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Abstract 
Many real-world e-service applications require analyzing large 
volumes of transaction data to extract web access information. 
This paper describes Web Access Visualization (WAV) a system 
that visually associates the affinities and relationships of clients 
and URLs for large volumes of web transaction data. To date, 
many practical research projects have shown the usefulness of a 
physics-based mass-spring technique to layout data items with 
close relationships onto a graph. The WAV system: (1) maps 
transaction data items (clients, URLs) and their relationships to 
vertices, edges, and positions on a 3D spherical surface; (2) 
encapsulates a physics-based engine in a visual data analysis 
platform; and (3) employs various content sensitive visual 
techniques - linked multiple views, layered drill-down, and fade 
in/out - for interactive data analysis. We have applied this system 
to a web application to analyze web access patterns and trends. 
The web service quality has been greatly benefited from using the 
information provided by WAV.  

Keywords: Visual Clustering, Data Access, Similarity, Clients, 
Web Transactions 

1    Introduction 
Recently, the rapid increase of transactions on the Internet has led 
to the availability of large volumes of web transaction data. 
Business research efforts [1, 2, 3, 9, 11, 12, 13, 14] have focused 
on how to turn raw data into valuable information. For example, 
by exploring web data access behavior, business analysts are able 
to find and retain their most valuable users and evolve their best 
service strategies. 

A web transaction starts with a user clicking on a web page. 
The client (web browser) sends the request through several 
components, such as applications servers, to perform some 
service. For example, a user clicks on a web page to purchase an 
airline ticket.  The data access patterns through various 
components play an important role for the overall transaction. 
Often, it impacts the quality of end-user experience. In order to 
provide faster service, web analysts need to analyze the data and 
to balance the workload among their servers.   

A common method for analyzing data access performance is 
to use scatter plots [10]. For visualizing web transaction data with 
a large number of clients, we have found that the scatter plot has 
too many overlaps. Only a small number (100-200) of low-density 
clients can be shown simultaneously. With large volumes of 
clients, the scatter plot quickly becomes cluttered and difficult to 
visualize, as illustrated in Figure 1A. (x-axis is number of the web 
clients; y-axis is the response time) 
The following are the recent requirements for a new 
visualization system of large web transactions: 
 

(1) Scale to a large number of web transactions and 
clients.  

 
 
(2) Place clients with similar behavior and 

relationships close together. 
(3) Unclutter the display with no overlapping. 
(4) Interact with the user for analyzing different 

scenarios. 
This paper describes a Web Access Visualization 

(WAV) system for addressing the above requirements in 
visualizing large volumes of web transactions.  Section 2 
describes the overall architecture of WAV. Section 3 
describes our approach to visualization, which is a 
combination of  (a) data mapping;  (b) using a mass-spring 
technique; and (c) clustering.  Section 4 describes how web 
analysts can perform various interactive analyses on WAV 
for different web applications. Section 5 summaries our 
conclusions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1A: A Scatter Plot (x-axis is number of the web 

clients; y-axis is the response time) 
 

 
 
 
 
 
 
 
 

 

 

 
Figure 1B: A New Web Access Visualization 
(rectangle represents client; color represents response time) 
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2    Using Similarity For Web Access Visualization  
To analyze a large highly related web client space, we are 
experimenting with a new Web Access Visualization 
technique, called WAV. WAV uses similarity to place 
clients with similar data access patterns close together, as 
illustrated in Figure 1B. For example, WAV clusters the 
clients with a   similar response time. The “distance” 
between each pair of clients represents the data access 
relationship. The most tightly related client is the client 
with the highest correlation with other clients. These clients 
usually have similar response times and access the same 
web pages. 

The detailed methods and algorithms of WAV are 
described in the Hewlett Packard Technical Report [8], in 
which we describe the integration of a physics-based mass-
spring engine and a data mining visualization system [7]. 
Also, we will describe how to cluster related web client 
transactions for pattern discovery. As to the scalability 
issue, we are experimenting with various methods to hide 
the complexity of the data. 
The WAV system contains four basic components:  
  

(1) Distance: the “distance” between each pair of 
items represents the similarity of web access 
pattern. 

(2) Color: the color of the node is used to represent 
the degree of the similarity, such as average 
response time. 

(3) Cluster: an ellipsoidal surface is used to wrap 
around highly related clients. 

(4) Content sensitive visual techniques: linked 
multiple views, layered drill-down, and fade in/out 
methods are provided for interactive data analysis. 

