
© The Eurographics Association 2002.

Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2002)
D. Ebert, P. Brunet, I. Navazo (Editors)

Vortex Tracking in Scale-Space

Dirk Bauer and Ronald Peikert

Computer Graphics Lab, Dept. of Computer Science, ETH Zürich, Switzerland
{bauer,peikert}@inf.ethz.ch

1. Introduction
Automatic extraction of features is a promising strategy to
cope with the large amount of data produced by time-depen-
dent CFD (computational fluid dynamics) simulations.
Computation time for this type of simulations is typically in
the order of days, which justifies the time spent on post-pro-
cessing the data by extracting features in a batch run. Auto-
matic feature extraction can achieve data reductions of up to
1:10000 [4] while still permitting the visualization of essen-
tial parts of the flow. It can be used for visually browsing
through the datasets or it can be combined with other types
of visualization. However, the implementation of this strat-
egy leads to the following problems:

a. Many flow features are of fractal nature, that means that
there is no unique definition of their feature size.
Depending on the observation scale, different sets of
features can be observed. Usually, the scale is implicitly
defined when an extraction method is designed. It
would be preferable to let the user specify the scale
interactively while viewing the data.

b. Most methods require numerical computation of first-
and second-order derivatives, which causes the data to

be roughened. Smoothing the data can reduce this
effect, but it is not trivial to find an appropriate smooth-
ing kernel when dealing with irregular grids and highly
varying cell sizes.

c. When features are extracted from time-dependent data,
animating them can cause popping effects with features
suddenly appearing or disappearing. This can be allevi-
ated by incorporating temporal in addition to spatial
smoothing.

In the field of computer vision, where feature extraction has
been practised for a longer time, scale-space techniques
have been successfully applied. These techniques smooth
the data using Gaussian kernels, the standard deviation σ of
which can be any positive real number. This scale axis plus
the spatial axes span the scale-space. Features thus not only
have spatial extents but also a certain scale extent. They can
therefore be searched and found in scale-space. This tech-
nique has the potential to solve the problems mentioned
above. However, for flow visualization applications, some
additional adaptations must be made: Firstly, a discretized
smoothing operation must be provided also for curvilinear
and unstructured grids. And secondly, special attention has

Abstract
Scale-space techniques have become popular in computer vision for their capability to access the multi-
scale information inherently contained in images. We show that the field of flow visualization can benefit
from these techniques, too, yielding more coherent features and sorting out numerical artifacts as well as
irrelevant large-scale features. We describe an implementation of scale-space computation using finite ele-
ments and show that performance is sufficient for computing a scale-space of time-dependent CFD data.
Feature tracking, if available, allows to process the information provided by scale-space not just visually
but also algorithmically. We present a technique for extending a class of feature extraction schemes by an
additional dimension, resulting in an efficient solution of the tracking problem.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications; I.4.7
[Image Processing and Computer Vision]: Feature Measurement - Feature Representation; J.2 [Applica-
tions]: Physical Sciences and Engineering - Engineering

233233

http://www.eg.org
http://diglib.eg.org

© The Eurographics Association 2002.

Bauer and Peikert / Vortex Tracking in Scale Space

to be paid to boundary treatment, due to the relatively low
resolutions in CFD datasets (often having interior bound-
aries) and the importance of the flow behavior near material
boundaries.

Many of the published multi-scale techniques are multi-reso-
lution as well, e.g. [9] and [19] performed feature extraction
from volumetric data in scale-spaces based on wavelets.
However, to keep the spatial resolution, we do not construct a
multi-resolution pyramid. Also, such a pyramid would yield a
coarse sampling along the scale axis. Yet for the purpose of
tracking, it is preferable to have no prescribed sampling.

The idea of using the scale-space for visualization of vector
fields is not new. Diewald et al. [1] demonstrate the useful-
ness of anisotropic diffusion for the visualization of vector
fields. By successively smoothing the data the scale-space
can be visually explored. Our goals are, beyond visual explo-
ration, to extract features as geometric objects and to improve
this process by exploiting the multi-scale nature of the fea-
tures.

