The Eurographics Association 2002.

282