 

3  An Experimental Visualization System 
Many practical research projects have shown the usefulness of a 
physics-based technique to layout data items with close 
relationships onto a graph. For example, the Ivory system [4, 5] 
has been applied to banking for analyzing the relationships among 
economic data. The DAV system [8] has been applied to market 
basket analysis for product recommendation. The current 
experiment on WAV is focused on the visualization of web access 
relationships.  
The WAV system is built on Java-based multi-threaded 
parallelism. The WAV processor interacts with the user and 
extracts data from e-service engines or data warehouses for 
visually analyzing the data. The WAV processor manages the 
following three different processing states (As illustrated in 
Figure 2, 3, 4). 
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3.2    A Physics-Based Mass-Spring Engine 
Encapsulation 
The initial positions of items on the spherical surface could be at 
random. To avoid random pre-clustering, WAV distributes items 
equally on a sphere. The computation of equally spaced positions 
is based on a Poisson Disc Sampling [13] for approximation. 
WAV encapsulates a physics-based mass-spring engine to connect 
web clients with springs. The strength of client relationships 
correlates to the stiffness of the springs between them. The 
stiffness of the spring is defined in a web access matrix. The 
mass-spring engine transfers the spring stiffness to the distance 
between pairs of clients. From the principal of a physics-based 
mass-spring engine, after many computations, the graph will be 
relaxed and reach a local minimum. Clients with close 
relationships are automatically moved together and form clusters.   
 
Figure 3 illustrates the final graph after the graph has been relaxed 
using 500 iterations. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Encapsulate A Ph
 

3.3    Clustering and 
After the energy of the
result of the spring rel
mean or C-mean to grou
such as fast, medium, o
graph layout, as illustrate

 
 
 
 
 
 
 
 
 

 
Figure 4: Cluster Highly Co
 

4    Interactive Analys
One common problem web
transaction history to im
service. They want to di
bottlenecks. The WAV tech
visually analyze web client
for web pages at Hewlett P

Interactivity is an i
visualization system. To m
easy to explore and inte
interaction capabilities: (1)
multiple linked-views; and 

Figure 5 (see color section) illustrates a series of graphs 
generated from a web transaction observation data set. It contains 
35,000 transaction records. There are 986 clients with over two 
thousands URLs.  The rectangles represent clients that make 
transactions on the web. The spheres represent URLs.  WAV 
places clients with similar response times near to each other. 

WAV employs the following interactive visualization 
techniques to allow web analysts to navigate the graph and to 
discover patterns and trends. 

4.1    Layered Drill-Down 
A drill-down technique allows the viewing of all related 
information after selecting a single data item. For identifying 
correlations, a subset of data items corresponding to related 
attributes can be highlighted in the WAV graph. After a WAV 
graph is generated, the web analyst can easily navigate the web 
client and URL distribution graph and answer questions, such as 
which are the fastest clients, which are the slowest clients, what 
types of web pages are being accessed the most and by which 
client? 
    Figure 5A (see color section) illustrates 986 clients arranged 
according to their response time, with the accessed over two 
thousand URLs placed around them.  The web analysts can click 
on a client and find the answers to their questions. 

4.2    Fade In/Fade Out 
Figure 5B (see color section) shows the graph after fading out all 
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the URLs.  It allows the web analyst to focus on clients instead of 
URLs. The fade in/out mechanism allows users to categorize data 
items i.e. clients. For example, the web analyst is able to quickly 
locate the group of clients with response times in the range of 
3,000 ms to 4,000 ms. 

4.3    Multiple Linked Views 
In many cases, the data to be analyzed consists of multiple 
relationships. With multiple linked views we can visualize 
correlations among data items. When multiple views are 
presented, items across all the views are linked. In Figure 5C (see 
color section), the data item in the graph is linked to the tree table 
at the left side of the graph.  The web analyst can easy find both 
the average response for the cluster and each client’s medium 
response time. 
    Figure 5D (see color section) illustrates six linked views to 
show the relationships among clients. The user may select a single 
cluster to find all the data items and their response times 
contained in the cluster. The six views are described as follows: fast
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(1) A largest cluster with medium speed clients (highlighted 

as red) 
(2) A cluster of slowest clients 
(3) A cluster of fastest clients 
(4) The categories of clients with respect to web response 

time 
(5) The order of clusters from slow to fast 
(6)  Zoom in a cluster (highlighted as red)  – drill down 

each member’s detail information 
 

4.4    Automatic Alarm System 
Figure 5E (see color section) illustrates the WAV automatic alarm 
system. A WAV event will be triggered when an outlier client 
with either too small or too large access times is found. These 
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exceptional clients will be automatically highlighted and notified 
to the web analyst. 

5   Conclusions and Future Work 
Information visualization of web applications is an emerging 

technology that needs new techniques to visualize large volumes 
of massive transaction data with no overlaps.  At Hewlett-Packard 
Laboratories, we have integrated a mass-spring system into a 
visual analyzing platform. We have used the system to visually 
analyze over a dataset containing 35,000 transactions with 
thousands of clients and URLs for web service analysis. WAV 
provides a fast and interactive way for web analysts to easily 
navigate through large volumes of web transactions to locate 
problems and to enhance web services. As a result, WAV has 
made a significant impact on web service quality. The quality of 
end-user experience has been greatly enhanced with fast services. 
Further research on issues such as scalability is continuing. 
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Figure 5A An Overall Layout of Web Clients and URLs                            
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Figure 5B:  A Client-Only Graph with URLs Fade -Out

Figure 5C:  Link a Selected Cluster To A Tree Table  
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Figure 5E: Automatic Alarm System 
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Figure 5D:  Six Multiple Linked Views

Visualization of Large Web Access Data Sets 

Figure 5:  An Example of Web Transaction Observation  
                (Analyze 35,000 web transactions with 986 clients, and over two thousands URLs) 
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