Scale-space analysis can enhance flow visualization in many
ways:

a. At larger scales, the set of features is reduced to fewer
and clearer features. This is particularly noticeable for
features defined by second derivatives [10,13]. The
need for feature simplification has been recognized
before, leading to simplification strategies for special
purposes proposed by several authors [1,17,21].

b. It becomes possible to focus on features of a certain
scale.

c. Tracking features along the scale-axis allows to visual-
ize them with the positional accuracy of small scales
and, at the same time, to derive connectivity informa-
tion from larger scales.

d. Selective visualization can be done by picking an indi-
vidual feature at a larger scale which is then tracked to a
smaller scale and finally tracked through time.

All said above applies to flow features of any dimensional-
ity. However, we will focus on 1D (line-type) features, for
the reason that the CFD datasets computed by our industry
partners are mostly visualized for the purpose of studying
vortices. Vortices reduce a machine’s efficiency by binding
energy. Also, an unstable vortex can interact with machine
parts, producing undesired effects like material abrasion or
resonance.

The following section provides the definition of the linear
scale-space. Its numerical computation in typical CFD grids
is discussed in Section 3. Section 4 recapitulates a general
vortex extraction algorithm previously introduced [14] and
describes adaptations and simplifications to be made in the

context of a scale-space analysis. It is then shown in
Section 5 how a 4D extension of this algorithm is able to
track vortices in either the temporal or the scale domain.
Finally, both numerical and visual results are given.

2. The scale-space

When doing physical measurements or observations of real-
world objects, it is impossible to get a perfect representation
because the “aperture” of the observation instrument (e.g. a
human’s eye or a photo camera) cannot be varied arbitrarily,
thus the image resolution is limited to a certain range of
scales. Such multiscale representations of images have
widely been used since the beginning of the 1970s, but it is
no trivial task to track image structures across different lev-
els of scale, nor to distinguish significant image features
from noise. A major breakthrough was the introduction of
the scale-space theory by Witkin [20] and Koenderink [5] in
1983/84. They define the inner scale as the smallest level-
of-detail we can resolve and represent in our data (e.g. one
cone/rod of our retina, or one image pixel), the outer scale
as the largest possible structure (our field of view, or the
whole image).

Florack et al. [3] proved that convolution of a data signal
 with the (n-dimensional) Gaussian kernel

(1)

is the unique family of “aperture” functions to meet the fol-
lowing requirements:

 • Linearity: Applying the smoothing function can be
interchanged with adding two datasets or multiplying a
data set with a scalar.

 • Shift invariance: There is no preferred location.

 • Scale invariance: There is no preferred size.

 • Isotropy: There is no preferred direction.

 • Semigroup property: The set of smoothing functions
forms a commutative semigroup w.r.t composition. A
semigroup is closed under the operation, is associative
and has a zero element.

According to Lindeberg [7], the linear scale-space of a
given physical space with a data field is
defined to be the space with data

. (2)

Nonlinear scale-spaces can be obtained by relaxing some of
these requirements. A famous example is Perona and Malik’s
[11] scale-space based on anisotropic diffusion. However, we
will in the following restrict ourselves to the linear scale-
space.

u x()

G x σ,() 2πσ2()
n– 2⁄

e
x2 2σ2()⁄–

=

X Rn⊆ u x()
X R0

+ ×

u x s,() u x() G x s,()⊗=

234

Bauer and Peikert / Vortex Tracking in Scale-Space

© The Eurographics Association 2002.

3. Computing the scale-space

Convolving a scalar field u(x) with a Gaussian of standard
deviation σ is equivalent [5] to solving the heat equation

 (3)

for time and initial condition .

The reason for calling the time variable s rather than t is that
we want to do scale-space analysis also for time-dependent
data such as unsteady flow fields. We then have two orthogo-
nal time axes, namely the “physical time” t and the “diffusion
time” s.

By definition of the scale-space (Eq. (2)), the diffusion time s
is equal to the scale parameter s.

3.1. Regular grids

On a regular grid there are at least three fundamentally dis-
tinct algorithms for smoothing data with a Gaussian.

a. The obvious one is to actually compute the convolution
with a sampled Gaussian. This can be performed either
in the spatial domain or in the frequency domain.

b. The second method is to repeatedly apply for each
dimension a filter with weights (1/4, 1/2, 1/4). The
weights of the product filter are up to normalization the
even rows of the Pascal triangle and thus converge to a
Gaussian. This seems to be better suited to the computa-
tion of a scale-space where a whole sequence of Gauss-
ians is needed. However, the main problem with this
approach is that the number of iterations is proportional
to s and thus to σ2.

c. The third method is to solve the heat equation. While
this amounts to numerically solving a partial differential
equation, it has the advantage to work well also for
large σ and also to extend properly to irregular (curvi-
linear or unstructured) grids.

Only the third method will be further pursued since CFD
grids are typically irregular.

3.2. Computing derivatives

Probably all feature extraction techniques, be it in computer
vision or in scientific visualization, require in addition to
the field data the first and sometimes the second spatial
derivatives. The need for smoothing increases with the
order of the derivative as it must compensate for the rough-
ening effect of numerical differentiation.

A basic property of the convolution operator is that it com-
mutes with differentiation

 (4)

which provides us with three different ways to compute
derivatives of the smoothed data. The left term corresponds
to differentiating the smoothed data. This is our preferred
approach because it is numerically clearly better than
smoothing the differentiated data as reflected by the middle
term. It also makes differentiation a simpler task which can
be done with minimal stencils. The right term corresponds
to using sampled derivatives of the Gaussian which are then
convolved with the data. This computing strategy makes
particular sense in an environment where smoothing is gen-
erally done with sampled Gaussians. However, this is not
necessarily the best strategy in the context of computing a
scale-space, especially if the grid is unstructured.

3.3. Unstructured grids

The grids typically used in turbomachinery CFD consist of
hexahedral cells and are either block-structured or unstruc-
tured. We will focus on the latter as they comprise the
former. The grid cells can directly be used for a finite ele-
ment (FE) discretization of the heat equation. This type of
general hexahedral elements is usually referred to as iso-
parametric elements [21]. They are unit cubes when
expressed in local coordinates ξ, η and ζ.

A natural choice for boundary conditions are symmetry
boundary conditions, where the normal derivative is forced to
be zero. This is the simplest form of a Neumann boundary
condition. It says that diffusion can happen unrestrictedly
along the boundary, but no diffusion is allowed across the
boundary. The choice of the symmetry boundary condition
has a positive effect on the computation: No boundary inte-
grals have to be computed, and as a consequence both matri-
ces in the spatially discretized equation are
symmetric. The advantage of symmetric matrices is, besides
reduced storage requirements, the availability of more effi-
cient solvers.

The entries of the element mass matrix [21] are then

(5)

where and are the basis functions
and

. (6)

u· x s,() 1
2
--- u∇∇• x s,()=

s σ2= u x 0,() u x()=

x∂
∂ u G⊗() u∂

x∂
----- G⊗ u G∂

x∂
-------⊗= =

Au· Bu– 0=

aij ϕiϕj detJ ζd ηd ςd
0

1

∫
0

1

∫
0

1

∫=

ϕi ζ η ς, ,() ϕj ζ η ς, ,()

J x y z, ,()∂
ζ η ς, ,()∂

-----------------------=

235

© The Eurographics Association 2002.

Bauer and Peikert / Vortex Tracking in Scale Space

The element stiffness matrix [21] has entries

(7)

where is the gradient w.r.t. local coordinates. The inte-
grals Eq. (5) and Eq. (7) are usually computed numerically
with a method such as Gauss quadrature.

4. Application of the scale-space to flow
visualization

Scale-space analysis can be done in conjunction with any
visualization technique that requires some sort of smooth-
ing, in particular with techniques that include derivatives.
But like in the field of image processing (e.g. [7]), it is most
successfully combined with feature extraction techniques.
Features of interest can be of various types and dimensions,
but since our main application is extraction of vortex cores
from CFD datasets, we will focus on line-type features. The
“parallel vectors” operator [14] allows us to specify a vari-
ety of line-type features, including vortex core definitions
given by Levy et al. [6], by Sujudi and Haimes [16], and by
Miura and Kida [10]. The “parallel vectors” algorithm basi-
cally computes the set of points where two given vector
fields v and w are (anti-)parallel, i.e. there exists some sca-
lar value λ such that . We allow λ to be to
include the case where w vanishes. The algorithm can be
implemented by scanning all grid faces for intersection
points which are then connected to lines. By subsetting
these lines the final feature lines are obtained. Subsetting is
based on the velocity field u. In an abstract sense, the “par-
allel vectors” method operates on the three fields u, v, w.
But in practice, often one of v and w is the velocity field u
itself. Depending on the underlying feature definition, v and
w can be various derived fields such as pressure gradient,
vorticity or acceleration.

In the context of a scale-space analysis, this procedure can be
simplified in two ways:

a. Since data are presmoothed, estimating derivatives (for
setting up the derived fields) can be done with a simple
scheme and no extra filtering.

b. Subsetting of the lines can be done more automatically
and with fewer “quality” parameters. In the case of vor-
tex cores, one parameter turned out to be sufficient,
namely the ratio of twist and forward motion. Other
parameters used in the original procedure, like deviation
of the core tangent from the velocity direction, are no

longer needed, since “insignificant” features are elimi-
nated automatically when increasing the scale s.

The vortex core extraction algorithm is recapitulated here
(see Fig. 1) mainly because it will serve as a basis for our vor-
tex tracking algorithm. Intersection points of core lines with
cell faces are computed with the eigenvector method [14] but
we changed the procedure for connecting the points. Each
intersection point is now stored in an attributed vertex list.
Attributes are the value of λ and the quality parameters men-
tioned above. When all six faces of a cell have been treated,
and if the intersection problem did not degenerate, the result
is an even number of vertices in the cell, usually zero or two.
These vertices are connected, where the ambiguous situation
of more than two vertices is resolved heuristically by pairing
vertices with similar λ values. Orientation of the line seg-
ments is chosen consistently with the mean velocity at their
end points. Matching segments in adjacent cells are then con-
nected to polylines as long as the orientation is conserved.
Fig. 1 summarizes this procedure in pseudo-code.

When viewing the resulting polylines, they should be filtered
based on vertex attributes. Simple thresholding is possible as
well as more sophisticated techniques such as hysteresis
thresholding. Good results can also be obtained by allowing a
certain number of exceptions between two “valid” vertices.
Finally, a minimal feature size can be imposed.

bij J 1– ∇'ϕi() J 1– ∇'ϕj()• detJ ζd ηd ςd
0

1

∫
0

1

∫
0

1

∫=

∇'

v λw= ∞±

Initialize a segment list S.

for each grid cell
Initialize a vertex list L.
// Find points within the grid cell.
for each of the 6 cell faces

Find all points on the face where v and w
 are parallel.

Insert the points into L, sorted by
ascending λ.

next face
// Connect the points within this cell.
while |L| >= 2

Extract the first two points from L and
connect them to a line segment.

Orient the line segment consistently with
the mean velocity at its two end points.

Add the line segment to S.
end while

next grid cell
Connect adjacent line segments in S to polylines.

Figure 1: The vortex extraction algorithm.

236

Bauer and Peikert / Vortex Tracking in Scale-Space

© The Eurographics Association 2002.

5. Feature tracking

For a couple of reasons we need a way to track features
from one dataset to another. The obvious application is to
track features along the time axis in time-dependent data.
But it also makes sense to track features along the scale
axis, this way exploring the information contained in the
scale-space. An example of this is to interactively select an
individual feature at a larger scale and then display it at a
smaller scale, where positions are more accurate but where
the feature may be broken up into disjoint fragments. In
both cases we have the dimensions of the data domain plus
an extra dimension which we might call the tracking dimen-
sion. The two types of tracking can also be combined, as in
the example shown in Fig. 2.

Most existing tracking methods [15,12] operate on features
extracted from single datasets. This approach can be com-
pared to reconstructing an isosurface from given contour
plots in a pile of slices. Before the Marching Cubes algorithm
[8] was known, isosurface extraction had been approached as
a tracking problem with z being the tracking dimension.

The improvement brought by Marching Cubes was to “lift”
the contour extraction from 2D to 3D. Instead of working

with 2D grid cells, the grid is extended by the tracking
dimension and the contour extraction is done for 3D cells.
Such a lifting technique can basically be applied whenever a
feature extraction is operating on a cell-by-cell basis. An
example is the tracking of critical points by Tricoche et al.
[18]. In their paper the tracking dimension is time, but it can
be treated just like the z dimension in the Marching Cubes
example. For simpler notation, we will, in the following, use
“time” for the tracking dimension.

Features extracted from a lifted grid get an additional dimen-
sion, too. For example, 0D features such as critical points
become lines. Tracking is now simply achieved by taking
slices of constant time. In an implementation, it is of course
more appropriate to represent time as a vertex attribute rather
than as an additional coordinate. Then, taking a slice of con-
stant time t means to extract a level set for time t. An advan-
tage of this tracking method is that it needs no heuristics like
spatial overlap [15] or shape attributes [12], and still can han-
dle features moving by more than a grid cell per dataset (fea-
ture B in Fig. 3). Tracking is correct w.r.t. to linear
interpolation of time.

Since we focus on vortex cores (or more generally on line-
type features) in hexahedral grids, lifting generates cells
which topologically are 4D hypercubes. A 4D hypercube, or
tesseract, has 16 vertices, 32 edges, 24 faces and 8 boundary
cubes. Features are lifted, too, namely from 1D to 2D mani-
folds. It is clear that degeneracies can cause feature dimen-
sions to be other than expected. Implementations have to take
this into account. However, this is not a problem of the lifting
scheme since the problem is already present in the underlying
extraction method.

Figure 2: Example application of tracking
 in scale and time.

scale

time

s1

s2

s3

0

original datasets
smoothed datasets
scale used for feature selection
scale used for temporal tracking
scale used for visualization
tracking through scales
tracking through times

s1
s2
s3

Legend:

Figure 3: Lifting of cells and features.

dataset 1

time

space

dataset 0t0

t1

 spatial (original) cells

space-time
(lifted) cells

fe
at

ur
e A

feature B

intersections with
space-time cell
boundaries

237

© The Eurographics Association 2002.

Bauer and Peikert / Vortex Tracking in Scale Space

The algorithmic problem can now be stated as follows: Given
two vector fields and on the 16
vertices of a hypercube, find the set of points where the two
fields are parallel, and output it as a triangle mesh in 3-space.
Time should be stored as a vertex attribute, in addition to the
attributes of Section 4.

The 16 corners of a hypercube consist of the eight corners of
a grid cell at two consecutive times t0 and t1. The eight
boundary cubes are as follows: two of them are purely spatial
(one at time t0 and one at time t1), the other six are space-time
cubes, each consisting of one cell face at both times (see Fig.
4).

Since all eight boundary cubes have the same data format as a
standard grid cell, we can apply to each of them the proce-
dure we used for the cells in Section 4. This leads to the algo-
rithm shown in Fig. 5. The resulting triangle mesh needs
again to be post-processed. The minimum is to apply thresh-
olds for vertex attributes. Optional steps can be to compute
connected components and/or to extract level sets of time.

6. Results

In this section we provide numerical and visual results
based on two time-dependent datasets. The first one is an
unsteady simulation (by VA Tech Hydro) of the draft tube
of a Francis turbine. The main purpose of the simulation
was to predict the so-called vortex rope, a helical vortex
having a precession rate of roughly one third of the runner
frequency. The computation was done for the original and
for an optimized runner geometry. The optimization
improved the flow behavior, but its less articulate vortex
rope is more difficult to extract. Fig. 7 shows the vortex
rope in the original design. The vortex core was extracted

based on the definitions by Miura and Kida [10] and by
Levy et al. [6]. Because the former works with second
derivatives, some smoothing was necessary. The latter pro-
duced acceptable results even without smoothing. Regard-
ing the redesigned draft tube (Fig. 8), it is remarkable how
the topology of the vortex cores depends on the scale. At the
smallest scales, noise is dominating, which disappears at
medium scales. At larger scales, a vortex core close to the
machine axis appears, describing the global swirl in the
draft tube. Tracking the features through different scales
allows us to recognize the fragmented cores without sacri-
ficing the positional accuracy (Fig. 9, left).

The second dataset is an unsteady simulation (by Sulzer
Pumpen) of a mixed-flow pump operated at 35% of its best
efficiency point. Computation on an SGI Power Challenge
for 1800 time steps (1-degree increments) took 73.5 CPU-
hours. Both datasets are discretized on unstructured hexahe-
dral grids. Temporal tracking of vortex cores generates a
description of the vortex motion. In Fig. 9 (right) it is appar-
ent that most of the vortices are quite stable, whereas one
large vortex in each diffusor channel oscillates.

In Table 1 we provide performance results for the Gaussian
smoothing. In all three grids, the hexahedral cells were used
as finite elements discretization with linear isoparametric ele-
ments. We list the CPU times for computing the two FE
matrices and for smoothing the data in a single step, for three

Figure 4: Three of the eight boundary cubes
of a hypercube cell.

v x y z t, , ,() w x y z t, , ,()

t = t1

t = t0

spatial
boundary cube

spatial
boundary cube

space-time
boundary cube

Read first dataset (time t0).
for i = 1 to #datasets - 1

Read next dataset (time ti).

for each grid cell
Get the data values at all 16 corners of its

hypercube.
// = data values at the cell corners
// for times ti-1 and ti.

for each of the 8 boundary cubes
// Find line segments in the boundary cube.
Apply the procedure from Fig. 1.
Project line segments to 3-space
and store time as attribute.

next boundary cube
// The line segments form closed polygons.
Triangulate the polygons and add triangles

to triangle list.
next grid cell
Release older dataset (time ti-1).next i

Figure 5: The vortex tracking algorithm.

238

Bauer and Peikert / Vortex Tracking in Scale-Space

© The Eurographics Association 2002.

values of σ. Computations have been done on an SGI Octane
with a single 250 MHz R10000 processor and 640 MB mem-
ory.

The FE matrix elements were computed with Gauss quadra-
ture (3x3x3 Gauss points). The linear systems then were
solved using the f11jef function from the NAG Fortran
library. The method used was symmetric Lanczos and pre-
conditioning was done with symmetric successive overrelax-
ation. Setting up the matrices turned out to be quite
expensive. However, the matrices can be used for all datasets
related to the same grid, since they contain purely geometric
information. Computing times for smoothing seem to scale
less than linearly with σ. If an explicit scheme were used,
they would scale quadratically because of and the
limited step size. This certainly demonstrates the value of
implicit methods, although for good accuracy the step size
must be bounded, too.

Fig. 6 demonstrates the feature simplification aspect of the
scale-space approach. Features have been extracted from all
three datasets at fixed times but different scales. The number
of features is plotted against the standard deviation σ of the

Gaussian smoothing kernel. As can clearly be seen, the num-
ber of features decreases significantly at higher smoothing
levels.

7. Conclusion

We have implemented a method for computing the linear
scale-space of unstructured grid data. By controlling a sin-
gle parameter, the scale, we were able to improve the
extraction of features, in particular of features defined in
terms of second spatial derivatives. We have also presented
a novel 4D tracking method for line-type features which can
be used to track vortex cores through different scales carry-
ing over topological information such as connectivity. The
same algorithm can be used for temporal tracking as is
needed for selective visualization of features in time-depen-
dent data. Our implicit tracking method can reliably treat
fast-moving features and is therefore a good alternative to
proximity-based methods.

Our application-specific flow fields have quasi-periodically
moving features. It is therefore not necessary to explicitly
deal with bifurcations. Future work should address this issue,
giving more flexibility when visualizing general types of
flow fields. The basic information on bifurcations is provided
by our tracking algorithm.

Acknowledgments
This work has been supported by the Swiss Commission for
Technology and Innovation, by VA Tech Hydro, Zürich, and
by Sulzer Markets and Technology, Winterthur. We thank
Peter Arbenz, Armin Friedli, Markus Gross, Tobias
Preusser and Martin Rumpf for discussions and Filip Sadlo
for programming the FE module.

dataset nodes extent σ
matrix setup smoothing

CPU[s] CPU[s] iterations

draft tube 654770 1.33 × 0.59 × 0.72
0.002

531.8
41.2 9

0.008 88.5 23
0.032 219.6 62

pump stator 310757 0.50 × 0.50 × 1.54
0.002

242.3
19.2 9

0.008 31.8 17
0.032 67.9 40

pump rotor 235223 0.33 × 0.33 × 0.19
0.002

185.4
18.1 12

0.008 31.2 23
0.032 61.1 48

Table 1: Performance analysis of scale-space computation

Figure 6: Number of features at different scales

s σ2=

0

200

400

600

800

1000

0 .001 .002 .004 .008 .016 .032 σ

’draft_tube’
’pump_rotor’

’pump_stator’

239

© The Eurographics Association 2002.

Bauer and Peikert / Vortex Tracking in Scale Space

References
1. W. de Leeuw and R. van Liere. Visualization of Global

Flow Structures Using Multiple Levels of Topology. In
Data Visualization ‘99 (Proc. VisSym ‘99), pp. 45-52.
Springer Verlag, 1999.

2. U. Diewald, T. Preusser and M. Rumpf. Anisotropic
Diffusion in Vector Field Visualization on Euclidean
Domains and Surfaces. In IEEE Transactions on Visu-
alization and Computer Graphics, pp. 139-149, Apr.-
Jun. 2000.

3. L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koen-
derink and M.A. Viergever. Scale and the differential
structure of images. Image and Vision Computing, vol.
10, pp. 376-388, 1992.

4. D. Kenwright. Automatic Detection of Open and
Closed Separation and Attachment Lines. In Proceed-
ings of Visualization ‘98, pp. 151-158, 1998.

5. J. J. Koenderink. The structure of images. Biological
Cybernetics., vol. 50, pp. 363--370, 1984.

6. Y. Levy, D. Degani and A. Seginer. Graphical Visual-
ization of Vortical Flows by Means of Helicity. AIAA
28(8), pp. 1347-1352, August 1990.

7. T. Lindeberg. Scale-Space Theory in Computer Vision.
Kluwer Academic Publishers, Boston, 1994.

8. W. Lorensen and H. Cline. Marching Cubes: A High
Resolution 3D Surface ConstructionAlgorithm. Com-
puter Graphics, 21(4):163–169, 1987.

9. C. Lürig, R. Grosso and T. Ertl. Combining Wavelet
Transform and Graph Theory. In Visualization in Sci-
entific Computing 1997, pp. 137-144, Springer Verlag,
1997.

10. H. Miura and S. Kida. Identification of Tubular Vorti-
ces in Turbulence. Journal of the Physical Society of
Japan, vol. 66, nr. 5, pp. 1331-1334, May 1997.

11. P. Perona and J. Malik. Scale-space and edge detection
using anisotropic diffusion. In IEEE Computer Society
Workshop on Computer Vision, (Miami, FL), pp. 16--
22, 1987.

12. F. Reinders, F.H. Post and H.J.W. Spoelder. Attribute-
Based Feature Tracking. In Data Visualization ‘99
(Proc. VisSym ‘99), pp. 63-72. Springer Verlag, 1999.

13. M. Roth and R. Peikert. A Higher-Order Method for
Finding Vortex Core Lines. In Proceedings of Visual-
ization ‘98, pp. 143-150, Oct. 1998.

14. M. Roth and R. Peikert. The “Parallel Vectors” Opera-
tor - A Vector Field Visualization Primitive. In Pro-
ceedings of Visualization ‘99, pp. 261-268, Oct. 1999.

15. D. Silver and X. Wang. Volume Tracking. In Proceed-
ings of Visualization ‘96, pp. 157-164, 1996.

16. D. Sujudi and R. Haimes. Identification of Swirling
Flow in 3D Vector Fields. Tech. Report, Dept. of Aero-
nautics and Astronautics, MIT, Cambridge, MA, 1995.

17. X. Tricoche, G. Scheuermann, H. Hagen and S. Clauss.
Vector and Tensor Field Topology Simplification on
Irregular Grids. In Data Visualization 2001 (Proc. Vis-
Sym ‘01), pp. 107-116, Springer Verlag, 2001.

18. X. Tricoche, G. Scheuermann and H. Hagen. Topol-
ogy-Based Visualization of Time-Dependent 2D Vec-
tor Fields. In Data Visualization 2001 (Proc. VisSym
‘01), pp. 117-126, Springer Verlag, 2001.

19. R. Westermann and T. Ertl. A Multiscale Approach to
Integrated Volume Segmentation and Rendering. Com-
puter Graphics Forum, vol. 16, nr. 3, pp. 117-127,
September 1997.

20. A.P. Witkin. Scale-space filtering. In Proc. Interna-
tional Joint Conference on Artificial Intelligence,
(Karlsruhe, Germany), pp. 1019-1023, 1983.

21. P.C. Wong, H. Foote, R. Leung, E. Jurrus, D. Adams
and J. Thomas. Vector Fields Simplification - A Case
Study of Visualizing Climate Modeling and Simula-
tion Data Sets. In Proceedings of Visualization ‘00, pp.
485-488, Oct. 2000.

22. O.C. Zienkiewicz and R.L. Taylor. The Finite Element
Method, vol. I. (Fourth edition). McGraw Hill, 1988.

240

Bauer and Peikert / Vortex Tracking in Scale-Space

© The Eurographics Association 2002.

Figure 7: Original draft tube dataset: geometry and instantaneous streamlines (left). Pressure isosurfaces and pressure valley
line indicate the so-called vortex rope. Pressure data have been Gaussian-smoothed with σ=0.008 (middle). Vortex core

extraction based on normalized helicity can be successfully applied to unsmoothed data (right).

Figure 8: In the modernized draft tube, vortices are less articulate and harder to extract. Vortex core extraction based on
normalized helicity has been applied to unsmoothed velocity field (left) and to Gaussian-smoothed data with σ=0.008 (middle)

and σ=0.032 (right). Colors represent connected components of the surface swept by the core lines, see Fig. 9.

Figure 9: Vortex cores of Fig. 8 tracked through scales σ∈[0, 0.032] (left). Diagonal pump dataset with vortices extracted in
runner and diffusor along with a few manually seeded streamlines (middle). Vortex cores tracked temporally for a 90° rotation

of the four-bladed runner (right).

281

